-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
275 lines (227 loc) · 9.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import numpy as np
from dezero import Layer
import dezero.functions as F
import dezero.layers as L
from dezero import utils
# =============================================================================
# Model / Sequential / MLP
# =============================================================================
class Model(Layer):
def plot(self, *inputs, to_file='model.png'):
y = self.forward(*inputs)
return utils.plot_dot_graph(y, verbose=True, to_file=to_file)
class Sequential(Model):
def __init__(self, *layers):
super().__init__()
self.layers = []
for i, layer in enumerate(layers):
setattr(self, 'l' + str(i), layer)
self.layers.append(layer)
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
class MLP(Model):
def __init__(self, fc_output_sizes, activation=F.sigmoid):
super().__init__()
self.activation = activation
self.layers = []
for i, out_size in enumerate(fc_output_sizes):
layer = L.Linear(out_size)
setattr(self, 'l' + str(i), layer)
self.layers.append(layer)
def forward(self, x):
for l in self.layers[:-1]:
x = self.activation(l(x))
return self.layers[-1](x)
# =============================================================================
# VGG
# =============================================================================
class VGG16(Model):
WEIGHTS_PATH = 'https://github.com/koki0702/dezero-models/releases/download/v0.1/vgg16.npz'
def __init__(self, pretrained=False):
super().__init__()
self.conv1_1 = L.Conv2d(64, kernel_size=3, stride=1, pad=1)
self.conv1_2 = L.Conv2d(64, kernel_size=3, stride=1, pad=1)
self.conv2_1 = L.Conv2d(128, kernel_size=3, stride=1, pad=1)
self.conv2_2 = L.Conv2d(128, kernel_size=3, stride=1, pad=1)
self.conv3_1 = L.Conv2d(256, kernel_size=3, stride=1, pad=1)
self.conv3_2 = L.Conv2d(256, kernel_size=3, stride=1, pad=1)
self.conv3_3 = L.Conv2d(256, kernel_size=3, stride=1, pad=1)
self.conv4_1 = L.Conv2d(512, kernel_size=3, stride=1, pad=1)
self.conv4_2 = L.Conv2d(512, kernel_size=3, stride=1, pad=1)
self.conv4_3 = L.Conv2d(512, kernel_size=3, stride=1, pad=1)
self.conv5_1 = L.Conv2d(512, kernel_size=3, stride=1, pad=1)
self.conv5_2 = L.Conv2d(512, kernel_size=3, stride=1, pad=1)
self.conv5_3 = L.Conv2d(512, kernel_size=3, stride=1, pad=1)
self.fc6 = L.Linear(4096)
self.fc7 = L.Linear(4096)
self.fc8 = L.Linear(1000)
if pretrained:
weights_path = utils.get_file(VGG16.WEIGHTS_PATH)
self.load_weights(weights_path)
def forward(self, x):
x = F.relu(self.conv1_1(x))
x = F.relu(self.conv1_2(x))
x = F.pooling(x, 2, 2)
x = F.relu(self.conv2_1(x))
x = F.relu(self.conv2_2(x))
x = F.pooling(x, 2, 2)
x = F.relu(self.conv3_1(x))
x = F.relu(self.conv3_2(x))
x = F.relu(self.conv3_3(x))
x = F.pooling(x, 2, 2)
x = F.relu(self.conv4_1(x))
x = F.relu(self.conv4_2(x))
x = F.relu(self.conv4_3(x))
x = F.pooling(x, 2, 2)
x = F.relu(self.conv5_1(x))
x = F.relu(self.conv5_2(x))
x = F.relu(self.conv5_3(x))
x = F.pooling(x, 2, 2)
x = F.reshape(x, (x.shape[0], -1))
x = F.dropout(F.relu(self.fc6(x)))
x = F.dropout(F.relu(self.fc7(x)))
x = self.fc8(x)
return x
@staticmethod
def preprocess(image, size=(224, 224), dtype=np.float32):
image = image.convert('RGB')
if size:
image = image.resize(size)
image = np.asarray(image, dtype=dtype)
image = image[:, :, ::-1]
image -= np.array([103.939, 116.779, 123.68], dtype=dtype)
image = image.transpose((2, 0, 1))
return image
# =============================================================================
# ResNet
# =============================================================================
class ResNet(Model):
WEIGHTS_PATH = 'https://github.com/koki0702/dezero-models/releases/download/v0.1/resnet{}.npz'
def __init__(self, n_layers=152, pretrained=False):
super().__init__()
if n_layers == 50:
block = [3, 4, 6, 3]
elif n_layers == 101:
block = [3, 4, 23, 3]
elif n_layers == 152:
block = [3, 8, 36, 3]
else:
raise ValueError('The n_layers argument should be either 50, 101,'
' or 152, but {} was given.'.format(n_layers))
