-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathmain_3D_BoNet.py
220 lines (186 loc) · 11.5 KB
/
main_3D_BoNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import tensorflow as tf
import os
import shutil
from helper_net import Ops as Ops
class BoNet:
def __init__(self, configs):
self.points_cc = configs.points_cc
self.sem_num = configs.sem_num
self.bb_num = configs.ins_max_num
def creat_folders(self, name='log', re_train=False):
self.train_mod_dir = './'+name+'/train_mod/'
self.train_sum_dir = './'+name+'/train_sum/'
self.test_sum_dir = './'+name+'/test_sum/'
print ("re_train:", re_train)
def tp(path):
if os.path.exists(path):
if re_train:
print (path, ": files kept!")
else:
shutil.rmtree(path)
os.makedirs(path)
print (path, ': deleted and then created!')
else:
os.makedirs(path)
print (path, ': created!')
tp(self.test_sum_dir)
tp(self.train_sum_dir)
tp(self.train_mod_dir)
###### 1. backbone + sem
def backbone_pointnet(self, X_pc, is_train):
[_, _, points_cc] = X_pc.get_shape()
points_num = tf.shape(X_pc)[1]
X_pc = tf.reshape(X_pc, [-1, points_num, int(points_cc), 1])
l1 = Ops.xxlu(Ops.conv2d(X_pc, k=(1, points_cc), out_c=64, str=1, pad='VALID', name='l1'), label='lrelu')
l2 = Ops.xxlu(Ops.conv2d(l1, k=(1, 1), out_c=64, str=1, pad='VALID', name='l2'), label='lrelu')
l3 = Ops.xxlu(Ops.conv2d(l2, k=(1, 1), out_c=64, str=1, pad='VALID', name='l3'), label='lrelu')
l4 = Ops.xxlu(Ops.conv2d(l3, k=(1, 1), out_c=128, str=1, pad='VALID', name='l4'), label='lrelu')
l5 = Ops.xxlu(Ops.conv2d(l4, k=(1, 1), out_c=1024, str=1, pad='VALID', name='l5'), label='lrelu')
global_features = tf.reduce_max(l5, axis=1, name='maxpool')
global_features = tf.reshape(global_features, [-1, int(l5.shape[-1])])
point_features = tf.reshape(l5, [-1, points_num, int(l5.shape[-1])])
#### sem
g1 = Ops.xxlu(Ops.fc(global_features, out_d=256, name='semg1'), label='lrelu')
g2 = Ops.xxlu(Ops.fc(g1, out_d=128, name='semg2'), label='lrelu')
sem1 = tf.tile(g2[:,None,None,:], [1, points_num, 1, 1])
sem1 = tf.concat([l5, sem1], axis=-1)
sem1 = Ops.xxlu(Ops.conv2d(sem1, k=(1,1), out_c=512, str=1, pad='VALID', name='sem1'), label='lrelu')
sem2 = Ops.xxlu(Ops.conv2d(sem1, k=(1, 1), out_c=256, str=1, pad='VALID', name='sem2'), label='lrelu')
sem3 = Ops.xxlu(Ops.conv2d(sem2, k=(1, 1), out_c=128, str=1, pad='VALID', name='sem3'), label='lrelu')
sem3 = Ops.dropout(sem3, keep_prob=0.5, is_train=is_train, name='sem3_dropout')
sem4 = Ops.conv2d(sem3, k=(1, 1), out_c=self.sem_num, str=1, pad='VALID', name='sem4')
sem4 = tf.reshape(sem4, [-1, points_num, self.sem_num])
self.y_psem_logits = sem4
y_sem_pred = tf.nn.softmax(self.y_psem_logits, name='y_sem_pred')
return point_features, global_features, y_sem_pred
def backbone_pointnet2(self, X_pc, is_train=None):
import helper_pointnet2 as pnet2
points_num = tf.shape(X_pc)[1]
l0_xyz = X_pc[:,:,0:3]
l0_points = X_pc[:,:,3:9]
l1_xyz, l1_points, l1_indices = pnet2.pointnet_sa_module(l0_xyz, l0_points, npoint=1024, radius=0.1, nsample=32,
mlp=[32, 32, 64], mlp2=None, group_all=False, is_training=None, bn_decay=None, scope='layer1')
l2_xyz, l2_points, l2_indices = pnet2.pointnet_sa_module(l1_xyz, l1_points, npoint=256, radius=0.2, nsample=64,
mlp=[64, 64, 128], mlp2=None, group_all=False, is_training=None, bn_decay=None, scope='layer2')
l3_xyz, l3_points, l3_indices = pnet2.pointnet_sa_module(l2_xyz, l2_points, npoint=64, radius=0.4, nsample=128,
mlp=[128, 128, 256], mlp2=None, group_all=False, is_training=None, bn_decay=None, scope='layer3')
l4_xyz, l4_points, l4_indices = pnet2.pointnet_sa_module(l3_xyz, l3_points, npoint=None, radius=None, nsample=None,
mlp=[256, 256, 512], mlp2=None, group_all=True, is_training=None, bn_decay=None, scope='layer4')
# Feature Propagation layers
l3_points = pnet2.pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [256, 256], is_training=None, bn_decay=None, scope='fa_layer1')
