-
Notifications
You must be signed in to change notification settings - Fork 0
/
penguin_chatbot.py
319 lines (264 loc) · 9.57 KB
/
penguin_chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import re
import pandas as pd
import pyttsx3
from sklearn import preprocessing
from sklearn.tree import DecisionTreeClassifier,_tree
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC
import csv
import warnings
from transformers import pipeline
warnings.filterwarnings("ignore", category=DeprecationWarning)
training = pd.read_csv('DataSet/Training.csv')
testing= pd.read_csv('DataSet/Testing.csv')
cols= training.columns
cols= cols[:-1]
x = training[cols]
y = training['prognosis']
y1= y
reduced_data = training.groupby(training['prognosis']).max()
label_to_adjective = {
'sadness': 'sad',
'disappointment': 'disappointed',
'neutral': 'neutral',
'annoyance': 'annoyed',
'disapproval': 'disapproving',
'realization': 'realized',
'approval': 'approving',
'disgust': 'disgusted',
'nervousness': 'nervous',
'caring': 'caring',
'joy': 'joyful',
'remorse': 'remorseful',
'grief': 'grief-stricken',
'anger': 'angry',
'embarrassment': 'embarrassed',
'desire': 'desirous',
'relief': 'relieved',
'optimism': 'optimistic',
'admiration': 'admiring',
'amusement': 'amused',
'excitement': 'excited',
'fear': 'fearful',
'love': 'loving',
'surprise': 'surprised',
'confusion': 'confused',
'gratitude': 'grateful',
'curiosity': 'curious',
'pride': 'proud'
}
#mapping strings to numbers
le = preprocessing.LabelEncoder()
le.fit(y)
y = le.transform(y)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
testx = testing[cols]
testy = testing['prognosis']
testy = le.transform(testy)
clf1 = DecisionTreeClassifier()
clf = clf1.fit(x_train,y_train)
# print(clf.score(x_train,y_train))
# print ("cross result========")
scores = cross_val_score(clf, x_test, y_test, cv=3)
# print (scores)
print (scores.mean())
model=SVC()
model.fit(x_train,y_train)
print("for svm: ")
print(model.score(x_test,y_test))
importances = clf.feature_importances_
indices = np.argsort(importances)[::-1]
features = cols
def readn(nstr):
engine = pyttsx3.init()
engine.setProperty('voice', "english+f5")
engine.setProperty('rate', 130)
engine.say(nstr)
engine.runAndWait()
engine.stop()
severityDictionary=dict()
description_list = dict()
precautionDictionary=dict()
symptoms_dict = {}
for index, symptom in enumerate(x):
symptoms_dict[symptom] = index
def calc_condition(exp,days):
sum=0
for item in exp:
sum=sum+severityDictionary[item]
if((sum*days)/(len(exp)+1)>13):
print("You should take the consultation from doctor. ")
else:
print("It might not be that bad but you should take precautions.")
def getDescription():
global description_list
with open('MasterDataSet/symptom_Description.csv') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
line_count = 0
for row in csv_reader:
_description={row[0]:row[1]}
description_list.update(_description)
def getSeverityDict():
global severityDictionary
with open('MasterDataSet/symptom_severity.csv') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
line_count = 0
try:
for row in csv_reader:
_diction={row[0]:int(row[1])}
severityDictionary.update(_diction)
except:
pass
def getprecautionDict():
global precautionDictionary
with open('MasterDataSet/symptom_precaution.csv') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
line_count = 0
for row in csv_reader:
_prec={row[0]:[row[1],row[2],row[3],row[4]]}
precautionDictionary.update(_prec)
def getInfo():
print("-----------------------------------HealthCare ChatBot-----------------------------------")
print("\nYour Name? \t\t\t\t",end="->")
name=input("")
print("Hello, ",name)
def getEmotions():
classifier = pipeline(task="text-classification", model="SamLowe/roberta-base-go_emotions", top_k=None)
print(" How are you feeling today? \t\t\t\t",end="->")
sentences = input("")
model_outputs = classifier(sentences)
sorted_outputs = sorted(model_outputs[0], key=lambda x: x['score'], reverse=True)
top_labels = [label_to_adjective.get(output['label'], output['label']) for output in sorted_outputs[:2]]
if len(top_labels) == 2:
print(f"You seem {top_labels[0]} and {top_labels[1]}")
elif len(top_labels) == 1:
print(f"You seem {top_labels[0]}")
else:
print("Unable to determine emotions.")
