-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvisualize_isoforms.py
683 lines (570 loc) · 25.2 KB
/
visualize_isoforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
# Based on code from Yang Xu
import argparse
import os
import os.path
import stat
import sys
import matplotlib
# Select a non-interctive backend immediately after import
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import rmats_long_utils
FORCE_775 = False # workaround for a filesystem issue
def transcript_colors():
return [
'#FF0018', # bright red
'#0072B2', # blue
'#474747', # dark grey
'#8A8A8A', # grey
'#C2C2C2', # light grey
'#E2E2E2', # lighter grey
]
# The last color is used for "other"
MAX_TRANSCRIPTS = len(transcript_colors()) - 1
def group_colors():
return [
'#009E73', # bluishgreen
'#E69F00', # orange
]
def parse_args():
parser = argparse.ArgumentParser(
description=('Visualize the structure and abundance of isoforms'))
parser.add_argument('--gene-id',
required=True,
help='The gene_id to visualize')
parser.add_argument(
'--gene-name',
help=('The name for the gene (used as plot title). If not given then'
' the gene_name from --gencode-gtf will be used. If no other'
' name is found then --gene-id is used as a default'))
parser.add_argument(
'--abundance',
required=True,
help='The path to the abundance.esp file from ESPRESSO')
parser.add_argument('--updated-gtf',
required=True,
help='The path to the updated.gtf file from ESPRESSO')
parser.add_argument(
'--gencode-gtf',
help=('The path to a gencode annotation.gtf file. Can be used to'
' identify the gene_name and Ensembl canonical isoform'))
parser.add_argument(
'--diff-transcripts',
help=('The path to the differential transcript results. Can be used to'
' determine --main-transcript-ids'))
parser.add_argument('--out-dir',
required=True,
help='The path to use as the output directory')
parser.add_argument(
'--plot-file-type',
choices=['.pdf', '.png', 'all'],
default='.pdf',
help='The file type for output plots (default %(default)s))')
parser.add_argument(
'--main-transcript-ids',
help=(
'A comma separated list of transcript IDs to plot as the main'
' transcripts. If not given then the most significant isoform'
' from --diff-transcripts, a second significant isoform with a'
' delta proportion in the opposite direction, and the Ensembl'
' canonical isoform from --gencode-gtf will be used if possible'))
parser.add_argument(
'--max-transcripts',
type=int,
default=5,
help='How many transcripts to plot individually.'
' The remaining transcripts in the gene will be grouped together'
' (max {}, default %(default)s)'.format(MAX_TRANSCRIPTS))
parser.add_argument(
'--intron-scaling',
type=int,
default=1,
help=('The factor to use to reduce intron length in the plot.'
' A value of 2 would reduce introns to 1/2 of the'
' original plot length (default %(default)s)'))
parser.add_argument(
'--group-1',
help=('The path to a file listing the sample names for group 1. The'
' file should have a single line with the sample names as a'
' comma separated list. The sample names should match with the'
' ESPRESSO abundance column names.'))
parser.add_argument(
'--group-2',
help='The path to a file listing the sample names for group 2.')
parser.add_argument('--group-1-name',
default='group 1',
help='A name for group 1 (default %(default)s)')
parser.add_argument('--group-2-name',
default='group 2',
help='A name for group 2 (default %(default)s)')
args = parser.parse_args()
if args.max_transcripts > MAX_TRANSCRIPTS:
parser.error('--max_transcripts was {} but can be at most {}'
' (due to pre-defined colors)'.format(
args.max_transcripts, MAX_TRANSCRIPTS))
if args.group_1 or args.group_2:
if not args.group_1:
parser.error('--group-2 given without --group-1')
if not args.group_2:
parser.error('--group-1 given without --group-2')
args.group_1 = rmats_long_utils.parse_group_file(args.group_1)
args.group_2 = rmats_long_utils.parse_group_file(args.group_2)
if args.main_transcript_ids:
args.main_transcript_ids = args.main_transcript_ids.split(',')
return args
def calculate_transcript_rows(counts_by_transcript_by_sample,
gene_total_by_sample, total_by_sample, group_1,
group_2, group_1_name, group_2_name):
rows_by_transcript = dict()
for transcript, counts_by_sample in counts_by_transcript_by_sample.items():
for sample_i, sample in enumerate(group_1 + group_2):
is_group_1 = sample_i < len(group_1)
gene_total = gene_total_by_sample[sample]
sample_total = total_by_sample[sample]
count = counts_by_sample[sample]
if sample_total == 0:
cpm = 'NA'
proportion = 'NA'
else:
cpm = (count * 1e6) / sample_total
if gene_total == 0:
proportion = 'NA'
else:
proportion = count / gene_total
transcript_rows = rows_by_transcript.get(transcript)
if not transcript_rows:
transcript_rows = list()
rows_by_transcript[transcript] = transcript_rows
if is_group_1:
group_name = group_1_name
else:
group_name = group_2_name
transcript_rows.append({
'sample': sample,
'group': group_name,
'cpm': cpm,
'proportion': proportion,
})
