-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsdguidance.py
1343 lines (1184 loc) · 47.9 KB
/
sdguidance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Code copied from https://github.com/threestudio-project/threestudio
"""
from dataclasses import dataclass, field
from typing import Any
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.multiprocessing as mp
import math
from diffusers import DDIMScheduler, DDPMScheduler, StableDiffusionPipeline
from diffusers.utils.import_utils import is_xformers_available
from tqdm import tqdm
from omegaconf import OmegaConf
import gc
from packaging import version
import os
from transformers import AutoTokenizer, CLIPTextModel
from transformers import BertForMaskedLM
def _distributed_available():
return torch.distributed.is_available() and torch.distributed.is_initialized()
def barrier():
if not _distributed_available():
return
else:
torch.distributed.barrier()
class Updateable:
def do_update_step(
self, epoch: int, global_step: int, on_load_weights: bool = False
):
for attr in self.__dir__():
if attr.startswith("_"):
continue
try:
module = getattr(self, attr)
except:
continue # ignore attributes like property, which can't be retrived using getattr?
if isinstance(module, Updateable):
module.do_update_step(
epoch, global_step, on_load_weights=on_load_weights
)
self.update_step(epoch, global_step, on_load_weights=on_load_weights)
def do_update_step_end(self, epoch: int, global_step: int):
for attr in self.__dir__():
if attr.startswith("_"):
continue
try:
module = getattr(self, attr)
except:
continue # ignore attributes like property, which can't be retrived using getattr?
if isinstance(module, Updateable):
module.do_update_step_end(epoch, global_step)
self.update_step_end(epoch, global_step)
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
# override this method to implement custom update logic
# if on_load_weights is True, you should be careful doing things related to model evaluations,
# as the models and tensors are not guarenteed to be on the same device
pass
def update_step_end(self, epoch: int, global_step: int):
pass
class BaseObject(Updateable):
@dataclass
class Config:
pass
cfg: Config # add this to every subclass of BaseObject to enable static type checking
def __init__(
self, cfg = None, *args, **kwargs
) -> None:
super().__init__()
self.cfg = parse_structured(self.Config, cfg)
self.device = get_device()
self.configure(*args, **kwargs)
def configure(self, *args, **kwargs) -> None:
pass
def shifted_expotional_decay(a, b, c, r):
return a * torch.exp(-b * r) + c
def shifted_cosine_decay(a, b, c, r):
return a * torch.cos(b * r + c) + a
def hash_prompt(model: str, prompt: str) -> str:
import hashlib
identifier = f"{model}-{prompt}"
return hashlib.md5(identifier.encode()).hexdigest()
@dataclass
class DirectionConfig:
name: str
prompt: str
negative_prompt: str
condition: Any
@dataclass
class PromptProcessorOutput:
text_embeddings: Any
uncond_text_embeddings: Any
text_embeddings_vd: Any
uncond_text_embeddings_vd: Any
directions: Any
direction2idx: Any
use_perp_neg: bool
perp_neg_f_sb: Any
perp_neg_f_fsb: Any
perp_neg_f_fs: Any
perp_neg_f_sf: Any
prompt: str
prompts_vd: Any
def get_text_embeddings(
self,
elevation: Any,
azimuth: Any,
camera_distances: Any,
view_dependent_prompting: bool = True,
):
batch_size = elevation.shape[0]
if view_dependent_prompting:
# Get direction
direction_idx = torch.zeros_like(elevation, dtype=torch.long)
for d in self.directions:
direction_idx[
d.condition(elevation, azimuth, camera_distances)
] = self.direction2idx[d.name]
# Get text embeddings
text_embeddings = self.text_embeddings_vd[direction_idx] # type: ignore
uncond_text_embeddings = self.uncond_text_embeddings_vd[direction_idx] # type: ignore
else:
text_embeddings = self.text_embeddings.expand(batch_size, -1, -1) # type: ignore
uncond_text_embeddings = self.uncond_text_embeddings.expand( # type: ignore
batch_size, -1, -1
)
