-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
56 lines (33 loc) · 1.23 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import numpy as np
import cv2
class MixUp:
def __init__(self):
self.distribution = torch.distributions.beta.Beta(torch.tensor([1.2]), torch.tensor([1.2]))
def augment(self, gt, ip):
batch_size = gt.size(0)
idx = torch.randperm(batch_size)
gt1 = gt[idx]
ip1 = ip[idx]
lam = self.distribution.rsample((batch_size, 1)).view(-1,1,1,1).cuda()
gt = lam * gt + (1 - lam) * gt1
ip = lam * ip + (1 - lam) * ip1
return gt, ip
def calc_PSNR(target, pred):
diff = torch.clamp(pred, 0, 1) - torch.clamp(target, 0, 1)
rmse = (diff ** 2).mean().sqrt()
res = 20 * torch.log10(1 / rmse)
return res
def batch_psnr(img1, img2, data_range = None):
psnr = []
for i, j in zip(img1, img2):
res = calc_PSNR(img1, img2)
psnr.append(res)
return sum(psnr)/len(psnr)
def load_img(path):
img = cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB)
img = img.astype(np.float32)
img /= 255.0
return img
def save_img(img, path):
cv2.imwrite(path, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))