return rows_by_transcript
# Sort transcripts by average proportion across samples.
# The sort order determines the color.
# The main_transcript_ids are first in the sort order.
def sort_transcripts(rows_by_transcript, main_transcript_ids):
average_proportion_by_transcript = dict()
for transcript, rows in rows_by_transcript.items():
if transcript in main_transcript_ids:
continue
total_prop = 0
num_samples_with_data = 0
for row in rows:
prop = row['proportion']
if prop == 'NA':
continue
total_prop += prop
num_samples_with_data += 1
if num_samples_with_data == 0:
average_proportion_by_transcript[transcript] = -1
else:
average = total_prop / num_samples_with_data
average_proportion_by_transcript[transcript] = average
def sort_key_func(transcript):
avg_prop = average_proportion_by_transcript[transcript]
# break ties with the transcript_id
return (avg_prop, transcript)
sorted_transcripts = sorted(average_proportion_by_transcript,
key=sort_key_func,
reverse=True)
return main_transcript_ids + sorted_transcripts
def calc_proportion_and_cpm(abundance_path, gene_id, main_transcript_ids,
group_1, group_2, group_1_name, group_2_name,
cpm_and_proportion_path):
abundance_details = rmats_long_utils.parse_abundance_file(abundance_path)
counts_by_gene_by_transcript_by_sample = (
abundance_details['counts_by_gene_by_transcript_by_sample'])
total_by_gene_by_sample = abundance_details['total_by_gene_by_sample']
total_by_sample = abundance_details['total_by_sample']
sample_names = abundance_details['sample_names']
if group_1 is None and group_2 is None:
group_1 = sample_names
group_2 = list()
if sample_names[0] in group_1:
group_name_of_first_sample = group_1_name
else:
group_name_of_first_sample = group_2_name
counts_by_transcript_by_sample = (
counts_by_gene_by_transcript_by_sample[gene_id])
gene_total_by_sample = total_by_gene_by_sample[gene_id]
rows_by_transcript = calculate_transcript_rows(
counts_by_transcript_by_sample, gene_total_by_sample, total_by_sample,
group_1, group_2, group_1_name, group_2_name)
sorted_transcripts = sort_transcripts(rows_by_transcript,
main_transcript_ids)
with open(cpm_and_proportion_path, 'wt') as out_handle:
out_headers = [
'gene', 'transcript', 'sample', 'group', 'cpm', 'proportion'
]
rmats_long_utils.write_tsv_line(out_handle, out_headers)
for transcript in sorted_transcripts:
transcript_rows = rows_by_transcript.get(transcript)
if not transcript_rows:
# The main_transcript_ids might not have any read counts.
# Add a line to the output with 0 values.
out_columns = [
gene_id, transcript, sample_names[0],
group_name_of_first_sample, '0', '0'
]
rmats_long_utils.write_tsv_line(out_handle, out_columns)
continue
for row in transcript_rows:
out_columns = [
gene_id, transcript, row['sample'], row['group'],
rmats_long_utils.round_float_string(row['cpm']),
rmats_long_utils.round_float_string(row['proportion'])
]
rmats_long_utils.write_tsv_line(out_handle, out_columns)
if FORCE_775:
mode_775 = stat.S_IRWXU | stat.S_IRWXG | stat.S_IROTH | stat.S_IXOTH
os.chmod(cpm_and_proportion_path, mode_775)
def plot_abundance(out_paths, cpm_and_proportion_path, max_transcripts):
py_script_rel_path = sys.argv[0]
py_script_abs_path = os.path.abspath(py_script_rel_path)
script_dir = os.path.dirname(py_script_abs_path)
r_script_path = os.path.join(script_dir, 'visualize_isoforms.R')
transcript_colors_string = ','.join(transcript_colors())
group_colors_string = ','.join(group_colors())
command = [
'Rscript', r_script_path, cpm_and_proportion_path,
str(max_transcripts), transcript_colors_string, group_colors_string
]
command.extend(out_paths)
rmats_long_utils.run_command(command)