# IMPORTANT: we return (cond, uncond), which is in different order than other implementations!
return torch.cat([text_embeddings, uncond_text_embeddings], dim=0)
def get_text_embeddings_perp_neg(
self,
elevation: Any,
azimuth: Any,
camera_distances: Any,
view_dependent_prompting: bool = True,
):
assert (
view_dependent_prompting
), "Perp-Neg only works with view-dependent prompting"
batch_size = elevation.shape[0]
direction_idx = torch.zeros_like(elevation, dtype=torch.long)
for d in self.directions:
direction_idx[
d.condition(elevation, azimuth, camera_distances)
] = self.direction2idx[d.name]
# 0 - side view
# 1 - front view
# 2 - back view
# 3 - overhead view
pos_text_embeddings = []
neg_text_embeddings = []
neg_guidance_weights = []
uncond_text_embeddings = []
side_emb = self.text_embeddings_vd[0]
front_emb = self.text_embeddings_vd[1]
back_emb = self.text_embeddings_vd[2]
overhead_emb = self.text_embeddings_vd[3]
for idx, ele, azi, dis in zip(
direction_idx, elevation, azimuth, camera_distances
):
azi = shift_azimuth_deg(azi) # to (-180, 180)
uncond_text_embeddings.append(
self.uncond_text_embeddings_vd[idx]
) # should be ""
if idx.item() == 3: # overhead view
pos_text_embeddings.append(overhead_emb) # side view
# dummy
neg_text_embeddings += [
self.uncond_text_embeddings_vd[idx],
self.uncond_text_embeddings_vd[idx],
]
neg_guidance_weights += [0.0, 0.0]
else: # interpolating views
if torch.abs(azi) < 90:
# front-side interpolation
# 0 - complete side, 1 - complete front
r_inter = 1 - torch.abs(azi) / 90
pos_text_embeddings.append(
r_inter * front_emb + (1 - r_inter) * side_emb
)
neg_text_embeddings += [front_emb, side_emb]
neg_guidance_weights += [
-shifted_expotional_decay(*self.perp_neg_f_fs, r_inter),
-shifted_expotional_decay(*self.perp_neg_f_sf, 1 - r_inter),
]
else:
# side-back interpolation
# 0 - complete back, 1 - complete side
r_inter = 2.0 - torch.abs(azi) / 90
pos_text_embeddings.append(
r_inter * side_emb + (1 - r_inter) * back_emb
)
neg_text_embeddings += [side_emb, front_emb]
neg_guidance_weights += [
-shifted_expotional_decay(*self.perp_neg_f_sb, r_inter),
-shifted_expotional_decay(*self.perp_neg_f_fsb, r_inter),
]
text_embeddings = torch.cat(
[
torch.stack(pos_text_embeddings, dim=0),
torch.stack(uncond_text_embeddings, dim=0),
torch.stack(neg_text_embeddings, dim=0),
],
dim=0,
)
return text_embeddings, torch.as_tensor(
neg_guidance_weights, device=elevation.device
).reshape(batch_size, 2)
def shift_azimuth_deg(azimuth: Any):
# shift azimuth angle (in degrees), to [-180, 180]
return (azimuth + 180) % 360 - 180
class PromptProcessor(BaseObject):
@dataclass
class Config(BaseObject.Config):
prompt: str = "a hamburger"
# manually assigned view-dependent prompts
prompt_front= None
prompt_side= None
prompt_back= None
prompt_overhead= None
negative_prompt: str = ""
pretrained_model_name_or_path: str = "runwayml/stable-diffusion-v1-5"
overhead_threshold: float = 60.0
front_threshold: float = 45.0
back_threshold: float = 45.0
view_dependent_prompt_front: bool = False
use_cache: bool = True
spawn: bool = True
# perp neg
use_perp_neg: bool = False
# a*e(-b*r) + c
# a * e(-b) + c = 0
perp_neg_f_sb: Any = (1, 0.5, -0.606)
perp_neg_f_fsb: Any = (1, 0.5, +0.967)
perp_neg_f_fs: Any = (
4,
0.5,
-2.426,
