-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze.py
157 lines (123 loc) · 4.75 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import json
from time import time
from typing import List
import numpy as np
from tensorflow import keras
from src.analysis.accuracy_vs_kb import analyze_accuracy_vs_kb
from src.analysis.dataset import dataset_kb
from src.analysis.utils import prefix_of, release_models
from src.modelconfig import ModelConfig
from src.utils import split_model_by_config
compile_kwargs = {
"loss": "sparse_categorical_crossentropy",
"optimizer": keras.optimizers.RMSprop(),
"metrics": [],
"run_eagerly": False,
}
def model_by_name(model_name: str) -> keras.Model:
model_path = f"models/{model_name}/{model_name}-full.h5"
model = keras.models.load_model(model_path, compile=False)
return model
def analyze_latency(
model: keras.Model, model_name: str, model_configs: List[ModelConfig]
):
# TODO plot/tabulate latencies for each layer, and cumulative latency distribution
# TODO also plot model layer sizes...? (transmitted over network)
# TODO ^ also, plot for postencoders at various minimal acceptable accuracy % degradations, using accuracy_vs_kb analysis
# TODO should be able to "estimate" or "simulate" total latency before deploying to mobile. :)
BATCH_SIZE = 1
dataset = dataset_kb()
n = len(list(dataset))
model.compile(**compile_kwargs)
t1 = time()
# TODO has further perf improvements in TF 2.1? so maybe upgrade ubuntu
for img, _ in dataset.batch(1):
_ = model.predict_on_batch(img)
t2 = time()
ms = int(1000 * (t2 - t1) / n)
print(f"{model_name}: {ms} ms")
model.compile(**compile_kwargs)
t1 = time()
model.evaluate(dataset.batch(BATCH_SIZE), verbose=0)
t2 = time()
ms = int(1000 * (t2 - t1) / n)
print(f"{model_name}: {ms} ms")
def analyze_distribution(model: keras.Model, model_configs: List[ModelConfig]):
BATCH_SIZE = 64
model_configs = [
x for x in model_configs if x.layer != "server" and x.layer != "client"
]
dataset = dataset_kb()
def floatlike(x):
try:
float(x)
return True
except:
return False
for model_config in model_configs:
print(f"Analyzing distribution\n{model_config}\n")
prefix = prefix_of(model_config)
model_client, model_server, model_analysis = split_model_by_config(
model, model_config
)
pred_analysis = model_analysis.predict(dataset.batch(BATCH_SIZE))
pred = {
"split": pred_analysis[0],
"final": pred_analysis[-1],
}
if len(pred_analysis) == 4:
pred["encoded"] = pred_analysis[1]
pred["decoded"] = pred_analysis[2]
for split, p in pred.items():
stats = {
"type": split,
"shape": p.shape,
"mean": np.mean(p),
"std": np.std(p),
"min": np.min(p),
"max": np.max(p),
"pct 0.1": np.percentile(p, 0.1),
"pct 1": np.percentile(p, 1),
"pct 5": np.percentile(p, 5),
"pct 95": np.percentile(p, 95),
"pct 99": np.percentile(p, 99),
"pct 99.9": np.percentile(p, 99.9),
}
print([type(x) for x in stats.values()])
stats = {
k: f"{v:.3g}" if floatlike(v) else v for k, v in stats.items()
}
print("\n".join(f"{k}: {v}" for k, v in stats.items()))
print("")
# TODO print max, min, mean, stddev
# max/min also have their own mean/stddev
# There's also min/max of the means... and stddev of the means...
# TODO _plot(prefix, ...)
release_models(model_client, model_server, model_analysis)
def analyze_model(model_name: str, model_configs: List[ModelConfig]):
model = model_by_name(model_name)
# analyze_distribution(model, model_configs)
# analyze_latency(model, model_name, model_configs)
analyze_accuracy_vs_kb(model, model_configs)
# TODO jpeg only at the moment
# TODO analyze_neuron_histogram
# TODO analyze_video (accuracies? what are we analyzing here?)
# TODO analyze_featuremap (why? just a visual?)
# analyze sensitivity, static/dynamic components, etc
release_models(model)
def main():
with open("models.json") as f:
d = json.load(f)
model_configs = {
model_name: [
ModelConfig(model=model_name, **config_dict)
for config_dict in config_dicts
]
for model_name, config_dicts in d.items()
}
for model_name, model_configs_ in model_configs.items():
analyze_model(model_name, model_configs_)
if __name__ == "__main__":
main()
# TODO move generate_models analysis stuff here...
# TODO include scripts for generating data/{}kb