-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathworst_case.py
110 lines (83 loc) · 3.96 KB
/
worst_case.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import copy as cp
import pickle
import sys
import os
sys.path.insert(0, os.path.abspath('../'))
from Utils.eval_helper import *
from Utils.iohelper import *
from Utils.yelpFeatureExtraction import *
from Detector.eval_GANG import runGANG
from Detector.eval_Fraudar import runFraudar
from Detector.eval_SpEagle import runSpEagle
from Detector.eval_fBox import runfBox
from nash_detect import compute_re, remove_topk_reviews
"""
Computing worst-case performance (Table 2 and Figure 3(d) dash lines in paper)
"""
if __name__ == '__main__':
# load metadata and attack defense data
dataset_name = 'YelpChi' # YelpChi, YelpNYC, YelpZip
prefix = 'Yelp_Dataset/' + dataset_name + '/'
elite = 10 # elite threshold
top_k = 0.01 # filtering threshold for detector
mode = 'Training/'
attacks = ['IncBP', 'IncDS', 'IncPR', 'Random', 'Singleton']
detectors = ['GANG', 'Prior', 'SpEagle', 'fBox', 'Fraudar']
setting1 = mode + dataset_name + '/IncBP.pickle'
setting2 = mode + dataset_name + '/IncDS.pickle'
setting3 = mode + dataset_name + '/Random.pickle'
setting4 = mode + dataset_name + '/IncPR.pickle'
setting5 = mode + dataset_name + '/Singleton.pickle'
paths = {'IncBP': setting1, 'IncDS': setting2, 'Random': setting3, 'IncPR': setting4,
'Singleton': setting5}
topk_log = {a: {d: [] for d in detectors} for a in attacks}
pe_log = {a: {d: 0 for d in detectors} for a in attacks}
metadata_filename = prefix + 'metadata.gz'
user_product_graph, prod_user_graph = read_graph_data(metadata_filename)
# select elite accounts
elite_accounts = select_elite(user_product_graph, threshold=elite)
for attack, setting in paths.items():
print("Run detectors on {} with {} attack now...".format(dataset_name, attack))
with open(setting, 'rb') as f:
evasions = pickle.load(f)
account_ids = evasions[0]
target_ids = evasions[1]
new_edges = evasions[2]
u_p_graph, p_u_graph = cp.deepcopy(user_product_graph), cp.deepcopy(prod_user_graph)
new_priors, u_p_graph, p_u_graph, user_ground_truth, review_ground_truth, _ = add_adversarial_review(
u_p_graph, p_u_graph, new_edges)
print('Run GANG ...')
# get posteriors from GANG
gang_model, _ = runGANG(new_priors, u_p_graph, p_u_graph, user_ground_truth)
gang_ubelief, _, gang_rbelief = gang_model.classify()
print('Run SpEagle ...')
# get posteriors from SpEagle
speagle_model = runSpEagle(new_priors, u_p_graph)
speagle_ubelief, speagle_rbelief, _ = speagle_model.classify()
print('Run Fraudar ...')
# get posteriors from Fraudar
fraudar_ubelief, fraudar_rbelief = runFraudar(new_priors, u_p_graph)
print('Run fBox ...')
# get posteriors from fBox
fbox_ubelief, fbox_rbelief = runfBox(new_priors, u_p_graph)
print('Run Prior ...')
# get posteriors from Prior
prior_ubelief, prior_rbelief = new_priors[0], new_priors[1]
# normalize the output
speagle_rbelief, fraudar_rbelief, fbox_rbelief, prior_rbelief = scale_value(speagle_rbelief), scale_value(
fraudar_rbelief), scale_value(fbox_rbelief), scale_value(prior_rbelief)
detector_belief = {'GANG': gang_rbelief, 'SpEagle': speagle_rbelief, 'Fraudar': fraudar_rbelief, 'fBox': fbox_rbelief, 'Prior': prior_rbelief}
# rank the top_k suspicious reviews
for detector, belief in detector_belief.items():
ranked_rbeliefs = [(review, belief[review]) for review in belief.keys()]
ranked_rbeliefs = sorted(ranked_rbeliefs, reverse=True, key=lambda x: x[1])
top_k_count = int(len(belief) * top_k)
top_k_reviews = [review[0] for review in ranked_rbeliefs[:top_k_count]]
topk_log[attack][detector] += top_k_reviews
print('Compute PM ...')
ori_RI, ori_ERI, ori_Revenue = compute_re(prod_user_graph, target_ids, elite_accounts)
for detector, topk in topk_log[attack].items():
remain_product_user_graph = remove_topk_reviews(p_u_graph, topk)
new_RI, new_ERI, new_Revenue = compute_re(remain_product_user_graph, target_ids, elite_accounts)
pe_log[attack][detector] = sum([new_Revenue[i] - ori_Revenue[i] for i in target_ids])
print(pe_log)