) # f_fs(1) = 0, a, b > 0
perp_neg_f_sf: Any = (4, 0.5, -2.426)
# prompt debiasing
use_prompt_debiasing: bool = False
pretrained_model_name_or_path_prompt_debiasing: str = "bert-base-uncased"
# index of words that can potentially be removed
prompt_debiasing_mask_ids= None
cfg: Config
def configure(self) -> None:
self._cache_dir = ".threestudio_cache/text_embeddings" # FIXME: hard-coded path
# view-dependent text embeddings
self.directions: Any
if self.cfg.view_dependent_prompt_front:
self.directions = [
DirectionConfig(
"side",
lambda s: f"side view of {s}",
lambda s: s,
lambda ele, azi, dis: torch.ones_like(ele, dtype=torch.bool),
),
DirectionConfig(
"front",
lambda s: f"front view of {s}",
lambda s: s,
lambda ele, azi, dis: (
shift_azimuth_deg(azi) > -self.cfg.front_threshold
)
& (shift_azimuth_deg(azi) < self.cfg.front_threshold),
),
DirectionConfig(
"back",
lambda s: f"backside view of {s}",
lambda s: s,
lambda ele, azi, dis: (
shift_azimuth_deg(azi) > 180 - self.cfg.back_threshold
)
| (shift_azimuth_deg(azi) < -180 + self.cfg.back_threshold),
),
DirectionConfig(
"overhead",
lambda s: f"overhead view of {s}",
lambda s: s,
lambda ele, azi, dis: ele > self.cfg.overhead_threshold,
),
]
else:
self.directions = [
DirectionConfig(
"side",
lambda s: f"{s}, side view",
lambda s: s,
lambda ele, azi, dis: torch.ones_like(ele, dtype=torch.bool),
),
DirectionConfig(
"front",
lambda s: f"{s}, front view",
lambda s: s,
lambda ele, azi, dis: (
shift_azimuth_deg(azi) > -self.cfg.front_threshold
)
& (shift_azimuth_deg(azi) < self.cfg.front_threshold),
),
DirectionConfig(
"back",
lambda s: f"{s}, back view",
lambda s: s,
lambda ele, azi, dis: (
shift_azimuth_deg(azi) > 180 - self.cfg.back_threshold
)
| (shift_azimuth_deg(azi) < -180 + self.cfg.back_threshold),
),
DirectionConfig(
"overhead",
lambda s: f"{s}, overhead view",
lambda s: s,
lambda ele, azi, dis: ele > self.cfg.overhead_threshold,
),
]
self.direction2idx = {d.name: i for i, d in enumerate(self.directions)}
if os.path.exists("load/prompt_library.json"):
with open(os.path.join("load/prompt_library.json"), "r") as f:
self.prompt_library = json.load(f)
else:
self.prompt_library = {}
# use provided prompt or find prompt in library
self.prompt = self.preprocess_prompt(self.cfg.prompt)
# use provided negative prompt
self.negative_prompt = self.cfg.negative_prompt
# view-dependent prompting
if self.cfg.use_prompt_debiasing:
assert (
self.cfg.prompt_side is None
and self.cfg.prompt_back is None
and self.cfg.prompt_overhead is None
), "Do not manually assign prompt_side, prompt_back or prompt_overhead when using prompt debiasing"
prompts = self.get_debiased_prompt(self.prompt)
self.prompts_vd = [
d.prompt(prompt) for d, prompt in zip(self.directions, prompts)
]
else:
self.prompts_vd = [
self.cfg.get(f"prompt_{d.name}", None) or d.prompt(self.prompt) # type: ignore
for d in self.directions
]
prompts_vd_display = " ".join(
[
f"[{d.name}]:[{prompt}]"
for prompt, d in zip(self.prompts_vd, self.directions)
]
)
self.negative_prompts_vd = [
d.negative_prompt(self.negative_prompt) for d in self.directions
]
self.prepare_text_embeddings()
self.load_text_embeddings()
@staticmethod
def spawn_func(pretrained_model_name_or_path, prompts, cache_dir):
raise NotImplementedError
def prepare_text_embeddings(self):
