You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
What I can understand from the whole source code that each of the bbox_outside_weights components is 1/num_examples as in
# Bbox regression loss has the form:
# loss(x) = weight_outside * L(weight_inside * x)
# Inside weights allow us to set zero loss on an element-wise basis
# Bbox regression is only trained on positive examples so we set their
# weights to 1.0 (or otherwise if config is different) and 0 otherwise
bbox_inside_weights = np.zeros((num_inside, 4), dtype=np.float32)
bbox_inside_weights[labels == 1, :] = (1.0, 1.0, 1.0, 1.0)
# The bbox regression loss only averages by the number of images in the
# mini-batch, whereas we need to average by the total number of example
# anchors selected
# Outside weights are used to scale each element-wise loss so the final
# average over the mini-batch is correct
bbox_outside_weights = np.zeros((num_inside, 4), dtype=np.float32)
# uniform weighting of examples (given non-uniform sampling)
num_examples = np.sum(labels >= 0)
bbox_outside_weights[labels == 1, :] = 1.0 / num_examples
bbox_outside_weights[labels == 0, :] = 1.0 / num_examples
in /lib/roi_data/rpn.py
The text was updated successfully, but these errors were encountered:
Hello,
Could you please explain why did you normalize the loss at the end by both:
?
What I can understand from the whole source code that each of the bbox_outside_weights components is 1/num_examples as in
in /lib/roi_data/rpn.py
The text was updated successfully, but these errors were encountered: