-
Notifications
You must be signed in to change notification settings - Fork 312
/
main.py
66 lines (50 loc) · 1.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# coding: utf-8
import mxnet as mx
from mtcnn_detector import MtcnnDetector
import cv2
import os
import time
detector = MtcnnDetector(model_folder='model', ctx=mx.cpu(0), num_worker = 4 , accurate_landmark = False)
img = cv2.imread('test2.jpg')
# run detector
results = detector.detect_face(img)
if results is not None:
total_boxes = results[0]
points = results[1]
# extract aligned face chips
chips = detector.extract_image_chips(img, points, 144, 0.37)
for i, chip in enumerate(chips):
cv2.imshow('chip_'+str(i), chip)
cv2.imwrite('chip_'+str(i)+'.png', chip)
draw = img.copy()
for b in total_boxes:
cv2.rectangle(draw, (int(b[0]), int(b[1])), (int(b[2]), int(b[3])), (255, 255, 255))
for p in points:
for i in range(5):
cv2.circle(draw, (p[i], p[i + 5]), 1, (0, 0, 255), 2)
cv2.imshow("detection result", draw)
cv2.waitKey(0)
# --------------
# test on camera
# --------------
'''
camera = cv2.VideoCapture(0)
while True:
grab, frame = camera.read()
img = cv2.resize(frame, (320,180))
t1 = time.time()
results = detector.detect_face(img)
print 'time: ',time.time() - t1
if results is None:
continue
total_boxes = results[0]
points = results[1]
draw = img.copy()
for b in total_boxes:
cv2.rectangle(draw, (int(b[0]), int(b[1])), (int(b[2]), int(b[3])), (255, 255, 255))
for p in points:
for i in range(5):
cv2.circle(draw, (p[i], p[i + 5]), 1, (255, 0, 0), 2)
cv2.imshow("detection result", draw)
cv2.waitKey(30)
'''