# The proportion file has the transcripts in sorted order.
def read_transcript_ids(proportion_path):
transcript_ids = list()
with open(proportion_path, 'rt') as handle:
for row in rmats_long_utils.row_iterator_for_tsv_with_header(handle):
transcript = row['transcript']
if transcript in transcript_ids:
continue
transcript_ids.append(transcript)
return transcript_ids
def read_transcript_details(gtf_path, transcript_ids):
details_by_transcript = dict()
with open(gtf_path, 'rt') as handle:
for line in handle:
parsed = rmats_long_utils.parse_gtf_line(line)
if parsed is None:
continue
transcript_id = parsed['attributes'].get('transcript_id')
if transcript_id not in transcript_ids:
continue
details = details_by_transcript.get(transcript_id)
if not details:
details = dict()
details_by_transcript[transcript_id] = details
strand = parsed['strand']
if strand != '.':
details['strand'] = strand
if parsed['feature'] != 'exon':
continue
exons = details.get('exons')
if not exons:
exons = list()
details['exons'] = exons
exons.append((parsed['start'], parsed['end']))
return details_by_transcript
def add_transcript_details(transcript_details, gtf_path, transcript_ids):
new_details = read_transcript_details(gtf_path, transcript_ids)
for transcript in transcript_ids:
if transcript in transcript_details:
continue
found_details = new_details.get(transcript)
if found_details:
transcript_details[transcript] = found_details
def get_exon_length(exon):
return (exon[1] - exon[0]) + 1
def get_intron_length(exon_1, exon_2):
return (exon_2[0] - exon_1[1]) - 1
def get_min_and_max_coords(transcript_details):
min_coord = None
max_coord = None
for details in transcript_details.values():
exons = details['exons']
exons.sort()
transcript_min_coord = exons[0][0]
transcript_max_coord = exons[-1][1]
if min_coord is None:
min_coord = transcript_min_coord
else:
min_coord = min(min_coord, transcript_min_coord)
if max_coord is None:
max_coord = transcript_max_coord
else:
max_coord = max(max_coord, transcript_max_coord)
return min_coord, max_coord
def get_plot_coords_by_transcript(transcript_details, min_coord,
region_length):
plot_coords_by_transcript = dict()
for transcript, details in transcript_details.items():
plot_coords = list()
is_minus_strand = details['strand'] == '-'
exons = details['exons']
transcript_min_coord = exons[0][0]
start_pos = transcript_min_coord - min_coord
current_pos = start_pos
for exon_i in range(len(exons) - 1):
exon_length = get_exon_length(exons[exon_i])
intron_length = get_intron_length(exons[exon_i], exons[exon_i + 1])
exon_start = current_pos
intron_start = current_pos + exon_length
exon_end = intron_start - 1
intron_end = exon_end + intron_length
plot_coords.append((exon_start, exon_end))
plot_coords.append((intron_start, intron_end))
current_pos = intron_end + 1
# last_exon
exon_start = current_pos
exon_length = get_exon_length(exons[-1])
exon_end = exon_start + (exon_length - 1)
plot_coords.append((exon_start, exon_end))
