-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
267 lines (239 loc) · 10 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import torch
import torch.nn as nn
import numpy as np
import math
import datetime
import matplotlib.pyplot as plt
from einops import repeat, rearrange
import os
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader
from types import SimpleNamespace
from utils.config import args
from utils.EMA import EMAHelper
from utils.road_encoder import *
from utils.geounet import *
from utils.logger import Logger, log_info
from pathlib import Path
import shutil
# set the GPU enviroment
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def resample_trajectory(x, length=200):
"""
Resample a trajectory to a fixed length using linear interpolation
:param x: trajectory to resample
:param length: length of the resampled trajectory
:return: resampled trajectory
"""
len_x = len(x)
time_steps = np.arange(length) * (len_x - 1) / (length - 1)
x = x.T
resampled_trajectory = np.zeros((2, length))
for i in range(2):
resampled_trajectory[i] = np.interp(time_steps, np.arange(len_x), x[i])
return resampled_trajectory.T
def gather(consts: torch.Tensor, t: torch.Tensor):
"""Gather consts for $t$ and reshape to feature map shape"""
c = consts.gather(-1, t)
return c.reshape(-1, 1, 1)
def compute_alpha(beta, t):
"""
compute alpha for a given beta and t
:param beta: tensor of shape (T,)
:param t: tensor of shape (B,)
:return: tensor of shape (B, 1, 1)
"""
beta = torch.cat([torch.zeros(1).to(beta.device), beta], dim=0)
a = (1 - beta).cumprod(dim=0).index_select(0, t + 1).view(-1, 1, 1)
return a
def p_xt(xt, noise, t, next_t, beta, eta=0):
at = compute_alpha(beta.cuda(), t.long())
at_next = compute_alpha(beta, next_t.long())
x0_t = (xt - noise * (1 - at).sqrt()) / at.sqrt()
c1 = (eta * ((1 - at / at_next) * (1 - at_next) / (1 - at)).sqrt())
c2 = ((1 - at_next) - c1 ** 2).sqrt()
eps = torch.randn(xt.shape, device=xt.device)
xt_next = at_next.sqrt() * x0_t + c1 * eps + c2 * noise
return xt_next
def setup_experiment_directories(config, Exp_name='ControlTraj', model_name="ControlTraj"):
"""
setup the directories for the experiment
:param config: configuration file
:param Exp_name: Experiment name
file_save: directory to save the files
result_save: directory to save the results
model_save: directory to save the models during training
"""
root_dir = Path(__file__).resolve().parent
result_name = f"{config.data.dataset}_bs={config.training.batch_size}"
exp_dir = root_dir / Exp_name / result_name
timestamp = datetime.datetime.now().strftime("%m-%d-%H-%M-%S")
exp_time_dir = exp_dir / timestamp
files_save = exp_time_dir / 'Files'
result_save = exp_time_dir / 'Results'
model_save = exp_time_dir / 'models'
# Creating directories
for directory in [files_save, result_save, model_save]:
directory.mkdir(parents=True, exist_ok=True)
# Copying files
for filename in os.listdir(root_dir / 'utils'):
if filename.endswith('.py'):
shutil.copy(root_dir / 'utils' / filename, files_save)
# Copying the current file itself
this_file = Path(__file__)
shutil.copy(this_file, files_save)
print("All files saved path ---->>", exp_time_dir)
logger = Logger( __name__, log_path=exp_dir / (timestamp + '/out.log'),colorize=True)
return logger, files_save, result_save, model_save
def main(config, logger):
# Modified to return the noise itself as well
def q_xt_x0(x0, t):
mean = gather(alpha_bar, t)**0.5 * x0
var = 1 - gather(alpha_bar, t)
eps = torch.randn_like(x0).to(x0.device)
return mean + (var**0.5) * eps, eps # also returns noise
# initialize the model with the configuration
unet = UNetModel(
in_channels = config.model.in_channels,
out_channels = config.model.out_channels,
channels = config.model.channels,
n_res_blocks = config.model.num_res_blocks,
attention_levels = config.model.attention_levels,
channel_multipliers = config.model.channel_multipliers,
n_heads = config.model.n_heads,
tf_layers = config.model.tf_layers,
d_cond=128
).cuda()
total_params = sum(p.numel() for p in unet.parameters())
print(f'{total_params:,} total parameters.')
