forked from zhongzheng1999/m6A-analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Figure8-1.R
108 lines (83 loc) · 4.47 KB
/
Figure8-1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
devtools::load_all("E:/pRRophetic_0.5/pRRophetic")
library(ggplot2)
library(cowplot)
library(ggpubr)
compare_list <- list(c('C1','C2'),
c('C1','C3'),
c('C2','C3'))
load("H:/Project/Main/20230105m6A/two/subtype/data/GSE146173_subt.Rdata")
load("H:/Project/Main/20230105m6A/two/subtype/data/GSE146173_vst.Rdata")
expr <- GSE146173_fpkm[,rownames(subt)]
colnames(expr) == rownames(subt)
dat <- expr
dat[1:3, 1:3]
ann <- subt
ann$ImmClust <- paste0("C",ann$res_cluster)
head(ann)
table(ann$ImmClust)
#药物名字
GCP.drug <- read.table("drug.txt") #如果要例文的两种药物,就换成drug_eg.txt
GCP.drug <- GCP.drug$V1
#这里以前2种药物为例
# GCP.drug <- GCP.drug[1:2]
#确定是否可行
drug_dat <- data.frame(drug = GCP.drug, type = NA, row.names = GCP.drug)
for (i in GCP.drug) {
a <- getCGPinfo(i,tissueType = 'blood')
drug_dat[i,'type'] <- class(a$trainDataOrd)[1]
}
GCP.drug <- rownames(drug_dat[drug_dat$type == 'matrix',])
# 自定义足够多的box的颜色,颜色数量至少等于分组数量
jco <- ggsci::pal_lancet()(3)
### 药物敏感性预测 ###、
GCPinfo <- GCP.IC50 <- GCP.expr <- cvOut <- predictedPtype <- predictedBoxdat <- list() # 初始化列表
plotp <- list()
for (drug in GCP.drug) {
set.seed(1248103) # 因为预测过程默认10-fold CV,所以设置种子以便结果可重复
cat(drug," starts!\n") # 提示当前药物已开始分析
# 预测IC50值,采用默认参数,详细可参考??pRRopheticPredict参数列表
predictedPtype[[drug]] <- pRRopheticPredict(testMatrix = as.matrix(dat[,rownames(ann)]),
drug = drug,
tissueType = "blood",
selection = 1) # 1表示若有重复基因取均值处理
if(!all(names(predictedPtype[[drug]])==rownames(ann))) {stop("Name mismatched!\n")} # 若名字不匹配则报错退出
predictedBoxdat[[drug]] <- data.frame("est.ic50"=predictedPtype[[drug]],
"ImmClust"=ann$ImmClust, # 这里我修改了C1和C2的名字
row.names = names(predictedPtype[[drug]]))
predictedBoxdat[[drug]]$ImmClust <- factor(predictedBoxdat[[drug]]$ImmClust,levels = c("C1","C2",'C3'),ordered = T) # 把类改成因子变量
# 绘图
p <- ggboxplot(data = predictedBoxdat[[drug]], x='ImmClust', y='est.ic50',
fill = 'ImmClust', palette = 'lancet',
title = drug, xlab = "", ylab = "Estimated IC50")+
theme_bw()+
theme(legend.position="none") + # 倾斜字体
# theme(axis.text.x = element_text(angle = 45, hjust = 1,size = 12),plot.title = element_text(size = 12, hjust = 0.5)) +
stat_compare_means(comparisons = compare_list)+
stat_compare_means(label.y = max(predictedBoxdat[[drug]]$est.ic50)+1)
# p <- ggplot(data = predictedBoxdat[[drug]], aes(x=ImmClust, y=est.ic50))
# p <- p + geom_boxplot(aes(fill = ImmClust)) +
# scale_fill_manual(values = jco[1:length(unique(ann$ImmClust))]) + #自定义box的配色
# theme(legend.position="none") + # 倾斜字体
# theme(axis.text.x = element_text(angle = 45, hjust = 1,size = 12),plot.title = element_text(size = 12, hjust = 0.5)) +
# xlab("") + ylab("Estimated IC50") +
# ggtitle(drug) # 补上title
plotp[[drug]] <- p # 保存在列表里供合并图片用
cat(drug," has been finished!\n") # 提示当前药物已分析结束
}
save(plotp,predictedBoxdat,file = 'GSE146173_predictedBoxdat.Rdata')
dat_drug <- do.call(rbind, predictedBoxdat)
dat_drug$drug <- str_split(rownames(dat_drug), '\\.T', simplify = T)[,1]
compare_dat <- compare_means(est.ic50~ImmClust,data = dat_drug, group.by = 'drug')
write.csv(compare_dat, 'GSE146173_compare_dat.csv')
# compare_dat_sub <- compare_dat[compare_dat$p < 0.05, ]
# drug_id <- names(which(table(compare_dat_sub$drug) > 2))
drug_id <- c('ABT.263','BI.D1870','BIBW2992','Bleomycin','Pazopanib')
# 合并图片
#适合展示两种药物
# p1 <- plot_grid(plotp[[1]],plotp[[2]],labels = c("A","B"),nrow = 1) # title可以AI下拉到合适位置,就如例文所示
# p1
# ggsave("GSE146173_boxplot of predicted IC50.pdf", width = 6, height = 5)
# 适合展示多种药物
p2 <- plot_grid(plotlist=plotp[drug_id], ncol=5)
p2
ggsave("GSE146173_boxplot of predicted IC50_multiple_1.pdf", width = 18, height = 5)