-
Notifications
You must be signed in to change notification settings - Fork 6
/
icl.py
166 lines (132 loc) · 6.6 KB
/
icl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
from transformers import GPTJForCausalLM, GPT2Tokenizer
from transformers import GPTNeoForCausalLM, GPT2Tokenizer
from transformers import set_seed
# from transformers import GPT2Tokenizer, OPTForCausalLM
import json
import argparse
import random
import pickle
def parse_args():
parser = argparse.ArgumentParser(description="In Context Learning for pretrained GPTs")
parser.add_argument('--seed', type=int, default=42)
args = parser.parse_args()
return args
device = 'cuda'
model_name = 'EleutherAI/gpt-j-6B'
with open('corpus_idx.txt', 'r') as fIn:
lines = fIn.readlines()
lines = [line[:-1] for line in lines]
corpus_idx = [[int(idx) for idx in line.split()] for line in lines]
def construct_icl_examples(idx, demos):
order = [2, 1, 2, 0, 1, 2, 2, 0, 2, 2, 1, 0, 2, 1, 2, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]
random.shuffle(order)
icl_examples = []
demo_ids = corpus_idx[idx]
demo_ids = demo_ids[:len(order)]
for demo_id, o in zip(demo_ids, order):
line = demos[demo_id-2000]
new_fact = line['requested_rewrite']['prompt'].format(line['requested_rewrite']['subject'])
target_new = line['requested_rewrite']['target_new']['str']
target_true = line['requested_rewrite']['target_true']['str']
if o == 0:
icl_examples.append(f'New Fact: {new_fact} {target_new}\nPrompt: {new_fact} {target_new}\n\n')
elif o == 1:
prompt = random.choice(line['paraphrase_prompts'])
icl_examples.append(f'New Fact: {new_fact} {target_new}\nPrompt: {prompt} {target_new}\n\n')
elif o == 2:
prompt = random.choice(line['neighborhood_prompts'])
icl_examples.append(f'New Fact: {new_fact} {target_new}\nPrompt: {prompt} {target_true}\n\n')
icl_examples.reverse()
return icl_examples
def icl_lm_eval(model, tokenizer, icl_examples, targets, x):
ppls = []
for target in targets:
tgt_len = len(tokenizer.encode(' ' + target))
encodings = tokenizer(''.join(icl_examples) + f'{x} {target}', return_tensors='pt')
input_ids = encodings['input_ids'].to(device)
target_ids = input_ids.clone()
target_ids[:, :-tgt_len] = -100
with torch.no_grad():
outputs = model(input_ids, labels=target_ids)
ppl = torch.exp(outputs.loss)
ppls.append(ppl.item())
return ppls
def get_final_probs(yesno_ppls, icl_ppls, orig_ppls):
yes_prob = 1 / yesno_ppls[0]
no_prob = 1 / yesno_ppls[1]
final_probs = [yes_prob / icl_ppls[0] + no_prob / orig_ppls[0], yes_prob / icl_ppls[1] + no_prob / orig_ppls[1]]
return final_probs
if __name__ == '__main__':
# random.seed(42)
args = parse_args()
seed = args.seed
set_seed(seed)
model = GPTJForCausalLM.from_pretrained(model_name).to(device)
# model = GPT2LMHeadModel.from_pretrained(model_name).to(device)
# model = GPTNeoXForCausalLM.from_pretrained(model_name).half().to(device)
# model = GPTNeoForCausalLM.from_pretrained(model_name).to(device)
model.eval()
tokenizer = GPT2TokenizerFast.from_pretrained(model_name)
# tokenizer = GPTNeoXTokenizerFast.from_pretrained(model_name)
# model = OPTForCausalLM.from_pretrained("facebook/opt-13b").to(device)
# tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-13b")
lines = []
with open('./counterfact.json', 'r') as f:
lines = json.load(f)
icl_examples = []
demos = lines[2000:]
lines = lines[:2000]
calibrate_magnitude = .0
success_cnt = 0
para_success_cnt = 0
magnitude = .0
para_magnitude = .0
orig_magnitude = .0
total_cnt = 0
para_total_cnt = 0
orig_success_cnt = 0
orig_total_cnt = 0
# icl_cnt = 0
example_idx = 0
for i, line in enumerate(lines):
if i % 10 == 0:
print(i, success_cnt, total_cnt, magnitude / (total_cnt + 1e-12), para_success_cnt, para_magnitude / (para_total_cnt + 1e-12), orig_success_cnt ,orig_magnitude / (i + 1e-12))
relation = line['requested_rewrite']['relation_id']
prompt = line['requested_rewrite']['prompt']
subject = line['requested_rewrite']['subject']
prompt_calibrate = prompt.format('SUBJECT')
prompt = prompt.format(subject)
PROMPTS = [prompt, prompt_calibrate]
target_true = line['requested_rewrite']['target_true']['str']
target_new = line['requested_rewrite']['target_new']['str']
PPLs = []
targets = [target_new, target_true]
icl_examples = construct_icl_examples(example_idx, demos)
icl_examples.append(f'New Fact: {prompt} {target_new}\nPrompt: {prompt} {target_new}\n\n')
example_idx += 1
edit_ppls = icl_lm_eval(model, tokenizer, icl_examples, [target_new, target_true], f'New Fact: {prompt} {target_new}\nPrompt: {prompt}')
edit_final_probs = [1 / edit_ppls[0], 1 / edit_ppls[1]]
orig_total_cnt += 1
if edit_final_probs[0] > edit_final_probs[1]:
orig_success_cnt += 1
orig_magnitude += edit_final_probs[0] - edit_final_probs[1]
targets = [target_new, target_true]
paraphrases = line['paraphrase_prompts']
for paraphrase in paraphrases:
paraphrase_ppls = icl_lm_eval(model, tokenizer, icl_examples, [target_new, target_true], f'New Fact: {prompt} {target_new}\nPrompt: {paraphrase}')
paraphrase_final_probs = [1 / paraphrase_ppls[0], 1 / paraphrase_ppls[1]]
if paraphrase_final_probs[0] > paraphrase_final_probs[1]:
para_success_cnt += 1
para_magnitude += paraphrase_final_probs[0] - paraphrase_final_probs[1]
para_total_cnt += 1
neighbors = line['neighborhood_prompts']
for neighbor in neighbors:
neighbor_ppls = icl_lm_eval(model, tokenizer, icl_examples, [target_true, target_new], f'New Fact: {prompt} {target_new}\nPrompt: {neighbor}')
neighbor_final_probs = [1 / neighbor_ppls[0], 1 / neighbor_ppls[1]]
if neighbor_final_probs[0] > neighbor_final_probs[1]:
success_cnt += 1
magnitude += neighbor_final_probs[0] - neighbor_final_probs[1]
total_cnt += 1
print(success_cnt/total_cnt, magnitude/total_cnt, para_success_cnt/para_total_cnt, para_magnitude/para_total_cnt, orig_success_cnt/orig_total_cnt, orig_magnitude/orig_total_cnt)