-
Notifications
You must be signed in to change notification settings - Fork 2
/
agent.py
204 lines (166 loc) · 7.61 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import tensorflow as tf
import sonnet as snt
from graph_nets import graphs
from graph_nets import modules
from graph_nets import utils_tf
from graph_nets import _base
from baselines.common.schedules import LinearSchedule
import rl_loss
NODES = graphs.NODES
EDGES = graphs.EDGES
GLOBALS = graphs.GLOBALS
RECEIVERS = graphs.RECEIVERS
SENDERS = graphs.SENDERS
N_NODE = graphs.N_NODE
N_EDGE = graphs.N_EDGE
class RecurrentQNet(tf.keras.Model):
def __init__(self, num_units, n_actions, batch_size):
super(RecurrentQNet, self).__init__()
self.lstm = tf.keras.layers.LSTMCell(units=num_units)
self.q_value_head = tf.keras.layers.Dense(units=n_actions, activation="linear")
self.num_actions = n_actions
self.batch_size = batch_size
self.eps = tf.Variable(0., trainable=False)
self.zero_state = self.lstm.get_initial_state(batch_size=self.batch_size,
dtype=tf.float32)
def call(self, inputs, init_state, training=True):
o_t, [h_t, c_t] = self.lstm(inputs, states=init_state, training=training)
action_value = self.q_value_head(o_t)
return action_value, h_t, c_t
def step(self, inputs, init_state, update_eps, training=True, stochastic=True):
q_values, h_t, c_t = self.call(inputs, init_state, training=training)
greedy_actions = tf.math.argmax(q_values, axis=1)
batch_size = tf.shape(inputs)[0]
random_actions = tf.random.uniform(tf.stack([batch_size]), minval=0, maxval=self.num_actions, dtype=tf.int64)
chose_random = tf.random.uniform(tf.stack([batch_size]), minval=0.0, maxval=1.0, dtype=tf.float32) > update_eps
stochastic_actions = tf.where(chose_random, greedy_actions, random_actions)
if stochastic:
output_actions = stochastic_actions
elif not stochastic:
output_actions = greedy_actions
if not update_eps >= 0:
self.eps.assign(update_eps)
return output_actions, h_t, c_t
def exploration_policy(num_iters, exp_fraction, final_eps):
# eps-greedy exploration
return LinearSchedule(schedule_timesteps=int(exp_fraction*num_iters), initial_p=1.0, final_p=final_eps)
class KptConvEncoder(tf.keras.Model):
def __init__(self, feature_dim, agent_size):
super(KptConvEncoder, self).__init__()
self.conv_1 = tf.keras.layers.Conv2D(filters=feature_dim, kernel_size=3, strides=1, padding="same")
self.bn_1 = tf.keras.layers.BatchNormalization()
self.relu_1 = tf.keras.layers.ReLU()
self.conv_2 = tf.keras.layers.Conv2D(filters=feature_dim, kernel_size=3, strides=1, padding="same")
self.bn_2 = tf.keras.layers.BatchNormalization()
self.relu_2 = tf.keras.layers.ReLU()
self.conv_3 = tf.keras.layers.Conv2D(filters=feature_dim, kernel_size=3, strides=2, padding="same")
self.bn_3 = tf.keras.layers.BatchNormalization()
self.relu_3 = tf.keras.layers.ReLU()
self.conv_4 = tf.keras.layers.Conv2D(filters=feature_dim, kernel_size=3, strides=1, padding="same")
self.bn_4 = tf.keras.layers.BatchNormalization()
self.relu_4 = tf.keras.layers.ReLU()
self.flatten = tf.keras.layers.Flatten()
self.dense_1 = tf.keras.layers.Dense(units=agent_size)
self.relu_d = tf.keras.layers.ReLU()
# useful vars
self.filters = [feature_dim, feature_dim, feature_dim, feature_dim]
self.kernels = [3, 3, 3, 3]
self.strides = [1, 1, 2, 1]
def call(self, inputs, training=True):
h1 = self.relu_1(self.bn_1(self.conv_1(inputs), training=training))
h2 = self.relu_2(self.bn_2(self.conv_2(h1), training=training))
h3 = self.relu_3(self.bn_3(self.conv_3(h2), training=training))
h4 = self.relu_4(self.bn_4(self.conv_4(h3), training=training))
flatten_h4 = self.flatten(h4)
h_dense = self.relu_d(self.dense_1(flatten_h4))
return h_dense
class PositionalEncoder(tf.keras.Model):
def __init__(self, d_model):
super(PositionalEncoder, self).__init__()
