-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopt.py
41 lines (31 loc) · 1.21 KB
/
opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import argparse
import os
import yaml
from utils.loss import criterion
parse = argparse.ArgumentParser(description='PyTorch Polyp Segmentation')
parse.add_argument('--config',
help='Path to the training config file.', required=True)
parse.add_argument('--start_epoch', type=int, default=1)
parse.add_argument('--continue_train', action='store_true')
parse.add_argument('--gpu_id', type=str, default="0")
parse.add_argument('--mode', type=str, default="train")
parse.add_argument('--exp_name', type=str, default="")
class Config(dict):
def __init__(self, filename):
super().__init__()
with open('./configs/' + filename + '.yaml', 'r') as f:
cfg_dict = yaml.load(f, Loader=yaml.SafeLoader)
for k, v in cfg_dict.items():
self.__dict__[k] = v
self.criterion = criterion(cfg_dict['loss'])
option = parse.parse_args()
opt = Config(option.config)
if option.exp_name == "":
opt.exp_name = opt.model + '_' + str(option.config)
else:
opt.exp_name = option.exp_name
print('exp_name:', opt.exp_name)
opt.mode = option.mode
opt.start_epoch = option.start_epoch
opt.continue_train = option.continue_train
os.environ["CUDA_VISIBLE_DEVICES"] = option.gpu_id