l2_points = pnet2.pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256, 256], is_training=None, bn_decay=None,scope='fa_layer2')
l1_points = pnet2.pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256, 128], is_training=None, bn_decay=None,scope='fa_layer3')
l0_points = pnet2.pointnet_fp_module(l0_xyz, l1_xyz, tf.concat([l0_xyz, l0_points], axis=-1),
l1_points,[128, 128, 128, 128], is_training=None, bn_decay=None, scope='fa_layer4')
global_features = tf.reshape(l4_points, [-1, 512])
point_features = l0_points
# sem
l0_points = l0_points[:,:,None,:]
sem1 = Ops.xxlu(Ops.conv2d(l0_points, k=(1, 1), out_c=128, str=1, pad='VALID', name='sem1'), label='lrelu')
sem2 = Ops.xxlu(Ops.conv2d(sem1, k=(1, 1), out_c=64, str=1, pad='VALID', name='sem2'), label='lrelu')
sem2 = Ops.dropout(sem2, keep_prob=0.5, is_train=is_train, name='sem2_dropout')
sem3 = Ops.conv2d(sem2, k=(1, 1), out_c=self.sem_num, str=1, pad='VALID', name='sem3')
sem3 = tf.reshape(sem3, [-1, points_num, self.sem_num])
self.y_psem_logits = sem3
y_sem_pred = tf.nn.softmax(self.y_psem_logits, name='y_sem_pred')
return point_features, global_features, y_sem_pred
###### 2. bbox
def bbox_net(self, global_features):
b1 = Ops.xxlu(Ops.fc(global_features, out_d= 512, name='b1'), label='lrelu')
b2 = Ops.xxlu(Ops.fc(b1, out_d= 256, name='b2'), label='lrelu')
#### sub branch 1
b3 = Ops.xxlu(Ops.fc(b2, out_d=256, name='b3'), label='lrelu')
bbvert = Ops.fc(b3, out_d=self.bb_num * 2 * 3, name='bbvert')
bbvert = tf.reshape(bbvert, [-1, self.bb_num, 2, 3])
points_min = tf.reduce_min(bbvert, axis=-2)[:, :, None, :]
points_max = tf.reduce_max(bbvert, axis=-2)[:, :, None, :]
y_bbvert_pred = tf.concat([points_min, points_max], axis=-2, name='y_bbvert_pred')
#### sub branch 2
b4 = Ops.xxlu(Ops.fc(b2, out_d=256, name='b4'), label='lrelu')
y_bbscore_pred = tf.sigmoid(Ops.fc(b4, out_d=self.bb_num * 1, name='y_bbscore_pred'))
return y_bbvert_pred, y_bbscore_pred
###### 3. pmask
def pmask_net(self, point_features, global_features, bbox, bboxscore):
p_f_num = int(point_features.shape[-1])
p_num = tf.shape(point_features)[1]
bb_num = int(bbox.shape[1])
global_features = tf.tile(Ops.xxlu(Ops.fc(global_features, out_d=256, name='down_g1'), label='lrelu')[:,None,None,:], [1, p_num, 1, 1])
point_features = Ops.xxlu(Ops.conv2d(point_features[:,:,:,None],k=(1, p_f_num), out_c=256, str=1,name='down_p1',pad='VALID'), label='lrelu')
point_features = tf.concat([point_features, global_features], axis=-1)
point_features = Ops.xxlu(Ops.conv2d(point_features, k=(1,int(point_features.shape[-2])), out_c=128, str=1, pad='VALID', name='down_p2'), label='lrelu')
point_features = Ops.xxlu(Ops.conv2d(point_features, k=(1, int(point_features.shape[-2])), out_c=128, str=1, pad='VALID',name='down_p3'), label='lrelu')
point_features = tf.squeeze(point_features, axis=-2)
bbox_info = tf.tile(tf.concat([tf.reshape(bbox, [-1, bb_num, 6]), bboxscore[:,:,None]],axis=-1)[:,:,None,:], [1,1,p_num,1])
pmask0 = tf.tile(point_features[:,None,:,:], [1, bb_num, 1, 1])
pmask0 = tf.concat([pmask0, bbox_info], axis=-1)
pmask0 = tf.reshape(pmask0, [-1, p_num, int(pmask0.shape[-1]), 1])
pmask1 = Ops.xxlu(Ops.conv2d(pmask0, k=(1,int(pmask0.shape[-2])), out_c=64, str=1, pad='VALID', name='pmask1'), label='lrelu')
pmask2 = Ops.xxlu(Ops.conv2d(pmask1, k=(1, 1), out_c=32, str=1, pad='VALID', name='pmask2'),label='lrelu')
pmask3 = Ops.conv2d(pmask2, k=(1,1), out_c=1, str=1, pad='VALID', name='pmask3')
pmask3 = tf.reshape(pmask3, [-1, bb_num, p_num])
y_pmask_logits = pmask3
y_pmask_pred = tf.nn.sigmoid(y_pmask_logits, name='y_pmask_pred')
return y_pmask_pred
######
def build_graph(self, GPU='0'):
####### 1. define inputs
self.X_pc = tf.placeholder(shape=[None, None, self.points_cc], dtype=tf.float32, name='X_pc')
