-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathroot_setting.yaml
192 lines (176 loc) · 3.64 KB
/
root_setting.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# this is the root setting of all setting and will be loaded in first place
# the loading sequence is root_setting -> specific setting
# -> manully overided setting -> computed setting in finalize_config()
# which means access config before finalize can be dangerous
# always remember to add a space after :
setting_name: base
test_dataset_type: null
clip_size: 8
var_clip_size: -1
model:
teacher: null
pretrained: null
fc_weight: null
fc_bias: null
patch:
name: null
fc_only: false
feat_type: image
tester: null
tester_path: null
tester_data_mode: null
decodec:
reg_loss_type: l1
feat_loss_func: l1
dis_model: basic
gan_type: vanilla
inco:
kernel_size: 1
pool_ref_type: sum
temp_kernel_size: 3
spatial_sizes: []
spatial_count: 0
no_time_pool: false
keep_stride_count: 0
i3d_routine: true
SOLVER:
BASE_LR: 0.1
LR_POLICY: cosine
MAX_EPOCH: 196
MOMENTUM: 0.9
WEIGHT_DECAY: 1e-4
WARMUP_EPOCHS: 34.0
WARMUP_START_LR: 0.01
OPTIMIZING_METHOD: sgd
transformer:
patch_type: null #time,spatial,all
dim: -1
stop_point: 6
random_select: true
k: 8
sigmoid_before: false
denoise:
layers: []
test_on_train: false
test: false
debug: false
pre_load_data: false
# for better compatiable with philly and potential running enviroment
# all path under path should be rel_path w.r.t the config.py
# and the abspath will be compute when finalize
# python -m torch.distributed.launch --nproc_per_node=2 main.py --setting get_all_datas_id_emb_old.yaml main.py
# --config trainer.default.log_step=1 trainer.default.sample_step=20
trash_face: false
strategies: []
branches: ["continuous_same","continuous_diff","discontinuous"]
epoch: -1
reg_weight: 10
class_weight: 1
final_weight: 1
feat_weight: 0
gan_weight: 0
noise_only: false
error_only: false
force_ds_scale: 1.0
path:
model_dir: ../checkpoint
pretrain_dir: ../pretrain
log_dir: ../checkpoint
data_dir: ../data
precomputed_dir: ../precomputed
test_data_dir: null
extra_data_dir: ../extra_data
lmdb_dir: null
patch_input: false
input_noise: false
mask_direct: false
max_to_keep: 50
base_count: -1
enable_lmdb_cache: false
aug_in_train: true
aug_in_test: false
vis_in_train: true
data_mode: "image"
data_source: "zip"
aug:
flip_prob: 0
reverse_prob: 0
gray_prob: 0
size_aug_prob: 0
quantify_prob: 0
quantify_steps: [16,32]
min_size: 64
max_size: 256
jpeg_aug_prob: 0
dxy_gauss_prob: 0
dxy_gauss_scale: 0
min_quality: 60
max_quality: 100
gaussain: false
need_img_degrade: true
need_mask_distortion: true
need_color_match: true
feather_range: [0.2,0.2]
adaptive_clip_size: false
clip_sizes: null
cutout: 0
earse: 0
types: null
earse_type: null
time_earse_prob: 0
time_earse_type: null
jitter_prob: 0
test_types: null
raw_prob: 0
bi_types: null
bi_count: 1
face_sources: null
inplace_types: null
no_poisson_prob: 0
blend:
pseudo_prob: 0.5
from_real_prob: 1
skip_prob: 0
shuffle_prob: 0
multi_prob: 0
multi_config:
from_real_prob: 1
self_prob: 1
self:
one: 0
continuity: 1
other:
one: 0
all: 0
continuity: 1
celeb_prob: 0
fft:
type: null
fad:
type: null
flag: high
tta:
type: null
param: null
batch_size: 64
test_batch_size: 64
imsize: 256
next_frame_rate: 0.5
trainer:
default:
apex_option: O0
n_worker: 12
optim: adam
model_save_step: 1000
log_step: 25
sample_step: 1000
init_lr: 3e-4
validation_step: 5000
test_sample_step: 20
one_test_step: 500
test_freq: 1
total_step: 100000
lr_step: 20000
freeze_backbone_step: 0
total_epoch: 200
fetch_method: prefetch