-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrain.py
564 lines (462 loc) · 16.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
"""
Script for pre-processing the data by
resizing, median filtering the images.
And finally training the Neural Network model
for the task of classifying blur and clear images.
"""
# Loading required Libraries
from __future__ import print_function
from config import *
from utils import (h, sigmoid, validate, resize,
model_score, path_validation)
import numpy as np
import matplotlib.pyplot as plt
import os
from sklearn.model_selection import train_test_split
from sklearn.externals import joblib
import scipy.misc as ms
import scipy.ndimage as nd
import argparse
def data_preprocess(GOOD_IMG_PATH, BAD_IMG_PATH, radius=3):
"""
Extracts the images from the given paths
then pre-process them by applying
median filter to filter out the
noise present in the images and
finally concatenate the good and bad
preprocessed images to
one input images
@ Parameters:
-------------
GOOD_IMG_PATH: str
Path of the folder containing
good images
BAD_IMG_PATH: str
Path of the folder containing
bad images
radius: int
Radius of the median filter
applied to the image
@ Returns:
----------
combined_img: np.array
filtered and pre-processed combined
images arrays of both good and clear
iamges
labels: np.array
labels containing 1, if images is good
and 0, if image is bad
"""
print ('Pre-Processsing the Data...........\n')
# Reading the Good Images
good_img = []
for filename in os.listdir(GOOD_IMG_PATH):
good_img.append(ms.imread(GOOD_IMG_PATH+filename, mode='L'))
good_img = np.asarray(good_img)
# Reading the Bad Images
bad_img = []
for filename in os.listdir(BAD_IMG_PATH):
bad_img.append(ms.imread(BAD_IMG_PATH+filename, mode='L'))
bad_img = np.asarray(bad_img)
# Concatenate the array of Good & Bad images
combined_img = np.concatenate((good_img, bad_img))
labels = np.concatenate((np.ones(good_img.shape[0]),
np.zeros(bad_img.shape[0])))
# Filtering the combined images to Reduce the Noise present
combined_img = nd.median_filter(combined_img, radius)
return combined_img, labels
def save_data(train_images, train_labels,
test_images, test_labels):
"""
Checking the existence of path
if not exists then creates one
and save the train & test data
"""
if path_validation(TRAIN_DATA_PATH):
print ('Train Data Path Success .....')
if path_validation(TRAIN_LABEL_PATH):
print ('Train Label Path Success .....')
if path_validation(TEST_DATA_PATH):
print ('Test Data Path Success .....')
if path_validation(TEST_LABEL_PATH):
print ('Test Label Path Success .....')
print('\nSaving the splitting results......\n')
np.save(TRAIN_DATA_PATH,train_images)
np.save(TRAIN_LABEL_PATH,train_labels)
np.save(TEST_DATA_PATH,test_images)
np.save(TEST_LABEL_PATH,test_labels)
def NN_Model(neurons, good_initializer=False):
"""
Intializing an 2 Layer Neural Network Model
with random value of weights.
@ Parameters:
-------------
neurons: tuple
Dimension(no of neuron) in
input layer -> hidden layer-> output layer
in the same order(input, hidden, output)
good_initializer: bool
If set to True, intialize the network with good
set of intial weight to parameters
extracted from saome paper
else, intialized the parameters to default
normal random values from [-1,1]
@ Returns:
----------
param: dict
parameters theta1 and theta2
with randomly intialized values
"""
# Good Weight Initialization Cited from Paper
print('\nIntializing the Model...........\n')
if good_initializer:
weight = np.sqrt(6.0/(neurons[0] + neurons[-1]))
else:
weight = 1.0
# Intializing the theta parameters
theta1 = 2.0*np.random.random((neurons[1],neurons[0]))*weight - 1.0*weight
theta2 = 2.0*np.random.random((neurons[-1],neurons[1]+1))*weight - 1.0*weight
# Store the paramaters to dictionary
param = {'Theta1':theta1, 'Theta2':theta2}
return param
def derivative(a,func='sig'):
"""
Derivative f'(x) of correspnding Activation Function
which is applied to neurons used in calculatng
backpropgation
@ Parameters:
-------------
a: np.array
Activated neurons
func: str
Activation function whose
derivative needs to be calculated
@ Returns:
----------
derivative of activated neurons
"""
# tanh derivative function
if func == 'tanh':
return (1 - a*a)
# Identity derivative function
if func == 'none':
return 1
# Softplus derivative function
if func == 'softplus':
return 1.0/(1 + np.exp(-a))
# Noisy ReLU , Noise is added to it.
# Derivative function
if func == 'relu':
a[a >= 0.00] = 1.00
a[a < 0.00] = 0.01
return a
# Sigmoid derivative function
return a*(1-a)