os.makedirs(self._cache_dir, exist_ok=True)
all_prompts = (
[self.prompt]
+ [self.negative_prompt]
+ self.prompts_vd
+ self.negative_prompts_vd
)
prompts_to_process = []
for prompt in all_prompts:
if self.cfg.use_cache:
# some text embeddings are already in cache
# do not process them
cache_path = os.path.join(
self._cache_dir,
f"{hash_prompt(self.cfg.pretrained_model_name_or_path, prompt)}.pt",
)
if os.path.exists(cache_path):
continue
prompts_to_process.append(prompt)
if len(prompts_to_process) > 0:
if self.cfg.spawn:
ctx = mp.get_context("spawn")
subprocess = ctx.Process(
target=self.spawn_func,
args=(
self.cfg.pretrained_model_name_or_path,
prompts_to_process,
self._cache_dir,
),
)
subprocess.start()
subprocess.join()
assert subprocess.exitcode == 0, "prompt embedding process failed!"
else:
self.spawn_func(
self.cfg.pretrained_model_name_or_path,
prompts_to_process,
self._cache_dir,
)
cleanup()
def load_text_embeddings(self):
# synchronize, to ensure the text embeddings have been computed and saved to cache
barrier()
self.text_embeddings = self.load_from_cache(self.prompt)[None, ...]
self.uncond_text_embeddings = self.load_from_cache(self.negative_prompt)[
None, ...
]
self.text_embeddings_vd = torch.stack(
[self.load_from_cache(prompt) for prompt in self.prompts_vd], dim=0
)
self.uncond_text_embeddings_vd = torch.stack(
[self.load_from_cache(prompt) for prompt in self.negative_prompts_vd], dim=0
)
def load_from_cache(self, prompt):
cache_path = os.path.join(
self._cache_dir,
f"{hash_prompt(self.cfg.pretrained_model_name_or_path, prompt)}.pt",
)
if not os.path.exists(cache_path):
raise FileNotFoundError(
f"Text embedding file {cache_path} for model {self.cfg.pretrained_model_name_or_path} and prompt [{prompt}] not found."
)
return torch.load(cache_path, map_location=self.device)
def preprocess_prompt(self, prompt: str) -> str:
if prompt.startswith("lib:"):
# find matches in the library
candidate = None
keywords = prompt[4:].lower().split("_")
for prompt in self.prompt_library["dreamfusion"]:
if all([k in prompt.lower() for k in keywords]):
if candidate is not None:
raise ValueError(
f"Multiple prompts matched with keywords {keywords} in library"
)
candidate = prompt
if candidate is None:
raise ValueError(
f"Cannot find prompt with keywords {keywords} in library"
)
return candidate
else:
return prompt
def get_text_embeddings(
self, prompt, negative_prompt
):
raise NotImplementedError
def get_debiased_prompt(self, prompt: str):
os.environ["TOKENIZERS_PARALLELISM"] = "false"
tokenizer = AutoTokenizer.from_pretrained(
self.cfg.pretrained_model_name_or_path_prompt_debiasing
)
model = BertForMaskedLM.from_pretrained(
self.cfg.pretrained_model_name_or_path_prompt_debiasing
)
views = [d.name for d in self.directions]
view_ids = tokenizer(" ".join(views), return_tensors="pt").input_ids[0]
view_ids = view_ids[1:5]
def modulate(prompt):
prompt_vd = f"This image is depicting a [MASK] view of {prompt}"
tokens = tokenizer(
prompt_vd,
padding="max_length",
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
mask_idx = torch.where(tokens.input_ids == tokenizer.mask_token_id)[1]
logits = model(**tokens).logits
logits = F.softmax(logits[0, mask_idx], dim=-1)
logits = logits[0, view_ids]
probes = logits / logits.sum()
