forked from skforecast/skforecast
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmkdocs.yml
214 lines (198 loc) · 8.11 KB
/
mkdocs.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
site_name: Skforecast Docs
extra_css:
- stylesheets/extra.css
repo_url: https://github.com/JoaquinAmatRodrigo/skforecast
site_url: https://joaquinamatrodrigo.github.io/skforecast/
site_description: Python library that eases using machine learning models as single and multi-step forecasters. It works with any regressor compatible with the scikit-learn API (XGBoost, LightGBM, Ranger...).
site_author: Joaquin Amat Rodrigo and Javier Escobar Ortiz
use_directory_urls: false
copyright: Copyright © 2021 - 2024 Joaquín Amat Rodrigo, Javier Escobar Ortiz
nav:
- Home:
- Welcome to skforecast: README.md
- Introduction to forecasting: introduction-forecasting/introduction-forecasting.md
- Quick start: quick-start/quick-start-skforecast.ipynb
- User Guides: user_guides/user-guides.md
- Examples and tutorials: examples/examples.md
- API Reference: api/ForecasterAutoreg.md
- FAQ and Tips: faq/faq.md
- Releases: releases/releases.md
- Authors: authors/authors.md
- Introduction to forecasting:
- Introduction to forecasting: introduction-forecasting/introduction-forecasting.md
- Quick start:
- Quick start: quick-start/quick-start-skforecast.ipynb
- Forecaster Parameters: quick-start/forecaster-parameters.md
- Forecaster Attributes: quick-start/forecaster-attributes.ipynb
- How to install: quick-start/how-to-install.md
- User Guides:
- Table of contents: user_guides/user-guides.md
- Input data: user_guides/input-data.ipynb
- Recursive multi-step forecasting: user_guides/autoregresive-forecaster.ipynb
- Direct multi-step forecasting: user_guides/direct-multi-step-forecasting.ipynb
- "Global Models : Independent multi-time series forecasting": user_guides/independent-multi-time-series-forecasting.ipynb
- "Global Models : Series with different lengths and different exogenous variables": user_guides/multi-series-with-different-length-and-different_exog.ipynb
- "Global Models : Dependent multivariate series forecasting": user_guides/dependent-multi-series-multivariate-forecasting.ipynb
- Deep learning Recurrent Neural Networks: user_guides/forecasting-with-deep-learning-rnn-lstm.ipynb
- ARIMA and SARIMAX forecasting: user_guides/forecasting-sarimax-arima.ipynb
- Foreasting baseline: user_guides/forecasting-baseline.ipynb
- Exogenous variables: user_guides/exogenous-variables.ipynb
- Window and custom features: user_guides/window-features-and-custom-features.ipynb
- Weighted time series forecasting: user_guides/weighted-time-series-forecasting.ipynb
- Backtesting forecaster: user_guides/backtesting.ipynb
- Metrics: user_guides/metrics.ipynb
- Hyperparameter tuning and lags selection: user_guides/hyperparameter-tuning-and-lags-selection.ipynb
- Scikit-learn Transformers and Pipelines: user_guides/sklearn-transformers-and-pipeline.ipynb
- Probabilistic forecasting: user_guides/probabilistic-forecasting.ipynb
- Categorical features: user_guides/categorical-features.ipynb
- Calendars features: user_guides/calendar-features.ipynb
- Feature selection: user_guides/feature-selection.ipynb
- Forecasting with XGBoost and LightGBM: user_guides/forecasting-xgboost-lightgbm.ipynb
- Forecaster in production: user_guides/forecaster-in-production.ipynb
- Save and load forecaster: user_guides/save-load-forecaster.ipynb
- Explainability: user_guides/explainability.ipynb
- Skforecast in GPU: user_guides/skforecast-in-GPU.ipynb
- Plotting: user_guides/plotting.ipynb
- Datasets: user_guides/datasets.ipynb
- Examples and tutorials: examples/examples.md
- API Reference:
- ForecasterAutoreg: api/ForecasterAutoreg.md
- ForecasterAutoregCustom: api/ForecasterAutoregCustom.md
- ForecasterAutoregDirect: api/ForecasterAutoregDirect.md