def check_pattern(dis_list,inp):
pred_list=[]
inp=inp.replace(' ','_')
patt = f"{inp}"
regexp = re.compile(patt)
pred_list=[item for item in dis_list if regexp.search(item)]
if(len(pred_list)>0):
return 1,pred_list
else:
return 0,[]
def sec_predict(symptoms_exp):
df = pd.read_csv('DataSet/Training.csv')
X = df.iloc[:, :-1]
y = df['prognosis']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=20)
rf_clf = DecisionTreeClassifier()
rf_clf.fit(X_train, y_train)
symptoms_dict = {symptom: index for index, symptom in enumerate(X)}
input_vector = np.zeros(len(symptoms_dict))
for item in symptoms_exp:
input_vector[[symptoms_dict[item]]] = 1
return rf_clf.predict([input_vector])
def print_disease(node):
node = node[0]
val = node.nonzero()
disease = le.inverse_transform(val[0])
return list(map(lambda x:x.strip(),list(disease)))
def tree_to_code(tree, feature_names):
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
chk_dis=",".join(feature_names).split(",")
symptoms_present = []
while True:
print("\nEnter the symptom you are experiencing \t\t",end="->")
disease_input = input("")
conf,cnf_dis=check_pattern(chk_dis,disease_input)
if conf==1:
print("searches related to input: ")
for num,it in enumerate(cnf_dis):
print(num,")",it)
if num!=0:
print(f"Select the one you meant (0 - {num}): ", end="")
conf_inp = int(input(""))
else:
conf_inp=0
disease_input=cnf_dis[conf_inp]
break
# print("Did you mean: ",cnf_dis,"?(yes/no) :",end="")
# conf_inp = input("")
# if(conf_inp=="yes"):
# break
else:
print("Enter valid symptom.")
while True:
try:
num_days=int(input("Okay. From how many days ? : "))
break
except:
print("Enter valid input.")
def recurse(node, depth):
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
if name == disease_input:
val = 1
else:
val = 0
if val <= threshold:
recurse(tree_.children_left[node], depth + 1)
else:
symptoms_present.append(name)
recurse(tree_.children_right[node], depth + 1)
else:
present_disease = print_disease(tree_.value[node])
# print( "You may have " + present_disease )
red_cols = reduced_data.columns
symptoms_given = red_cols[reduced_data.loc[present_disease].values[0].nonzero()]
# dis_list=list(symptoms_present)
# if len(dis_list)!=0:
# print("symptoms present " + str(list(symptoms_present)))
# print("symptoms given " + str(list(symptoms_given)) )
print("Are you experiencing any ")
symptoms_exp=[]
for syms in list(symptoms_given):
inp=""
print(syms,"? : ",end='')
while True:
inp=input("")
if(inp=="yes" or inp=="no"):
break
else:
print("provide proper answers i.e. (yes/no) : ",end="")
if(inp=="yes"):
symptoms_exp.append(syms)
second_prediction=sec_predict(symptoms_exp)
# print(second_prediction)
calc_condition(symptoms_exp,num_days)
if(present_disease[0]==second_prediction[0]):
print("You may have ", present_disease[0])
print(description_list[present_disease[0]])
# readn(f"You may have {present_disease[0]}")
# readn(f"{description_list[present_disease[0]]}")
else:
print("You may have ", present_disease[0], "or ", second_prediction[0])
print(description_list[present_disease[0]])
print(description_list[second_prediction[0]])
# print(description_list[present_disease[0]])
precution_list=precautionDictionary[present_disease[0]]
print("Take following measures : ")
for i,j in enumerate(precution_list):
print(i+1,")",j)
# confidence_level = (1.0*len(symptoms_present))/len(symptoms_given)
# print("confidence level is " + str(confidence_level))
recurse(0, 1)
getSeverityDict()
getDescription()
getprecautionDict()
getInfo()
getEmotions()
tree_to_code(clf,cols)
print("----------------------------------------------------------------------------------------")