return probes
prompts = [prompt.split(" ") for _ in range(4)]
full_probe = modulate(prompt)
n_words = len(prompt.split(" "))
prompt_debiasing_mask_ids = (
self.cfg.prompt_debiasing_mask_ids
if self.cfg.prompt_debiasing_mask_ids is not None
else list(range(n_words))
)
words_to_debias = [prompt.split(" ")[idx] for idx in prompt_debiasing_mask_ids]
for idx in prompt_debiasing_mask_ids:
words = prompt.split(" ")
prompt_ = " ".join(words[:idx] + words[(idx + 1) :])
part_probe = modulate(prompt_)
pmi = full_probe / torch.lerp(part_probe, full_probe, 0.5)
for i in range(pmi.shape[0]):
if pmi[i].item() < 0.95:
prompts[i][idx] = ""
debiased_prompts = [" ".join([word for word in p if word]) for p in prompts]
del tokenizer, model
cleanup()
return debiased_prompts
def __call__(self) -> PromptProcessorOutput:
return PromptProcessorOutput(
text_embeddings=self.text_embeddings,
uncond_text_embeddings=self.uncond_text_embeddings,
prompt=self.prompt,
text_embeddings_vd=self.text_embeddings_vd,
uncond_text_embeddings_vd=self.uncond_text_embeddings_vd,
prompts_vd=self.prompts_vd,
directions=self.directions,
direction2idx=self.direction2idx,
use_perp_neg=self.cfg.use_perp_neg,
perp_neg_f_sb=self.cfg.perp_neg_f_sb,
perp_neg_f_fsb=self.cfg.perp_neg_f_fsb,
perp_neg_f_fs=self.cfg.perp_neg_f_fs,
perp_neg_f_sf=self.cfg.perp_neg_f_sf,
)
class StableDiffusionPromptProcessor(PromptProcessor):
@dataclass
class Config(PromptProcessor.Config):
pass
cfg: Config
### these functions are unused, kept for debugging ###
def configure_text_encoder(self) -> None:
self.tokenizer = AutoTokenizer.from_pretrained(
self.cfg.pretrained_model_name_or_path, subfolder="tokenizer"
)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
self.text_encoder = CLIPTextModel.from_pretrained(
self.cfg.pretrained_model_name_or_path, subfolder="text_encoder"
).to(self.device)
for p in self.text_encoder.parameters():
p.requires_grad_(False)
def destroy_text_encoder(self) -> None:
del self.tokenizer
del self.text_encoder
cleanup()
def get_text_embeddings(
self, prompt, negative_prompt
):
if isinstance(prompt, str):
prompt = [prompt]
if isinstance(negative_prompt, str):
negative_prompt = [negative_prompt]
# Tokenize text and get embeddings
tokens = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
uncond_tokens = self.tokenizer(
negative_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
with torch.no_grad():
text_embeddings = self.text_encoder(tokens.input_ids.to(self.device))[0]
uncond_text_embeddings = self.text_encoder(
uncond_tokens.input_ids.to(self.device)
)[0]
return text_embeddings, uncond_text_embeddings
###
@staticmethod
def spawn_func(pretrained_model_name_or_path, prompts, cache_dir):
os.environ["TOKENIZERS_PARALLELISM"] = "false"
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path, subfolder="tokenizer"
)
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
device_map="auto",
)
with torch.no_grad():
tokens = tokenizer(
prompts,
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
)
text_embeddings = text_encoder(tokens.input_ids.to(text_encoder.device))[0]
for prompt, embedding in zip(prompts, text_embeddings):
torch.save(
embedding,
os.path.join(
cache_dir,
f"{hash_prompt(pretrained_model_name_or_path, prompt)}.pt",
),
)
del text_encoder
