-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathrun.py
80 lines (62 loc) · 2.69 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import json
import logging
import datetime
import time
import yaml
import spotipy
from langchain.requests import Requests
from langchain import OpenAI
from utils import reduce_openapi_spec, ColorPrint
from model import RestGPT
logger = logging.getLogger()
def main():
config = yaml.load(open('config.yaml', 'r'), Loader=yaml.FullLoader)
os.environ["OPENAI_API_KEY"] = config['openai_api_key']
os.environ["TMDB_ACCESS_TOKEN"] = config['tmdb_access_token']
os.environ['SPOTIPY_CLIENT_ID'] = config['spotipy_client_id']
os.environ['SPOTIPY_CLIENT_SECRET'] = config['spotipy_client_secret']
os.environ['SPOTIPY_REDIRECT_URI'] = config['spotipy_redirect_uri']
logging.basicConfig(
format="%(message)s",
handlers=[logging.StreamHandler(ColorPrint())],
)
logger.setLevel(logging.INFO)
scenario = input("Please select a scenario (TMDB/Spotify): ")
scenario = scenario.lower()
if scenario == 'tmdb':
with open("specs/tmdb_oas.json") as f:
raw_tmdb_api_spec = json.load(f)
api_spec = reduce_openapi_spec(raw_tmdb_api_spec, only_required=False)
access_token = os.environ["TMDB_ACCESS_TOKEN"]
headers = {
'Authorization': f'Bearer {access_token}'
}
elif scenario == 'spotify':
with open("specs/spotify_oas.json") as f:
raw_api_spec = json.load(f)
api_spec = reduce_openapi_spec(raw_api_spec, only_required=False, merge_allof=True)
scopes = list(raw_api_spec['components']['securitySchemes']['oauth_2_0']['flows']['authorizationCode']['scopes'].keys())
access_token = spotipy.util.prompt_for_user_token(scope=','.join(scopes))
headers = {
'Authorization': f'Bearer {access_token}'
}
else:
raise ValueError(f"Unsupported scenario: {scenario}")
requests_wrapper = Requests(headers=headers)
llm = OpenAI(model_name="text-davinci-003", temperature=0.0, max_tokens=700)
rest_gpt = RestGPT(llm, api_spec=api_spec, scenario=scenario, requests_wrapper=requests_wrapper, simple_parser=False)
if scenario == 'tmdb':
query_example = "Give me the number of movies directed by Sofia Coppola"
elif scenario == 'spotify':
query_example = "Add Summertime Sadness by Lana Del Rey in my first playlist"
print(f"Example instruction: {query_example}")
query = input("Please input an instruction (Press ENTER to use the example instruction): ")
if query == '':
query = query_example
logger.info(f"Query: {query}")
start_time = time.time()
rest_gpt.run(query)
logger.info(f"Execution Time: {time.time() - start_time}")
if __name__ == '__main__':
main()