-
Notifications
You must be signed in to change notification settings - Fork 6
/
experiments.conf
291 lines (243 loc) · 7.23 KB
/
experiments.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# Word embeddings.
glove_300d_filtered {
path = /home/tigrann/SciERC/scierc/embeddings/glove.840B.300d.txt.filtered
size = 300
format = txt
lowercase = false
}
glove_300d_2w {
path = /home/tigrann/SciERC/scierc/embeddings/glove_50_300_2.txt
size = 300
format = txt
lowercase = false
}
# Main configuration.
best {
# Computation limits.
max_antecedents = 250
max_training_sentences = 50
top_span_ratio = 0.4
# Model hyperparameters.
filter_widths = [3, 4, 5]
filter_size = 50
char_embedding_size = 8
char_vocab_path = "char_vocab_old.english.txt"
context_embeddings = ${glove_300d_filtered}
head_embeddings = ${glove_300d_2w}
contextualizer = lstm
contextualization_size = 200
contextualization_layers = 3
ffnn_size = 150
ffnn_depth = 2
feature_size = 20
max_span_width = 30
use_metadata = true
use_features = true
model_heads = true
lm_layers = 3
lm_size = 1024
sva = false
# Learning hyperparameters.
max_gradient_norm = 5.0
lexical_dropout_rate = 0.5
dropout_rate = 0.2
lstm_dropout_rate = 0.4
optimizer = adam
learning_rate = 0.001
decay_rate = 0.999
decay_frequency = 100
const_weight = 0 # 0.1
ner_weight = 0 # 0.1
eval_frequency = 1000
report_frequency = 250
log_root = logs
eval_sleep_secs = 600
}
mtl_best = ${best} {
char_embedding_size = 8
contextualization_layers = 3
contextualization_size = 200
use_features = true
use_metadata = true
model_heads = true
task_heads = false
max_arg_width = 30
argument_ratio = 0.8
predicate_ratio = 0.4
mention_ratio = 0.4
lexical_dropout_rate = 0.5
dropout_rate = 0.2
lstm_dropout_rate = 0.4
optimizer = adam
learning_rate = 0.001
decay_rate = 0.999
decay_frequency = 100
num_attention_heads = 1
span_score_weight = 0.0
eval_sleep_secs = 1200
coref_loss = "mention_rank"
enforce_srl_constraint = false
filter_v_args = true
use_gold_predicates = false
srl_weight = 0
ner_weight = 1.0
coref_weight = 1.0
const_weight = 0.0
batch_size = 40
max_tokens_per_batch = 700
# Updated dataset.
train_path = train.english.mtl.jsonlines
eval_path = dev.english.mtl.jsonlines
lm_layers = 3
lm_size = 1024
main_metrics = srl_coref_ner
gpu_id = 0
}
# Scientific KG experiments
scientific_entity = ${mtl_best} {
include_c_v = false
ner_labels = ["tissue", "experimental_construct", "brand", "protein_isoform", "recombinant_protein", "protein", "gene", "fusion_protein", "RNA_family", "experiment_tag", "peptide", "parameter", "chemical", "DNA", "protein_family", "cell", "gene_family", "protein_DNA_complex", "protein_motif", "protein_region", "disease", "other", "RNA", "amino_acid", "fusion_gene", "organism", "assay", "protein_RNA_complex", "protein_domain", "organelle", "drug", "protein_complex", "reagent", "process", "mutation"]
relation_labels = ["bind"]
coref_weight = 0.0
ner_weight = 1.0
relation_weight = 0.0
max_arg_width = 5
contextualization_layers = 1
main_metrics = ner
ner_conll_eval_path = ""
eval_frequency = 50
report_frequency = 25
eval_sleep_secs = 10
filter_reverse_relations = true
entity_ratio = 0.5
coref_weight = 0.5
ner_weight = 0.5
max_arg_width = 10
main_metrics = coref_ner
use_metadata = false
}
scientific_elmo = ${scientific_entity} {
coref_weight = 0.33
ner_weight = 0.33
relation_weight = 0.33
main_metrics = coref_ner_relations
batch_size = 10
mention_ratio = 0.3
entity_ratio = 0.3
max_arg_width = 8
lm_path = "../data/elmo/sciie.train.elmo.hdf5"
lm_path_dev = "../data/elmo/sciie.dev.elmo.hdf5"
train_path = "../data/sciie.train.jsona"
