-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathomp.c
249 lines (212 loc) · 7.11 KB
/
omp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// command to run : gcc -fopenmp omp.c `pkg-config --cflags --libs gsl`
#include <stdio.h>
#include <stdlib.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_math.h>
#include <string.h>
#include <time.h>
// #include <mpi.h>
#include <omp.h>
#include <sys/time.h>
#define PI 3.14159265358979323846
double nDimensions, mVelocity, nIterations, seed;
double x_min = -32.768;
double x_max = 32.768;
struct timeval TimeValue_Start;
struct timezone TimeZone_Start;
struct timeval TimeValue_Final;
struct timezone TimeZone_Final;
long time_start, time_end;
double time_overhead;
double ackley(double x[], double nDimensions) {
double c = 2*M_PI;
double b = 0.2;
double a = 20;
double sum1 = 0;
double sum2 = 0;
int i;
for (i=0; i<nDimensions; i++) {
sum1 = sum1 + gsl_pow_2(x[i]);
sum2 = sum2 + cos(c*x[i]);
}
double term1 = -a * exp(-b*sqrt(sum1/nDimensions));
double term2 = -exp(sum2/nDimensions);
return term1 + term2 + a + M_E;
}
double sphere(double x[], double nDimensions)
{
double squared_sum=0;
for(int i=0;i<nDimensions;i++)
squared_sum+=(x[i]*x[i]);
return squared_sum;
}
double rosenbrock_function(double x[], double nDimensions)
{
double squared_sum=0;
for(int i=0;i<nDimensions-1;i++)
{
squared_sum+=(100*pow((pow(x[i],2)-x[i+1]),2)+pow(x[i]-1,2));
}
return squared_sum;
}
double Griewanks_function(double x[], double nDimensions)
{ //-600 - 600
double or_sum=0;
double and_sum=0;
for(int i=0;i<nDimensions;i++)
{
or_sum+=(x[i]*x[i]);
and_sum*=cos(x[i]/sqrt(i));
}
return 1+or_sum/4000+and_sum;
}
double rastrigin_function(double x[], double nDimensions)
{
double sum=0;
for(int i=0;i<nDimensions;i++)
{
sum+=(10+pow(x[i],2)-(10*cos(2*PI*x[i])));
}
return sum;
}
double non_continuous_rastrigin_function(double x[], double nDimensions)
{
double sum=0;
double y;
for(int i=0;i<nDimensions;i++)
{
if(abs(x[i])<0.5)
y=x[i];
else
y=round(2*x[i])/2;
sum+=(10+pow(y,2)-(10*cos(2*PI*y)));
}
return sum;
}
double schwefel_function(double x[], double nDimensions)
{
double sum=0;
for(int i=0;i<nDimensions;i++)
{
sum+=(x[i]*sin(pow(abs(x[i]),0.5)));
}
return 418.9829*nDimensions-sum;
}
int main(int argc, char *argv[]) {
int i,j;
double nParticles;
//Argument handling START
for(i=1; i < argc-1; i++) {
if (strcmp(argv[i], "-D") == 0)
nDimensions = strtol(argv[i+1],NULL,10);
else if (strcmp(argv[i], "-m") == 0)
nParticles = strtol(argv[i+1],NULL,10);
else if (strcmp(argv[i], "-V") == 0)
mVelocity = strtol(argv[i+1],NULL,10);
else if (strcmp(argv[i], "-i") == 0)
nIterations = strtol(argv[i+1],NULL,10);
else if (strcmp(argv[i], "-s") == 0)
seed = strtol(argv[i+1],NULL,10);
}
if (nDimensions == 0)
nDimensions = 2;
if (nParticles == 0)
nParticles = 8;
if (mVelocity == 0)
mVelocity = 60;
if (nIterations == 0)
nIterations = 1;
if (seed == 0)
seed = 1;
gettimeofday(&TimeValue_Start, &TimeZone_Start);
int size,myrank,distributed_particles=nParticles;
double result[(int)distributed_particles];
int step;
double a,b;
double c1, c2, rho1, rho2, w, fit;
c1 = c2 = 1.496;
w = 0.7298;
//Random number generator initialization
gsl_rng_env_setup();
gsl_rng * r = gsl_rng_alloc(gsl_rng_default);
gsl_rng_set(r, time(0));
double positions[(int)distributed_particles][(int)nDimensions];
double velocities[(int)distributed_particles][(int)nDimensions];
double pBestPositions[(int)distributed_particles][(int)nDimensions];
double pBestFitness[(int)distributed_particles];
double gBestPosition[(int)nDimensions];
double gBestFitness = DBL_MAX;
int min;
//particle initialization
#pragma omp parallel for private(a,b) reduction(min:gBestFitness)
for (i=0; i<distributed_particles; i++) {
for (j=0; j<(int)nDimensions; j++)
{
a = x_min + (x_max - x_min) * gsl_rng_uniform(r);
b = x_min + (x_max - x_min) * gsl_rng_uniform(r);
positions[i][j] = a;
pBestPositions[i][j] = a;
velocities[i][j] = (a-b) / 2.;
}
pBestFitness[i] = ackley(positions[i],(int)nDimensions);
if (pBestFitness[i] < gBestFitness) {
gBestFitness = pBestFitness[i];
memmove((void *)gBestPosition, (void *)&positions[i], sizeof(double) * nDimensions);
}
}
//actual calculation
for (step=0; step<nIterations; step++) {
#pragma omp parallel num_threads(4) shared(min)
{
#pragma omp for private(a,b)
for (i=0; i<distributed_particles; i++) {
for (j=0; j<nDimensions; j++) {
// calculate stochastic coefficients
rho1 = c1 * gsl_rng_uniform(r);
rho2 = c2 * gsl_rng_uniform(r);
// update velocity
velocities[i][j] = w * velocities[i][j] + \
rho1 * (pBestPositions[i][j] - positions[i][j]) + \
rho2 * (gBestPosition[j] - positions[i][j]);
// update position
positions[i][j] += velocities[i][j];
if (positions[i][j] < x_min) {
positions[i][j] = x_min;
velocities[i][j] = 0;
} else if (positions[i][j] > x_max) {
positions[i][j] = x_max;
velocities[i][j] = 0;
}
}
// update particle fitness
fit = ackley(positions[i], nDimensions);
// update personal best position?
if (fit < pBestFitness[i]) {
pBestFitness[i] = fit;
// copy contents of positions[i] to pos_b[i]
memmove((void *)&pBestPositions[i], (void *)&positions[i],
sizeof(double) * nDimensions);
}
// update gbest??
}
}
for(i=0;i<(int)nParticles;i++)
{
if (pBestFitness[i] < gBestFitness) {
// update best fitness
min=i;
gBestFitness = pBestFitness[i];
}
}
// copy particle pos to gbest vector
memmove((void *)gBestPosition, (void *)&pBestPositions[min],sizeof(double) * nDimensions);
}
gsl_rng_free(r);
printf("Result: %f\n", gBestFitness);
gettimeofday(&TimeValue_Final, &TimeZone_Final);
time_start = TimeValue_Start.tv_sec * 1000000 + TimeValue_Start.tv_usec;
time_end = TimeValue_Final.tv_sec * 1000000 + TimeValue_Final.tv_usec;
time_overhead = (time_end - time_start)/1000000.0;
printf("\n Time in Seconds (T) : %lf\n",time_overhead);
}
//gcc -fopenmp omp.c -lm -lgsl -lgslcblas -o omp