## Diagram to show the Weight and Input matrix Multiplication
#==============================================================================
# --- Total examples -----
# [theta0 theta1 t2 t3 t4 ........ ] x0 x10
# Total features x1 x11 ... .. . .. .. ..
# . x2 x12
# . x3 .
# . x4
# . x5
# . ..
# . .
# . .
# . .
# . . .
# . xn x1n .........
#==============================================================================
#==============================================================================
def cost(act_val, target, theta, lambdaa):
"""
Cost Function with L2 regularization
Not penalizing the Bias terms in weight values
using softmax/max-likelihood loss function
@ Parameters:
-------------
act_val: np.array
Activated value of last layer neurons
target: np.array
Value of target class
theta: dict
Conatins the trained theta weights
used to calculate the error
lambdaa: float
Intensity of regularization to be
applied to final results
@ Returns:
----------
overall cost of that epochs
or NN network trained
"""
# Regularization computation ignoring
# bias '0' term in it
reg = (lambdaa/2.0)*(np.sum(theta['Theta1'][1:,:]**2)
+ np.sum(theta['Theta2'][1:,:]**2))
reg = reg/float(target.shape[0])
# MAx-Likelihood Calcaulatoin as in
# like Logistics Regression
first = (-1.0) * ( target*np.log(act_val) + (1-target)*np.log(1 - act_val))
# Actual cost = Total cost - regualrized
return (np.mean(first) + reg)
def back_propagate(theta1, theta2, train_images,
train_labels, nclass, alpha=0.001, lambdaa=0.0007,
max_iter=50, act='sig', batch_size=32, logging=1):
"""
Method of updating the weights in NN Model
by taking gradients of theta using cost function
thata = theta - f('theta)
Mini-batch gradient descent, applied to get the
gradient of the theta.
Here updation of weights use momentum factor(gamma)
so as to approach global minima faster
Core of ANN, BackProp..
@ Parameters:
-------------
test_images: np.array
Contains the test_images whose labels need
to be predicted
test_labels: np.array
Contains the labels(1/0)
corresponding to selected images
theta1: np.array
Contains the trained theta weights
corresponding to input->hidden layer
theta2: np.array
Contains the trained theta weights
corresponding to hidden->output layer
train_images: np.array
Contains the train_images used to learn
the weights of networks
train_labels: np.array
Contains the labels(1/0)
corresponding to train_images
nclass: int
No of unique class present in the
training dataset
alpha: float
Learning rate, rate at which each gradient
update take place
lambdaa: float
Regularization term which penalizes
the cost function
max_iter: int
No of epochs to be performed on
data to learn the weights
act: str
Activation function which is applied to
the neurons in forward propagation
batch_size: int
No of images,labels to be fetched from
overall data at each iterations for
updation of weights
logging: int
Steps at which logs are displayed
or recorded
@ Returns:
----------
parameters: dict
trained theta1,theta2
and per epoch Loss values
"""
# Used to store theta1 & theta2
parameters = {}
# Momentum Factor
gamma = 0.9
# Intial dtheta values used for
# momentum
dtheta1 , dtheta2 = 0.0, 0.0
# One-Hot labelling the labels of data
one_hot = output_encoding(train_labels, nclass)
# Used to store best theta1 and theta2 values
# whose error was least in whole epochs
best_theta1, best_theta2 = (np.zeros((theta1.shape[0],theta1.shape[1])),
np.zeros((theta2.shape[0],theta2.shape[1])))
# Store the value of cost in each epochs
cost_list = []
# Global Min Error term
err = 100.0
for epoch in np.arange(0,max_iter):
# Used to print results of result summary
k = 0
print
print ('\nOverall Min. Error rate : ' + str(err))
print
# Softmax in Final Layer
for batchX , batchY in get_batch(train_images,one_hot,batch_size):
m, n = batchX.shape
a2 = h(theta1,batchX,act)
a2 = np.insert(a2, 0, 1, axis=0)
a3 = h(theta2,a2.T,func='softmax')
eps = alpha/float(m)
# Error in Hidden and Output Layer
delta3 = (a3 - batchY)*derivative(a3,'none')
delta2 = ((theta2.T).dot(delta3))*derivative(a2,act)
# Gradient of Theta Matrices
ktheta1 = np.dot(delta2[1:,:],batchX)
ktheta2 = np.dot(delta3,a2.T)
# Momemtum Part to Accelerate the Learning Rate
dtheta1 = eps*(ktheta1 + lambdaa*theta1) + gamma*dtheta1
dtheta2 = eps*(ktheta2 + lambdaa*theta2) + gamma*dtheta2
theta1 = theta1 - dtheta1
theta2 = theta2 - dtheta2
# Cost Per Batch iteration
cost_epoch = cost(a3,batchY, {'Theta1':theta1, 'Theta2':theta2}, lambdaa)
cost_list.append(cost_epoch)
# Summary of Back Prop
if (k % LOGGING_STEPS == 0):
accuracy = model_score({'Theta1':theta1, 'Theta2':theta2},
train_images, train_labels, act)
error = 100.0 - accuracy
# Error Updation if LEss Error is Discovered
if(error < err):
err = error