- ForecasterMultiSeries: api/ForecasterMultiSeries.md
- ForecasterMultiSeriesCustom: api/ForecasterMultiSeriesCustom.md
- ForecasterMultiVariate: api/ForecasterMultiVariate.md
- ForecasterRnn: api/ForecasterRnn.md
- ForecasterSarimax: api/ForecasterSarimax.md
- Sarimax: api/Sarimax.md
- ForecasterBaseline: api/ForecasterBaseline.md
- model_selection: api/model_selection.md
- model_selection_multiseries: api/model_selection_multiseries.md
- model_selection_sarimax: api/model_selection_sarimax.md
- preprocessing: api/preprocessing.md
- metrics: api/metrics.md
- plot: api/plot.md
- utils: api/utils.md
- datasets: api/datasets.md
- exceptions: api/exceptions.md
- FAQ and Tips:
- Table of contents: faq/faq.md
- Time series differentiation: faq/time-series-differentiation.ipynb
- Avoid negative predictions when forecasting: faq/non-negative-predictions.ipynb
- Forecasting time series with missing values: faq/forecasting-time-series-with-missing-values.ipynb
- Cyclical features in time series: faq/cyclical-features-time-series.ipynb
- Stacking (ensemble) machine learning models: faq/stacking-ensemble-models-forecasting.ipynb
- Forecasting with delayed historical data: faq/forecasting-with-delayed-historical-data.ipynb
- Time series aggregation: faq/time-series-aggregation.ipynb
- Parallelization in skforecast: faq/parallelization-skforecast.ipynb
- Profiling skforecast: faq/profiling-skforecast.ipynb
- Releases: releases/releases.md
- Authors: authors/authors.md
plugins:
- mkdocstrings:
handlers:
python:
options:
docstring_style: numpy
docstring_section_style: table
show_root_heading: true
show_root_full_path: false
merge_init_into_class: true
filters: ["!__"] # exclude all members starting with __
members_order: source
docstring_options:
ignore_init_summary: true
- mkdocs-jupyter:
ignore_h1_titles: True
include_source: True
execute: False
allow_errors: False
include_requirejs: True
- search
- mike
theme:
name: material
codehilite:
linenums: true
pygments_style: vs
custom_dir: docs/overrides
favicon: img/favicon.png
features:
- navigation.tabs
- navigation.tabs.sticky
- navigation.sections
- navigation.expand
- navigation.top
font:
text: Open Sans
code: Ubuntu Mono
highlightjs: true
logo: img/logo-skforecast.png
palette:
# # Palette toggle for automatic mode
# - media: "(prefers-color-scheme)"
# primary: custom
# accent: custom
# toggle:
# icon: material/brightness-auto
# name: Switch to light mode
# Palette toggle for light mode
- media: "(prefers-color-scheme: light)"
scheme: light
toggle:
icon: material/brightness-7
name: Switch to dark mode
# Palette toggle for dark mode
- media: "(prefers-color-scheme: dark)"
scheme: slate
toggle:
icon: material/brightness-4
name: Switch to light mode
markdown_extensions:
# Python Markdown
- abbr
- admonition
- attr_list
- codehilite
- footnotes
- pymdownx.details
- md_in_html
- toc:
permalink: true
# Python Markdown Extensions
- pymdownx.arithmatex:
generic: true
- pymdownx.betterem:
smart_enable: all
- pymdownx.caret
- pymdownx.details
- pymdownx.emoji:
emoji_index: !!python/name:material.extensions.emoji.twemoji
emoji_generator: !!python/name:material.extensions.emoji.to_svg
- pymdownx.highlight:
use_pygments: true
linenums: true
- pymdownx.inlinehilite
- pymdownx.keys
- pymdownx.mark
- pymdownx.smartsymbols
- pymdownx.superfences
- pymdownx.tabbed:
alternate_style: true
- pymdownx.tasklist:
custom_checkbox: true
- pymdownx.tilde
- pymdownx.magiclink
extra:
version:
provider: mike
analytics:
provider: google
property: G-GR8X9Z9LKL
consent:
title: Cookie consent
description: >-
We use cookies to recognize your repeated visits and preferences, as well
as to measure the effectiveness of our documentation and whether users
find what they're searching for. With your consent, you're helping us to
make our documentation better.