# Flip the coordinates by subtracting from the region_length.
# This puts the 5' end on the left.
if is_minus_strand:
adjusted_plot_coords = list()
for start, end in reversed(plot_coords):
adjusted_start = (region_length - 1) - start
adjusted_end = (region_length - 1) - end
adjusted_plot_coords.append((adjusted_end, adjusted_start))
plot_coords = adjusted_plot_coords
plot_coords_by_transcript[transcript] = plot_coords
return plot_coords_by_transcript
def plot_transcripts(ax, transcripts_to_plot, plot_coords_by_transcript,
region_length, line_space, exon_height, colors,
exon_edge_color, exon_line_width, intron_line_color,
intron_line_width, font_size):
exon_z_order = 100
five_prime_x_val = -0.03 * region_length
colors_to_plot = colors[:len(transcripts_to_plot)]
reversed_transcripts = list(reversed(transcripts_to_plot))
reversed_colors = list(reversed(colors_to_plot))
for transcript_i, transcript_id in enumerate(reversed_transcripts):
color = reversed_colors[transcript_i]
plot_coords = plot_coords_by_transcript[transcript_id]
mid_y_val = line_space * (transcript_i + 1)
top_y_val = mid_y_val + (exon_height / 2)
bottom_y_val = mid_y_val - (exon_height / 2)
text_y_val = mid_y_val - (0.1 * line_space) + exon_height
five_prime_y_val = mid_y_val - 2
is_exon = True
for region in plot_coords:
start, end = region
if is_exon:
is_exon = False
exon_x = np.array([start, end])
exon_y_top = np.array([top_y_val] * 2)
exon_y_bottom = np.array([bottom_y_val] * 2)
ax.fill_between(exon_x,
exon_y_top,
exon_y_bottom,
facecolor=color,
edgecolor=exon_edge_color,
linewidth=exon_line_width,
zorder=exon_z_order)
else:
is_exon = True
intron_x = np.array([start, end])
intron_y = np.array([mid_y_val] * 2)
plt.plot(intron_x,
intron_y,
color=intron_line_color,
linewidth=intron_line_width)
plt.text(0, text_y_val, transcript_id, fontsize=font_size)
plt.text(five_prime_x_val,
five_prime_y_val,
"5'",
fontsize=font_size + 1)
def get_exon_regions(plot_coords_by_transcript, region_length):
coord_is_exon = np.full(region_length, False)
for plot_coords in plot_coords_by_transcript.values():
is_exon = True
for region in plot_coords:
if not is_exon:
is_exon = True
continue
start, end = region
coord_is_exon[start:end + 1] = True
is_exon = False
return coord_is_exon
def get_intron_coord_translation(coord_is_exon, region_length, intron_scaling):
num_removed_units = 0
coord_translation = np.full(region_length, 0)
new_coord = 0
in_intron = False
current_scaling_skip_count = 0
max_to_skip = intron_scaling - 1
for i, is_exon in enumerate(coord_is_exon):
coord_translation[i] = new_coord
# Leave exon regions alone
if is_exon:
in_intron = False
new_coord += 1
continue
# Keep the first coord of an intron region
if not in_intron:
in_intron = True
current_scaling_skip_count = 0
new_coord += 1
continue
# Skip max_to_skip before using more space for an intron region
if current_scaling_skip_count == max_to_skip:
current_scaling_skip_count = 0
new_coord += 1
continue
# skip
current_scaling_skip_count += 1
num_removed_units += 1
return coord_translation, num_removed_units
def translate_coords(plot_coords_by_transcript, coord_translation):
for plot_coords in plot_coords_by_transcript.values():
for i, region in enumerate(plot_coords):
start, end = region
new_start = coord_translation[start]
new_end = coord_translation[end]
plot_coords[i] = (new_start, new_end)
# Regions that only have introns will be scaled to 1/intron_scaling
def apply_intron_scaling(plot_coords_by_transcript, intron_scaling,
region_length):
if intron_scaling == 1:
return region_length
coord_is_exon = get_exon_regions(plot_coords_by_transcript, region_length)
coord_translation, num_removed_units = get_intron_coord_translation(
coord_is_exon, region_length, intron_scaling)
translate_coords(plot_coords_by_transcript, coord_translation)
return region_length - num_removed_units
def plot_structure(out_paths, proportion_path, gtf_path, gencode_gtf_path,
gene_name, main_transcript_ids, max_transcripts,
intron_scaling):
colors = transcript_colors()
proportion_transcript_ids = read_transcript_ids(proportion_path)
all_transcript_ids = set(proportion_transcript_ids).union(
set(main_transcript_ids))
transcript_details = read_transcript_details(gtf_path, all_transcript_ids)
if gencode_gtf_path:
add_transcript_details(transcript_details, gencode_gtf_path,
all_transcript_ids)
found_transcripts = set(transcript_details)
if found_transcripts != all_transcript_ids:
raise Exception('Did not find all expected transcripts: {}.'
