-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
101 lines (76 loc) · 3.2 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import sys
import torch
import torch.optim as optim
import torch.nn as nn
from torch.nn.functional import interpolate
from models.build_model import build_netG
from data.customdataset import CustomDataset
from models.losses import gdloss
from options import Options
"""Pre-Training Generator"""
opt = Options().parse()
opt.phase = 'train'
opt.nEpochs = 10
opt.save_fre = 10
opt.dataset = 'iseg'
print(opt)
data_set = CustomDataset(opt)
print('Image numbers:', data_set.img_size)
dataloader = torch.utils.data.DataLoader(data_set, batch_size=opt.batch_size,
shuffle=True, num_workers=int(opt.workers))
generator = build_netG(opt)
if opt.gpu_ids != '-1':
num_gpus = len(opt.gpu_ids.split(','))
else:
num_gpus = 0
print('number of GPU:', num_gpus)
if (opt.gpu_ids != -1) & torch.cuda.is_available():
use_gpu = True
generator.cuda()
if num_gpus>1:
generator = nn.DataParallel(generator)
optim_generator = optim.Adam(generator.parameters(), lr=opt.generatorLR, weight_decay=1e-4)
StepLR_G = torch.optim.lr_scheduler.StepLR(optim_generator,step_size=2,gamma=0.9)
print ('start pre-training')
for epoch in range(opt.nEpochs):
mean_generator_l2_loss = 0.0
mean_generator_gdl_loss = 0.0
mean_generator_total_loss = 0.0
for i, data in enumerate(dataloader):
# get input data
high_real_patches = data['high_img_patches'] #[batch_size,num_patches,C,D,H,W]
for k in range(0,opt.num_patches):
high_real_patch = high_real_patches[:,k]#[BCDHW]
low_patch = interpolate(high_real_patch,scale_factor=0.5)
if use_gpu:
high_real_patch = high_real_patch.cuda()
# generate fake data
high_gen = generator(low_patch.cuda())
else:
high_gen = generator(low_patch)
######### Train generator #########
generator.zero_grad()
generator_gdl_loss = opt.gdl*gdloss(high_real_patch, high_gen)
mean_generator_gdl_loss += generator_gdl_loss
generator_l2_loss = nn.MSELoss()(high_real_patch, high_gen)
mean_generator_l2_loss += generator_l2_loss
generator_total_loss = generator_gdl_loss + generator_l2_loss
mean_generator_total_loss += generator_total_loss
generator_total_loss.backward()
optim_generator.step()
######### Status and display #########
sys.stdout.write(
'\r[%d/%d][%d/%d] Generator_Loss (GDL/L2/Total): %.4f/%.4f/%.4f' % (
epoch, opt.nEpochs, i, len(dataloader),generator_gdl_loss, generator_l2_loss,
generator_total_loss))
StepLR_G.step()
if epoch % opt.save_fre == 0:
# Do checkpointing
torch.save(generator.state_dict(), '%s/g_pre-train.pth' % opt.checkpoints_dir)
sys.stdout.write(
'\r[%d/%d][%d/%d] Generator_Loss (GDL/L2/Total): %.4f/%.4f/%.4f\n' % (
epoch, opt.nEpochs, i, len(dataloader),
mean_generator_gdl_loss/len(dataloader)/opt.num_patches,
mean_generator_l2_loss/len(dataloader)/opt.num_patches,
mean_generator_total_loss/len(dataloader)/opt.num_patches))
print('pre-train finished')