def get_rank():
# SLURM_PROCID can be set even if SLURM is not managing the multiprocessing,
# therefore LOCAL_RANK needs to be checked first
rank_keys = ("RANK", "LOCAL_RANK", "SLURM_PROCID", "JSM_NAMESPACE_RANK")
for key in rank_keys:
rank = os.environ.get(key)
if rank is not None:
return int(rank)
return 0
def get_device():
return torch.device(f"cuda:{get_rank()}")
def parse_structured(fields, cfg = None):
scfg = OmegaConf.structured(fields(**cfg))
return scfg
def parse_version(ver: str):
return version.parse(ver)
def cleanup():
gc.collect()
torch.cuda.empty_cache()
def config_to_primitive(config, resolve: bool = True):
return OmegaConf.to_container(config, resolve=resolve)
def C(value, epoch: int, global_step: int, interpolation="linear") -> float:
if isinstance(value, int) or isinstance(value, float):
pass
else:
value = config_to_primitive(value)
if not isinstance(value, list):
raise TypeError("Scalar specification only supports list, got", type(value))
if len(value) == 3:
value = [0] + value
if len(value) >= 6:
select_i = 3
for i in range(3, len(value) - 2, 2):
if global_step >= value[i]:
select_i = i + 2
if select_i != 3:
start_value, start_step = value[select_i - 3], value[select_i - 2]
else:
start_step, start_value = value[:2]
end_value, end_step = value[select_i - 1], value[select_i]
value = [start_step, start_value, end_value, end_step]
assert len(value) == 4
start_step, start_value, end_value, end_step = value
if isinstance(end_step, int):
current_step = global_step
elif isinstance(end_step, float):
current_step = epoch
t = max(min(1.0, (current_step - start_step) / (end_step - start_step)), 0.0)
if interpolation == "linear":
value = start_value + (end_value - start_value) * t
elif interpolation == "exp":
value = math.exp(math.log(start_value) * (1 - t) + math.log(end_value) * t)
else:
raise ValueError(
f"Unknown interpolation method: {interpolation}, only support linear and exp"
)
return value
def perpendicular_component(x, y):
# get the component of x that is perpendicular to y
eps = torch.ones_like(x[:, 0, 0, 0]) * 1e-6
return (
x
- (
torch.mul(x, y).sum(dim=[1, 2, 3])
/ torch.maximum(torch.mul(y, y).sum(dim=[1, 2, 3]), eps)
).view(-1, 1, 1, 1)
* y
)
class StableDiffusionGuidance(BaseObject):
@dataclass
class Config(BaseObject.Config):
pretrained_model_name_or_path: str = "runwayml/stable-diffusion-v1-5"
enable_memory_efficient_attention: bool = False
enable_sequential_cpu_offload: bool = False
enable_attention_slicing: bool = False
enable_channels_last_format: bool = False
guidance_scale: float = 100.0
grad_clip = None # field(default_factory=lambda: [0, 2.0, 8.0, 1000])
half_precision_weights: bool = True
min_step_percent: float = 0.02
max_step_percent: float = 0.98
sqrt_anneal: bool = False # sqrt anneal proposed in HiFA: https://hifa-team.github.io/HiFA-site/
trainer_max_steps: int = 25000
use_img_loss: bool = False # image-space SDS proposed in HiFA: https://hifa-team.github.io/HiFA-site/
use_sjc: bool = False
var_red: bool = True
weighting_strategy: str = "sds"
token_merging: bool = False
token_merging_params:Any = field(default_factory=dict)
view_dependent_prompting: bool = True
"""Maximum number of batch items to evaluate guidance for (for debugging) and to save on disk. -1 means save all items."""