# initialize the road encoder with RoadMAE
autoencoder = MAE_ViT(image_size=200,
patch_size=5,
emb_dim=128,
encoder_layer=8,
encoder_head=4,
decoder_layer=4,
decoder_head=4,
mask_ratio=0.00).cuda()
autoencoder.load_state_dict(torch.load('./models/road_encoder.pt'))
# freeze the parameters of the road encoder
for param in autoencoder.parameters():
param.requires_grad = False
# Load the data and create the dataloader
roads = np.load('./data/porto_roads.npy',allow_pickle=True)
trajs = np.load('./data/porto_trajs.npy',allow_pickle=True)
heads = np.load('./data/porto_heads.npy',allow_pickle=True)
trajs = trajs.transpose(0,2,1)
trajs = torch.from_numpy(trajs).float()
roads = torch.from_numpy(roads).float()
heads = torch.from_numpy(heads).float()
dataset = TensorDataset(trajs, heads, roads)
dataloader = DataLoader(dataset,
batch_size=config.training.batch_size,
shuffle=True,
num_workers=8)
# Training params
# Set up some parameters
n_steps = config.diffusion.num_diffusion_timesteps
beta = torch.linspace(config.diffusion.beta_start,
config.diffusion.beta_end, n_steps).cuda()
alpha = 1. - beta
alpha_bar = torch.cumprod(alpha, dim=0)
lr = 2e-4 # Explore this - might want it lower when training on the full dataset
losses = [] # Store losses for later plotting
# optimizer
optim = torch.optim.AdamW(unet.parameters(), lr=lr) # Optimizer
# EMA
if config.model.ema:
ema_helper = EMAHelper(mu=config.model.ema_rate)
ema_helper.register(unet)
else:
ema_helper = None
# config.training.n_epochs = 1
for epoch in range(0, config.training.n_epochs + 1):
losses = [] # Store losses for later plotting
logger.info("<----Epoch-{}---->".format(epoch))
for _, (x0, attr, road) in enumerate(dataloader):
x0 = x0.cuda()
attr = attr.cuda()
new_roads = []
for i in range(len(road)):
new_roads.append(resample_trajectory(road[i]))
new_roads = np.array(new_roads)
new_roads = new_roads.transpose(0,2,1)
# get the road embeddings by RoadMAE
guide = torch.from_numpy(new_roads).float().cuda()
with torch.no_grad():
guide, _= autoencoder.encoder(guide)
guide = guide[1:,:,:]
guide = rearrange(guide, 't b c -> b t c')
t = torch.randint(low=0, high=n_steps,
size=(len(x0) // 2 + 1, )).cuda()
t = torch.cat([t, n_steps - t - 1], dim=0)[:len(x0)]
# Get the noised images (xt) and the noise (our target)
xt, noise = q_xt_x0(x0, t)
pred_noise = unet(xt.float(), t,guide,attr)
# Compare the predictions with the targets
loss = F.mse_loss(noise.float(), pred_noise)
# Store the loss for later viewing
losses.append(loss.item())
optim.zero_grad()
loss.backward()
optim.step()
if config.model.ema:
ema_helper.update(unet)
logger.info("<----Loss: {:.5f}---->".format(np.mean(losses)))
if (epoch) % 10 == 0:
m_path = model_save / f"unet_{epoch}.pt"
torch.save(unet.state_dict(), m_path)
# Start with random noise
sample = torch.randn(config.training.batch_size, 2, config.data.traj_length).cuda()
_, attr, road = next(iter(dataloader))
attr = attr.cuda()
new_roads = []
for i in range(len(road)):
new_roads.append(resample_trajectory(road[i]))
new_roads = np.array(new_roads)
new_roads = new_roads.transpose(0,2,1)
guide = torch.from_numpy(new_roads).float().cuda()
with torch.no_grad():
guide, _ = autoencoder.encoder(guide)
guide = guide[1:,:,:]
guide = rearrange(guide, 't b c -> b t c')
ims = []
n = sample.size(0)
eta=0.0
timesteps=100
skip = n_steps // timesteps
seq = range(0, n_steps, skip)
seq_next = [-1] + list(seq[:-1])
for i, j in zip(reversed(seq), reversed(seq_next)):
t = (torch.ones(n) * i).cuda()
next_t = (torch.ones(n) * j).cuda()
with torch.no_grad():
pred_noise = unet(sample, t, guide, attr)
# print(pred_noise.shape)
sample = p_xt(sample, pred_noise, t, next_t, beta, eta)
if i % 10 == 0:
ims.append(sample.squeeze(0))
trajs = ims[-1].cpu().numpy()
del ims
plt.figure(figsize=(8,8))
for i in range(len(trajs)):
tj = trajs[i]
plt.plot(tj[0,:],tj[1,:],color='#3f72af',alpha=0.1)
plt.tight_layout()
m_path = result_save / f"r_{epoch}.png"
plt.savefig(m_path)
if __name__ == "__main__":
# Load configuration
temp = {}
for k, v in args.items():
temp[k] = SimpleNamespace(**v)
config = SimpleNamespace(**temp)
logger,files_save, result_save, model_save = setup_experiment_directories(config, Exp_name='Control_Porto')
log_info(config, logger)
main(config, logger)