self.d_model = d_model
self.dense_1 = tf.keras.layers.Dense(units=64)
self.bn_1 = tf.keras.layers.BatchNormalization()
self.relu_1 = tf.keras.layers.ReLU()
self.w_p = tf.keras.layers.Dense(units=d_model, activation="linear")
def call(self, inputs, training):
h1 = self.relu_1(self.bn_1(self.dense_1(inputs), training=training))
h2 = self.w_p(h1)
return h2
class NodeEncoder(tf.keras.Model):
def __init__(self, output_dim):
super(NodeEncoder, self).__init__()
self.dense_1 = tf.keras.layers.Dense(units=output_dim)
self.bn_1 = tf.keras.layers.BatchNormalization()
self.relu_1 = tf.keras.layers.ReLU()
self.dense_2 = tf.keras.layers.Dense(units=output_dim)
self.bn_2 = tf.keras.layers.BatchNormalization()
self.relu_2 = tf.keras.layers.ReLU()
def call(self, inputs, training):
h1 = self.relu_1(self.bn_1(self.dense_1(inputs), training=training))
h2 = self.relu_2(self.bn_2(self.dense_2(h1), training=training))
return h2
class MLP(_base.AbstractModule):
def __init__(self, hidden_size):
super(MLP, self).__init__()
self.dense_1 = snt.Linear(hidden_size, name="hidden1")
self.bn_1 = snt.BatchNorm(create_scale=True, create_offset=True)
self.dense_2 = snt.Linear(hidden_size, name="hidden2")
self.bn_2 = snt.BatchNorm(create_scale=True, create_offset=True)
def _build(self, inputs, **kwargs):
h1 = tf.nn.relu(self.bn_1(self.dense_1(inputs), is_training=kwargs["is_training"]))
output = tf.nn.relu(self.bn_2(self.dense_2(h1), is_training=kwargs["is_training"]))
return output
class MLPGraphIndependent(_base.AbstractModule):
"""GraphIndependent with separate MLP edge, node, and global models."""
def __init__(self, latent_size, num_layers, name="MLPGraphIndependent"):
super(MLPGraphIndependent, self).__init__(name=name)
with self._enter_variable_scope():
self._latent_size = latent_size
self._num_layers = num_layers
self._network = modules.GraphIndependent(edge_model_fn=lambda: MLP(latent_size),
node_model_fn=lambda: MLP(latent_size))
def _build(self, inputs, is_training):
return self._network(inputs, edge_model_kwargs={"is_training": is_training},
node_model_kwargs={"is_training": is_training})
class KptGnnEncoder(_base.AbstractModule):
"""A Graph Network model design (https://arxiv.org/abs/1806.01261)
using a "core" module Interaction Network and MLPGraphIndependent networks
as Encoder and Decoder modules.
The "core" Interaction Network, which performs N rounds of processing
(message-passing) steps. Edges and Nodes are encoded by and decoded back
from the "core" independently using a MLPGraphIndependent network.
"""
def __init__(self,
latent_size=32,
num_layers=2,
decoder_size=64,
name="kpt_gnn_enc"):
super(KptGnnEncoder, self).__init__(name=name)
self._latent_size = latent_size
self._num_layers = num_layers
self._is_training = None
self._encoder = MLPGraphIndependent(latent_size, num_layers)
self._interaction_core = modules.InteractionNetwork(
lambda: MLP(self._latent_size),
lambda: MLP(self._latent_size))
self._decoder = MLPGraphIndependent(decoder_size, num_layers)
def _build(self, v, num_processing_steps, is_training):
# simply use kpts as nodes in the graph (no top-down attn)
input_graphs = rl_loss.get_graph_tuple(v)
# pre-process graphs-tuple data
input_graphs = utils_tf.fully_connect_graph_static(
input_graphs,
exclude_self_edges=False)
input_graphs = utils_tf.set_zero_edge_features(input_graphs,
edge_size=self._latent_size)
# encode input graphs
latent = self._encoder(input_graphs, is_training)
delta_latent = latent
# measure interaction-effects with keypoints as nodes
for _ in range(num_processing_steps):
delta_latent = self._interaction_core(latent,
edge_model_kwargs={"is_training": is_training},
node_model_kwargs={"is_training": is_training})
# decode last round latent graph
output = self._decoder(delta_latent, is_training)
return output