max_items_eval: int = 4
cfg: Config
def configure(self) -> None:
self.weights_dtype = (
torch.float16 if self.cfg.half_precision_weights else torch.float32
)
pipe_kwargs = {
"tokenizer": None,
"safety_checker": None,
"feature_extractor": None,
"requires_safety_checker": False,
"torch_dtype": self.weights_dtype,
}
self.pipe = StableDiffusionPipeline.from_pretrained(
self.cfg.pretrained_model_name_or_path,
**pipe_kwargs,
).to(self.device)
if self.cfg.enable_memory_efficient_attention:
if parse_version(torch.__version__) >= parse_version("2"):
pass
elif not is_xformers_available():
pass
else:
self.pipe.enable_xformers_memory_efficient_attention()
if self.cfg.enable_sequential_cpu_offload:
self.pipe.enable_sequential_cpu_offload()
if self.cfg.enable_attention_slicing:
self.pipe.enable_attention_slicing(1)
if self.cfg.enable_channels_last_format:
self.pipe.unet.to(memory_format=torch.channels_last)
del self.pipe.text_encoder
cleanup()
# Create model
self.vae = self.pipe.vae.eval()
self.unet = self.pipe.unet.eval()
for p in self.vae.parameters():
p.requires_grad_(False)
for p in self.unet.parameters():
p.requires_grad_(False)
if self.cfg.token_merging:
import tomesd
tomesd.apply_patch(self.unet, **self.cfg.token_merging_params)
if self.cfg.use_sjc:
# score jacobian chaining use DDPM
self.scheduler = DDPMScheduler.from_pretrained(
self.cfg.pretrained_model_name_or_path,
subfolder="scheduler",
torch_dtype=self.weights_dtype,
beta_start=0.00085,
beta_end=0.0120,
beta_schedule="scaled_linear",
)
else:
self.scheduler = DDIMScheduler.from_pretrained(
self.cfg.pretrained_model_name_or_path,
subfolder="scheduler",
torch_dtype=self.weights_dtype,
)
self.num_train_timesteps = self.scheduler.config.num_train_timesteps
self.set_min_max_steps() # set to default value
self.alphas = self.scheduler.alphas_cumprod.to(
self.device
)
if self.cfg.use_sjc:
# score jacobian chaining need mu
self.us = torch.sqrt((1 - self.alphas) / self.alphas)
self.grad_clip_val = None
@torch.cuda.amp.autocast(enabled=False)
def set_min_max_steps(self, min_step_percent=0.02, max_step_percent=0.98):
self.min_step = int(self.num_train_timesteps * min_step_percent)
self.max_step = int(self.num_train_timesteps * max_step_percent)
@torch.cuda.amp.autocast(enabled=False)
def forward_unet(
self,
latents,
t,
encoder_hidden_states,
) :
input_dtype = latents.dtype
return self.unet(
latents.to(self.weights_dtype),
t.to(self.weights_dtype),
encoder_hidden_states=encoder_hidden_states.to(self.weights_dtype),
).sample.to(input_dtype)
@torch.cuda.amp.autocast(enabled=False)
def encode_images(
self, imgs
) :
input_dtype = imgs.dtype
imgs = imgs * 2.0 - 1.0
posterior = self.vae.encode(imgs.to(self.weights_dtype)).latent_dist
latents = posterior.sample() * self.vae.config.scaling_factor
return latents.to(input_dtype)
@torch.cuda.amp.autocast(enabled=False)
def decode_latents(
self,
latents,
latent_height: int = 64,
latent_width: int = 64,
) :
input_dtype = latents.dtype
latents = F.interpolate(
latents, (latent_height, latent_width), mode="bilinear", align_corners=False
)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents.to(self.weights_dtype)).sample