self.conv1 = L.Conv2d(64, 7, 2, 3)
self.bn1 = L.BatchNorm()
self.res2 = BuildingBlock(block[0], 64, 64, 256, 1)
self.res3 = BuildingBlock(block[1], 256, 128, 512, 2)
self.res4 = BuildingBlock(block[2], 512, 256, 1024, 2)
self.res5 = BuildingBlock(block[3], 1024, 512, 2048, 2)
self.fc6 = L.Linear(1000)
if pretrained:
weights_path = utils.get_file(ResNet.WEIGHTS_PATH.format(n_layers))
self.load_weights(weights_path)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.pooling(x, kernel_size=3, stride=2)
x = self.res2(x)
x = self.res3(x)
x = self.res4(x)
x = self.res5(x)
x = _global_average_pooling_2d(x)
x = self.fc6(x)
return x
class ResNet152(ResNet):
def __init__(self, pretrained=False):
super().__init__(152, pretrained)
class ResNet101(ResNet):
def __init__(self, pretrained=False):
super().__init__(101, pretrained)
class ResNet50(ResNet):
def __init__(self, pretrained=False):
super().__init__(50, pretrained)
def _global_average_pooling_2d(x):
N, C, H, W = x.shape
h = F.average_pooling(x, (H, W), stride=1)
h = F.reshape(h, (N, C))
return h
class BuildingBlock(Layer):
def __init__(self, n_layers=None, in_channels=None, mid_channels=None,
out_channels=None, stride=None, downsample_fb=None):
super().__init__()
self.a = BottleneckA(in_channels, mid_channels, out_channels, stride,
downsample_fb)
self._forward = ['a']
for i in range(n_layers - 1):
name = 'b{}'.format(i+1)
bottleneck = BottleneckB(out_channels, mid_channels)
setattr(self, name, bottleneck)
self._forward.append(name)
def forward(self, x):
for name in self._forward:
l = getattr(self, name)
x = l(x)
return x
class BottleneckA(Layer):
"""A bottleneck layer that reduces the resolution of the feature map.
Args:
in_channels (int): Number of channels of input arrays.
mid_channels (int): Number of channels of intermediate arrays.
out_channels (int): Number of channels of output arrays.
stride (int or tuple of ints): Stride of filter application.
downsample_fb (bool): If this argument is specified as ``False``,
it performs downsampling by placing stride 2
on the 1x1 convolutional layers (the original MSRA ResNet).
If this argument is specified as ``True``, it performs downsampling
by placing stride 2 on the 3x3 convolutional layers
(Facebook ResNet).
"""
def __init__(self, in_channels, mid_channels, out_channels,
stride=2, downsample_fb=False):
super().__init__()
# In the original MSRA ResNet, stride=2 is on 1x1 convolution.
# In Facebook ResNet, stride=2 is on 3x3 convolution.
stride_1x1, stride_3x3 = (1, stride) if downsample_fb else (stride, 1)
self.conv1 = L.Conv2d(mid_channels, 1, stride_1x1, 0,
nobias=True)
self.bn1 = L.BatchNorm()
self.conv2 = L.Conv2d(mid_channels, 3, stride_3x3, 1,
nobias=True)
self.bn2 = L.BatchNorm()
self.conv3 = L.Conv2d(out_channels, 1, 1, 0, nobias=True)
self.bn3 = L.BatchNorm()
self.conv4 = L.Conv2d(out_channels, 1, stride, 0,
nobias=True)
self.bn4 = L.BatchNorm()
def forward(self, x):
h1 = F.relu(self.bn1(self.conv1(x)))
h1 = F.relu(self.bn2(self.conv2(h1)))
h1 = self.bn3(self.conv3(h1))
h2 = self.bn4(self.conv4(x))
return F.relu(h1 + h2)
class BottleneckB(Layer):
"""A bottleneck layer that maintains the resolution of the feature map.
Args:
in_channels (int): Number of channels of input and output arrays.
mid_channels (int): Number of channels of intermediate arrays.
"""
def __init__(self, in_channels, mid_channels):
super().__init__()
self.conv1 = L.Conv2d(mid_channels, 1, 1, 0, nobias=True)
self.bn1 = L.BatchNorm()
self.conv2 = L.Conv2d(mid_channels, 3, 1, 1, nobias=True)
self.bn2 = L.BatchNorm()
self.conv3 = L.Conv2d(in_channels, 1, 1, 0, nobias=True)
self.bn3 = L.BatchNorm()
def forward(self, x):
h = F.relu(self.bn1(self.conv1(x)))
h = F.relu(self.bn2(self.conv2(h)))
h = self.bn3(self.conv3(h))
return F.relu(h + x)
# =============================================================================
# SqueezeNet
# =============================================================================
class SqueezeNet(Model):
def __init__(self, pretrained=False):
pass
def forward(self, x):
pass