self.Y_bbvert = tf.placeholder(shape=[None, self.bb_num, 2, 3], dtype=tf.float32, name='Y_bbvert')
self.Y_pmask = tf.placeholder(shape=[None, self.bb_num, None], dtype=tf.float32, name='Y_pmask')
self.Y_psem = tf.placeholder(shape=[None, None, self.sem_num], dtype=tf.float32, name='Y_psem')
self.is_train = tf.placeholder(dtype=tf.bool, name='is_train')
self.lr = tf.placeholder(dtype=tf.float32, name='lr')
####### 2. define networks, losses
with tf.variable_scope('backbone'):
#self.point_features, self.global_features, self.y_psem_pred = self.backbone_pointnet(self.X_pc, self.is_train)
self.point_features, self.global_features, self.y_psem_pred = self.backbone_pointnet2(self.X_pc, self.is_train)
### loss
self.psemce_loss = Ops.get_loss_psem_ce(self.y_psem_logits, self.Y_psem)
self.sum_psemce_loss = tf.summary.scalar('psemce_loss', self.psemce_loss)
with tf.variable_scope('bbox'):
self.y_bbvert_pred_raw, self.y_bbscore_pred_raw = self.bbox_net(self.global_features)
#### association, only used for training
bbox_criteria = 'use_all_ce_l2_iou'
self.y_bbvert_pred, self.pred_bborder = Ops.bbvert_association(self.X_pc, self.y_bbvert_pred_raw, self.Y_bbvert, label=bbox_criteria)
self.y_bbscore_pred = Ops.bbscore_association(self.y_bbscore_pred_raw, self.pred_bborder)
### loss
self.bbvert_loss, self.bbvert_loss_l2, self.bbvert_loss_ce, self.bbvert_loss_iou = \
Ops.get_loss_bbvert(self.X_pc, self.y_bbvert_pred, self.Y_bbvert, label=bbox_criteria)
self.bbscore_loss = Ops.get_loss_bbscore(self.y_bbscore_pred, self.Y_bbvert)
self.sum_bbox_vert_loss = tf.summary.scalar('bbvert_loss', self.bbvert_loss)
self.sum_bbox_vert_loss_l2 = tf.summary.scalar('bbvert_loss_l2', self.bbvert_loss_l2)
self.sum_bbox_vert_loss_ce = tf.summary.scalar('bbvert_loss_ce', self.bbvert_loss_ce)
self.sum_bbox_vert_loss_iou = tf.summary.scalar('bbvert_loss_iou', self.bbvert_loss_iou)
self.sum_bbox_score_loss = tf.summary.scalar('bbscore_loss', self.bbscore_loss)
with tf.variable_scope('pmask'):
self.y_pmask_pred = self.pmask_net(self.point_features, self.global_features, self.y_bbvert_pred, self.y_bbscore_pred)
### loss
self.pmask_loss = Ops.get_loss_pmask(self.X_pc, self.y_pmask_pred, self.Y_pmask)
self.sum_pmask_loss = tf.summary.scalar('pmask_loss', self.pmask_loss)
with tf.variable_scope('pmask', reuse=True):
#### during testing, no need to associate, use unordered predictions
self.y_pmask_pred_raw = self.pmask_net(self.point_features, self.global_features, self.y_bbvert_pred_raw, self.y_bbscore_pred_raw)
###### 3. define optimizers
var_backbone = [var for var in tf.trainable_variables() if var.name.startswith('backbone') and not var.name.startswith('backbone/sem')]
var_sem = [var for var in tf.trainable_variables() if var.name.startswith('backbone/sem')]
var_bbox = [var for var in tf.trainable_variables() if var.name.startswith('bbox')]
var_pmask = [var for var in tf.trainable_variables() if var.name.startswith('pmask')]
end_2_end_loss = self.bbvert_loss + self.bbscore_loss + self.pmask_loss + self.psemce_loss
self.optim = tf.train.AdamOptimizer(learning_rate=self.lr).minimize(end_2_end_loss, var_list = var_bbox+var_pmask +var_backbone+ var_sem)
###### 4. others
print(Ops.variable_count())
self.saver = tf.train.Saver(max_to_keep=20)
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.visible_device_list = GPU
self.sess = tf.Session(config=config)
self.sum_writer_train = tf.summary.FileWriter(self.train_sum_dir, self.sess.graph)
self.sum_write_test = tf.summary.FileWriter(self.test_sum_dir)
self.sum_merged = tf.summary.merge_all()
path = self.train_mod_dir
if os.path.isfile(path + 'model.cptk.data-00000-of-00001'):
print ("restoring saved model")
self.saver.restore(self.sess, path + 'model.cptk')
else:
print ("model not found, all weights are initilized")
self.sess.run(tf.global_variables_initializer())
return 0