eval_path = "../data/sciie.dev.jsona"
}
scientific_best_ner = ${scientific_elmo} {
learning_rate = 0.0005
coref_weight = 1.0
ner_weight = 0.2
main_metrics = ner
}
scientific_best_coref = ${scientific_elmo} {
learning_rate = 0.0005
main_metrics = coref
}
scientific_best_relation = ${scientific_elmo} {
ffn = 250
coref_weight = 0.3
dropout_rate = 0.4
entity_ratio = 0.4
ner_weight = 0
relation_weight = 1.0
learning_rate = 0.001
main_metrics = relations
output_path = ./output.json
eval_sleep_secs = 1
}
scientific_n0.1c0.3r1 = ${scientific_best_relation} {
max_arg_width = 5
entity_ratio = 0.4
mention_ratio = 0.4
ner_weight = 0.1
coref_weight = 0.3
output_path = "logs/scientific_n0.1c0.3r1/sciie.dev.output.jsona"
}
scientific_n0.0c0.0r1 = ${scientific_n0.1c0.3r1} {
ner_weight = 0.0
coref_weight = 0.0
output_path = "logs/scientific_n0.0c0.0r1/sciie.dev.output.jsona"
}
scientific_n0.5c0.5r1 = ${scientific_n0.1c0.3r1} {
ner_weight = 0.5
coref_weight = 0.5
output_path = "logs/scientific_n0.5c0.5r1/sciie.dev.output.jsona"
}
scientific_n1.0c1.0r1 = ${scientific_n0.1c0.3r1} {
ner_weight = 1.0
coref_weight = 1.0
output_path = "logs/scientific_n1.0c1.0r1/sciie.dev.output.jsona"
}
scientific_n0.5c0.5r1d0.1 = ${scientific_n0.1c0.3r1} {
ner_weight = 0.5
coref_weight = 0.5
dropout_rate = 0.1
output_path = "logs/scientific_n0.5c0.5r1d0.1/sciie.dev.output.jsona"
}
scientific_data6n0.5c0.5r1 = ${scientific_n0.5c0.5r1} {
lm_path = "../data_6/elmo/sciie.train.elmo.hdf5"
lm_path_dev = "../data_6/elmo/sciie.dev.elmo.hdf5"
train_path = "../data_6/sciie.train.jsona"
eval_path = "../data_6/sciie.dev.jsona"
output_path = "logs/scientific_data6n0.5c0.5r1/sciie.dev.output.jsona"
}
scientific_data6n0.1c0.3r1 = ${scientific_n0.1c0.3r1} {
lm_path = "../data_6/elmo/sciie.train.elmo.hdf5"
lm_path_dev = "../data_6/elmo/sciie.dev.elmo.hdf5"
train_path = "../data_6/sciie.train.jsona"
eval_path = "../data_6/sciie.dev.jsona"
output_path = "logs/scientific_data6n0.1c0.3r1/sciie.dev.output.jsona"
}
scientific_data6n0.0c0.0r1 = ${scientific_data6n0.5c0.5r1} {
ner_weight = 0.0
coref_weight = 0.0
output_path = "logs/scientific_data6n0.0c0.0r1/sciie.dev.output.jsona"
}
scientific_data6n0.0c0.5r1 = ${scientific_data6n0.0c0.0r1} {
coref_weight = 0.5
output_path = "logs/scientific_data6n0.0c0.5r1/sciie.dev.output.jsona"
gpu_id = 1
}
scientific_data6n0.5c0.0r1 = ${scientific_data6n0.0c0.0r1} {
ner_weight = 0.5
lm_path_dev = "visualize_3.elmo.hdf5"
eval_path = "visualize_3.jsona"
output_path = "visualize_3.output.jsona"
# lm_path_dev = "../data_6/elmo/sciie.test.elmo.hdf5"
# eval_path = "../data_6/sciie.test.jsona"
# output_path = "logs/scientific_data6n0.5c0.0r1/sciie.test.output.jsona"
# output_path = "logs/scientific_data6n0.5c0.0r1/sciie.dev.output.jsona"
gpu_id = 0
}
scientific_data6n1.0c0.0r1 = ${scientific_data6n0.0c0.0r1} {
ner_weight = 1.0
output_path = "logs/scientific_data6n1.0c0.0r1/sciie.dev.output.jsona"
gpu_id = 1
}
scientific_data6n0.0c1.0r1 = ${scientific_data6n0.0c0.0r1} {
coref_weight = 1.0
output_path = "logs/scientific_data6n0.0c1.0r1/sciie.dev.output.jsona"
gpu_id = 0
}
scientific_data6n1.0c1.0r1 = ${scientific_data6n0.0c1.0r1} {
ner_weight = 1.0
output_path = "logs/scientific_data6n1.0c1.0r1/sciie.dev.output.jsona"
gpu_id = 1
}
scientific_data6n1.0c0.5r1 = ${scientific_data6n1.0c1.0r1} {
coref_weight = 0.5
output_path = "logs/scientific_data6n1.0c0.5r1/sciie.dev.output.jsona"
gpu_id = 0
}
scientific_data6n0.5c1.0r1 = ${scientific_data6n1.0c1.0r1} {
ner_weight = 0.5
output_path = "logs/scientific_data6n0.5c1.0r1/sciie.dev.output.jsona"
gpu_id = 1
}