' Missing: {}'.format(
all_transcript_ids,
all_transcript_ids.difference(found_transcripts)))
transcripts_to_plot = main_transcript_ids
for transcript_id in proportion_transcript_ids:
if transcript_id not in transcripts_to_plot:
transcripts_to_plot.append(transcript_id)
transcripts_to_plot = transcripts_to_plot[:max_transcripts]
num_transcripts = len(transcripts_to_plot)
fig = plt.figure(figsize=(12, 4), dpi=300)
ax = fig.add_subplot(111)
exon_height = 6
line_space = 13
intron_line_width = 0.5
intron_line_color = 'black'
exon_line_width = 0.5
exon_edge_color = 'black'
font_size = 13
min_coord, max_coord = get_min_and_max_coords(transcript_details)
region_length = (max_coord - min_coord) + 1
plot_coords_by_transcript = get_plot_coords_by_transcript(
transcript_details, min_coord, region_length)
region_length = apply_intron_scaling(plot_coords_by_transcript,
intron_scaling, region_length)
plot_transcripts(ax, transcripts_to_plot, plot_coords_by_transcript,
region_length, line_space, exon_height, colors,
exon_edge_color, exon_line_width, intron_line_color,
intron_line_width, font_size)
low_x_lim = -0.1 * region_length
high_x_lim = 1.1 * region_length
low_y_lim = 0
high_y_lim = line_space * (num_transcripts + 1.5)
mid_x_lim = (high_x_lim + low_x_lim) / 2
title_x_val = mid_x_lim
title_y_val = line_space * (num_transcripts + 1)
plt.text(title_x_val,
title_y_val,
gene_name,
fontsize=font_size + 1,
horizontalalignment='center')
ax.set_xlim(low_x_lim, high_x_lim)
ax.set_ylim(low_y_lim, high_y_lim)
plt.axis('off')
# Let the plot take up the whole figure.
plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)
for out_path in out_paths:
if FORCE_775:
with open(out_path, 'wt') as h:
pass # create file
mode_775 = stat.S_IRWXU | stat.S_IRWXG | stat.S_IROTH | stat.S_IXOTH
os.chmod(out_path, mode_775)
plt.savefig(out_path, dpi=300, pad_inches=0)
def determine_main_transcripts_and_gene_name(gene_id, orig_gene_name,
orig_main_transcript_ids,
gencode_gtf_path,
diff_transcripts_path):
gene_name = None
canonical_transcript = None
if gencode_gtf_path:
gene_name, canonical_transcript = (
rmats_long_utils.get_gene_name_and_canonical_transcript_from_gtf(
gene_id, gencode_gtf_path))
if orig_gene_name is not None:
gene_name = orig_gene_name
elif gene_name is None:
gene_name = gene_id
if orig_main_transcript_ids:
return orig_main_transcript_ids, gene_name
main_transcript_ids = list()
if diff_transcripts_path:
main_transcript_ids.extend(
rmats_long_utils.select_significant_transcripts(
gene_id, diff_transcripts_path))
if ((canonical_transcript
and (canonical_transcript not in main_transcript_ids))):
main_transcript_ids.append(canonical_transcript)
return main_transcript_ids, gene_name
def visualize_isoforms(args):
rmats_long_utils.create_output_dir(args.out_dir)
main_transcript_ids, gene_name = determine_main_transcripts_and_gene_name(
args.gene_id, args.gene_name, args.main_transcript_ids,
args.gencode_gtf, args.diff_transcripts)
cpm_and_proportion_file = os.path.join(
args.out_dir, '{}_cpm_and_proportion.tsv'.format(args.gene_id))
abundance_plot_file_base = os.path.join(
args.out_dir, '{}_abundance'.format(args.gene_id))
structure_plot_file_base = os.path.join(
args.out_dir, '{}_structure'.format(args.gene_id))
plot_file_types = [args.plot_file_type]
if args.plot_file_type == 'all':
plot_file_types = ['.pdf', '.png']
abundance_plot_files = list()
structure_plot_files = list()
for plot_file_type in plot_file_types:
abundance_plot_files.append('{}{}'.format(abundance_plot_file_base,
plot_file_type))
structure_plot_files.append('{}{}'.format(structure_plot_file_base,
plot_file_type))
calc_proportion_and_cpm(args.abundance, args.gene_id, main_transcript_ids,
args.group_1, args.group_2, args.group_1_name,
args.group_2_name, cpm_and_proportion_file)
plot_abundance(abundance_plot_files, cpm_and_proportion_file,
args.max_transcripts)
plot_structure(structure_plot_files, cpm_and_proportion_file,
args.updated_gtf, args.gencode_gtf, gene_name,
main_transcript_ids, args.max_transcripts,
args.intron_scaling)
def main():
args = parse_args()
visualize_isoforms(args)
if __name__ == '__main__':
main()