# Store the best theta of least error
best_theta1 = theta1
best_theta2 = theta2
# Info of Learning of NN
print ("Epoch " + str(epoch+1) + " in " + str(k+1) + " iter"+ " | "
"Train Error rate: " + str(error) + "%" + " | Batch loss: "
+ str(cost_epoch))
k = k + 1
parameters = {'Theta1':best_theta1, 'Theta2':best_theta2, 'Loss':cost_list}
return parameters
def get_batch(img, labels, batch_size):
"""
Extracting data in batches of given batch_size
in each epoch in Training
@ Parameters:
-------------
img: np.array
Contains the images
labels: np.array
Contains the labels(1/0)
corresponding to selected images
batch_size: int
No of images,labels to be fetched from
overall data at each iterations for
updation of weights
@ Returns:
----------
corresonding batches of images & labels
"""
for i in np.arange(0, img.shape[0], batch_size):
yield(img[i:i+batch_size,:],labels[:,i:i+batch_size])
def output_encoding(labels, nclass):
"""
Convert the labels to classes dimension
same as one_hot_encoding()
Make entry correpsonds to each class as 1(one)
and rest all as zero; thus provides
each label vector corresponds to each images
@ Parameters:
-------------
labels: np.array
Labels(1/0) or class
corresponding to selected images
nclass: int
No of unique class present in the
training dataset
@ Returns:
----------
one_hot: np.array
One Hot vector with size of nclass having
1 at index corresponds to class
"""
one_hot = np.zeros((nclass,labels.shape[0]))
for c in np.arange(0,nclass):
pos = np.where(labels==c)
one_hot[c][pos] = 1
return one_hot
def show_plot(cost, PLOT_PATH):
"""
Plot the Cost vs Iteration Curve
@ Parameters:
-------------
cost: np.array
Contains the cost calculated
in every iterations
PLOT_PATH: str
Path where the cost vs iteratiom
curve get saved
@ Returns:
----------
Gives the plot showing error rate
behaviour wrt each epochs
"""
plt.plot(np.arange(0,len(cost)) , cost)
plt.title("Cost Vs Iteration Curve ")
plt.xlabel('Iterations')
plt.ylabel('Loss')
plt.show()
fig = plt.gcf()
if(path_validation(PLOT_PATH)):
fig.savefig(PLOT_PATH)
fig.clf()
def main():
"""
Pre-process the data with filtering, resizing
and trained the Neural Networks with
resulting pre-processed data using backpropagation
"""
## Input Layer -> 10001 U
## 1 Hidden Layers -> 300 HU
## 1 Output Layer -> 2 Neurons
# Construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-path1", "--good_path", required=True,
help="path to good images directory")
ap.add_argument("-path2", "--bad_path", required=True,
help="path to bad images directory")
args = vars(ap.parse_args())
# Taking Absolute Path neede for reading images
GOOD_IMG_PATH = os.path.abspath(args["good_path"]) + str('/')
BAD_IMG_PATH = os.path.abspath(args["bad_path"]) + str('/')
# Path Validation
if not path_validation(GOOD_IMG_PATH, read_access=True):
exit(0)
if not path_validation(BAD_IMG_PATH, read_access=True):
exit(0)
# Model Path Vaildation
if path_validation(MODEL_PATH):
print ('\nModel Path Success .....\n')
# Getting the Same Result in Shuffle in each Run.
np.random.seed(SEED)
# Convert the Good & Bad Images to Cumulative numpy array
imgs, labels = data_preprocess(GOOD_IMG_PATH, BAD_IMG_PATH, radius=RADIUS)
# Resizing the feature space for easier to handle
imgs = resize(imgs, width=WIDTH, height=HEIGHT)
# Splitting the Data for Training and Testing Purpose
print('\nSplitting of Data......\n')
train_images, test_images, train_labels, test_labels = train_test_split(imgs, labels,
test_size=SPLIT_RATIO, random_state = SEED)
# Saving the splitted data to disk
save_data(train_images, train_labels, test_images, test_labels)
# No of unique class in data
nclass = np.unique(labels).shape[0]
# Addition of Bias in Train/Test Images
train_images = np.insert(train_images, 0, 1, axis=1)
test_images = np.insert(test_images, 0, 1, axis=1)
# May Used for Cal No Of Neuron as hyper-parameters to Good value
no_of_neurons = train_images.shape[0]/(2*(train_images.shape[1]+10))
# Intializing the Model
theta = NN_Model([train_images.shape[1],NEURONS_SIZE,nclass])
print ("BAckPROP .................\n")
params = back_propagate(theta['Theta1'], theta['Theta2'], train_images, train_labels,
nclass, alpha=ALPHA, lambdaa=LAMBDA, max_iter=MAX_ITER, act=ACT,
batch_size=BATCH_SIZE, logging=LOGGING_STEPS)
# Accuracy Score on Train set
accuracy = model_score(params, train_images, train_labels, act=ACT)
print('\nAccuracy on Train Data: ', accuracy)
# Accuracy Score on test set
accuracy = model_score(params, test_images, test_labels, act=ACT)
print('\nAccuracy on Test Data: ', accuracy)
# Storing the Results in tmp directory
print ('\nSaving Results...............\n')
joblib.dump(params, MODEL_PATH)
# Plotting the Curve
show_plot(params['Loss'], PLOT_PATH)
if __name__ == "__main__":
main()