forked from lxg2015/faceboxes
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainvisdom.py
83 lines (64 loc) · 2.63 KB
/
trainvisdom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import torch
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from torchvision import models
from torch.autograd import Variable
from networks import FaceBox
from multibox_loss import MultiBoxLoss
from dataset import ListDataset
import visdom
import numpy as np
use_gpu = torch.cuda.is_available()
file_root = '/home/lxg/codedata/'
learning_rate = 0.001
num_epochs = 300
batch_size = 64
net = FaceBox()
if use_gpu:
net.cuda()
print('load model...')
# net.load_state_dict(torch.load('weight/faceboxes.pt'))
criterion = MultiBoxLoss()
# optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=0.0003)
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate, weight_decay=1e-4)
train_dataset = ListDataset(root=file_root,list_file='label/box_label.txt',train=True,transform = [transforms.ToTensor()] )
train_loader = DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=5)
print('the dataset has %d images' % (len(train_dataset)))
print('the batch_size is %d' % (batch_size))
num_iter = 0
vis = visdom.Visdom()
win = vis.line(Y=np.array([0]), X=np.array([0]))
net.train()
for epoch in range(num_epochs):
if epoch == 190 or epoch == 250:
learning_rate *= 0.1
for param_group in optimizer.param_groups:
param_group['lr'] = learning_rate
print('\n\nStarting epoch %d / %d' % (epoch + 1, num_epochs))
print('Learning Rate for this epoch: {}'.format(learning_rate))
total_loss = 0.
for i,(images,loc_targets,conf_targets) in enumerate(train_loader):
images = Variable(images)
loc_targets = Variable(loc_targets)
conf_targets = Variable(conf_targets)
if use_gpu:
images,loc_targets,conf_targets = images.cuda(),loc_targets.cuda(),conf_targets.cuda()
loc_preds, conf_preds = net(images)
loss = criterion(loc_preds,loc_targets,conf_preds,conf_targets)
total_loss += loss.data[0]
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 5 == 0:
print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f, average_loss: %.4f'
%(epoch+1, num_epochs, i+1, len(train_loader), loss.data[0], total_loss / (i+1)))
num_iter = num_iter + 1
vis.line(Y=np.array([total_loss / (i+1)]), X=np.array([num_iter]),
win=win,
update='append')
if not os.path.exists('weight/'):
os.mkdir('weight')
print('saving model ...')
torch.save(net.state_dict(),'weight/faceboxes.pt')