-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcrowd_detector.py
50 lines (40 loc) · 1.42 KB
/
crowd_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from detection import default_dedector, draw_boxes
import cv2
import numpy as np
def get_violators(persons):
violators = set()
n = len(persons)
for i in range(n):
for j in range(i+1, n):
person = [ persons[i], persons[j] ]
left_i, top_i, w_i, h_i = person[0][2]
left_j, top_j, w_j, h_j = person[1][2]
left = [left_i, left_j]
top = [top_i, top_j]
w = [w_i, w_j]
h = [h_i, h_j]
a = [w[0] * h[0], w[1] * h[1]]
p = (min(h)/max(h))
center = [(top[0]+h[0]//2, left[0]+w[0]//2),
(top[1]+h[1]//2, left[1]+w[1]//2)]
euc_dist = np.sqrt(
(center[1][0]-center[0][0])**2 + (center[1][1]-center[0][1])**2)
inv_dist = euc_dist / (sum(h)/2)
prod = inv_dist / p
if prod < 1.11:
violators.add(i)
violators.add(j)
return [persons[i] for i in violators]
def get_processed_img(detector, img):
persons = detector.get_persons(img)
violators = get_violators(persons)
img = draw_boxes(img, violators)
return img
if __name__ == '__main__':
img = cv2.imread('images/street.png')
detector = default_dedector()
persons = detector.get_persons(img)
violators = get_violators(persons)
img = draw_boxes(img, violators)
cv2.imshow('boxes', img)
cv2.waitKey()