image = (image * 0.5 + 0.5).clamp(0, 1)
return image.to(input_dtype)
def compute_grad_sds(
self,
latents,
image,
t,
prompt_utils,
elevation,
azimuth,
camera_distances,
):
batch_size = elevation.shape[0]
if prompt_utils.use_perp_neg:
(
text_embeddings,
neg_guidance_weights,
) = prompt_utils.get_text_embeddings_perp_neg(
elevation, azimuth, camera_distances, self.cfg.view_dependent_prompting
)
with torch.no_grad():
noise = torch.randn_like(latents)
latents_noisy = self.scheduler.add_noise(latents, noise, t)
latent_model_input = torch.cat([latents_noisy] * 4, dim=0)
noise_pred = self.forward_unet(
latent_model_input,
torch.cat([t] * 4),
encoder_hidden_states=text_embeddings,
) # (4B, 3, 64, 64)
noise_pred_text = noise_pred[:batch_size]
noise_pred_uncond = noise_pred[batch_size : batch_size * 2]
noise_pred_neg = noise_pred[batch_size * 2 :]
e_pos = noise_pred_text - noise_pred_uncond
accum_grad = 0
n_negative_prompts = neg_guidance_weights.shape[-1]
for i in range(n_negative_prompts):
e_i_neg = noise_pred_neg[i::n_negative_prompts] - noise_pred_uncond
accum_grad += neg_guidance_weights[:, i].view(
-1, 1, 1, 1
) * perpendicular_component(e_i_neg, e_pos)
noise_pred = noise_pred_uncond + self.cfg.guidance_scale * (
e_pos + accum_grad
)
else:
neg_guidance_weights = None
text_embeddings = prompt_utils.get_text_embeddings(
elevation, azimuth, camera_distances, self.cfg.view_dependent_prompting
)
# predict the noise residual with unet, NO grad!
with torch.no_grad():
# add noise
noise = torch.randn_like(latents) # TODO: use torch generator
latents_noisy = self.scheduler.add_noise(latents, noise, t)
# pred noise
latent_model_input = torch.cat([latents_noisy] * 2, dim=0)
noise_pred = self.forward_unet(
latent_model_input,
torch.cat([t] * 2),
encoder_hidden_states=text_embeddings,
)
# perform guidance (high scale from paper!)
noise_pred_text, noise_pred_uncond = noise_pred.chunk(2)
noise_pred = noise_pred_text + self.cfg.guidance_scale * (
noise_pred_text - noise_pred_uncond
)
if self.cfg.weighting_strategy == "sds":
# w(t), sigma_t^2
w = (1 - self.alphas[t]).view(-1, 1, 1, 1)
elif self.cfg.weighting_strategy == "uniform":
w = 1
elif self.cfg.weighting_strategy == "fantasia3d":
w = (self.alphas[t] ** 0.5 * (1 - self.alphas[t])).view(-1, 1, 1, 1)
else:
raise ValueError(
f"Unknown weighting strategy: {self.cfg.weighting_strategy}"
)
alpha = (self.alphas[t] ** 0.5).view(-1, 1, 1, 1)
sigma = ((1 - self.alphas[t]) ** 0.5).view(-1, 1, 1, 1)
latents_denoised = (latents_noisy - sigma * noise_pred) / alpha
image_denoised = self.decode_latents(latents_denoised)
grad = w * (noise_pred - noise)
# image-space SDS proposed in HiFA: https://hifa-team.github.io/HiFA-site/
if self.cfg.use_img_loss:
grad_img = w * (image - image_denoised) * alpha / sigma
else:
grad_img = None
guidance_eval_utils = {
"use_perp_neg": prompt_utils.use_perp_neg,
"neg_guidance_weights": neg_guidance_weights,
"text_embeddings": text_embeddings,
"t_orig": t,
"latents_noisy": latents_noisy,
"noise_pred": noise_pred,
}
return grad, grad_img, guidance_eval_utils
def compute_grad_sjc(
self,
latents,
t,
prompt_utils,