-
Notifications
You must be signed in to change notification settings - Fork 128
/
predict.py
134 lines (120 loc) · 5.3 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Prediction interface for Cog ⚙️
# https://cog.run/python
from cog import BasePredictor, Input, Path
import os
import time
import torch
import subprocess
from PIL import Image
from typing import List
from image_datasets.canny_dataset import canny_processor, c_crop
from src.flux.util import load_ae, load_clip, load_t5, load_flow_model, load_controlnet, load_safetensors
OUTPUT_DIR = "controlnet_results"
MODEL_CACHE = "checkpoints"
CONTROLNET_URL = "https://huggingface.co/XLabs-AI/flux-controlnet-canny/resolve/main/controlnet.safetensors"
T5_URL = "https://weights.replicate.delivery/default/black-forest-labs/FLUX.1-dev/t5-cache.tar"
CLIP_URL = "https://weights.replicate.delivery/default/black-forest-labs/FLUX.1-dev/clip-cache.tar"
HF_TOKEN = "hf_..." # Your HuggingFace token
def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-xf", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
def get_models(name: str, device: torch.device, offload: bool, is_schnell: bool):
t5 = load_t5(device, max_length=256 if is_schnell else 512)
clip = load_clip(device)
model = load_flow_model(name, device="cpu" if offload else device)
ae = load_ae(name, device="cpu" if offload else device)
controlnet = load_controlnet(name, device).to(torch.bfloat16)
return model, ae, t5, clip, controlnet
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
t1 = time.time()
os.system(f"huggingface-cli login --token {HF_TOKEN}")
name = "flux-dev"
self.offload = False
checkpoint = "controlnet.safetensors"
print("Checking ControlNet weights")
checkpoint = "controlnet.safetensors"
if not os.path.exists(checkpoint):
os.system(f"wget {CONTROLNET_URL}")
print("Checking T5 weights")
if not os.path.exists(MODEL_CACHE+"/models--google--t5-v1_1-xxl"):
download_weights(T5_URL, MODEL_CACHE)
print("Checking CLIP weights")
if not os.path.exists(MODEL_CACHE+"/models--openai--clip-vit-large-patch14"):
download_weights(CLIP_URL, MODEL_CACHE)
self.is_schnell = False
device = "cuda"
self.torch_device = torch.device(device)
model, ae, t5, clip, controlnet = get_models(
name,
device=self.torch_device,
offload=self.offload,
is_schnell=self.is_schnell,
)
self.ae = ae
self.t5 = t5
self.clip = clip
self.controlnet = controlnet
self.model = model.to(self.torch_device)
if '.safetensors' in checkpoint:
checkpoint1 = load_safetensors(checkpoint)
else:
checkpoint1 = torch.load(checkpoint, map_location='cpu')
controlnet.load_state_dict(checkpoint1, strict=False)
t2 = time.time()
print(f"Setup time: {t2 - t1}")
def preprocess_canny_image(self, image_path: str, width: int = 512, height: int = 512):
image = Image.open(image_path)
image = c_crop(image)
image = image.resize((width, height))
image = canny_processor(image)
return image
def predict(
self,
prompt: str = Input(description="Input prompt", default="a handsome viking man with white hair, cinematic, MM full HD"),
image: Path = Input(description="Input image", default=None),
num_inference_steps: int = Input(description="Number of inference steps", ge=1, le=64, default=28),
cfg: float = Input(description="CFG", ge=0, le=10, default=3.5),
seed: int = Input(description="Random seed", default=None)
) -> List[Path]:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
# clean output dir
output_dir = "controlnet_results"
os.system(f"rm -rf {output_dir}")
input_image = str(image)
img = Image.open(input_image)
width, height = img.size
# Resize input image if it's too large
max_image_size = 1536
scale = min(max_image_size / width, max_image_size / height, 1)
if scale < 1:
width = int(width * scale)
height = int(height * scale)
print(f"Scaling image down to {width}x{height}")
img = img.resize((width, height), resample=Image.Resampling.LANCZOS)
input_image = "/tmp/resized_image.png"
img.save(input_image)
subprocess.check_call(
["python3", "main.py",
"--local_path", "controlnet.safetensors",
"--image", input_image,
"--use_controlnet",
"--control_type", "canny",
"--prompt", prompt,
"--width", str(width),
"--height", str(height),
"--num_steps", str(num_inference_steps),
"--guidance", str(cfg),
"--seed", str(seed)
], close_fds=False)
# Find the first file that begins with "controlnet_result_"
for file in os.listdir(output_dir):
if file.startswith("controlnet_result_"):
return [Path(os.path.join(output_dir, file))]