-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrace_model.py
120 lines (88 loc) · 3.29 KB
/
trace_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch
import torch.nn as nn
import torch.nn.functional as fun
import torchvision.transforms as T
import numpy as np
import cv2
from PIL import Image
import os
from networks.CDGNet import Res_Deeplab
net = Res_Deeplab(22).cuda()
net.load_state_dict(torch.load(''))
data = cv2.imread()
data = cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
data = cv2.resize(data, (512,512))
data = torch.from_numpy(data[None]).to('cuda')
def visualize_segmap(input, multi_channel=True, tensor_out=True, batch=0, agnostic = False) :
if not agnostic:
palette = [
0, 0, 0, 128, 0, 0, 254, 0, 0, 0, 85, 0, 169, 0, 51,
254, 85, 0, 0, 0, 85, 0, 119, 220, 85, 85, 0, 0, 85, 85,
85, 51, 0, 52, 86, 128, 0, 128, 0, 0, 0, 254, 51, 169, 220,
0, 254, 254, 85, 254, 169, 169, 254, 85, 254, 254, 0, 254, 169, 0,
0,0,0,0,0,0,0,0,0
]
if agnostic:
palette = [
0, 0, 0, 128, 0, 0, 254, 0, 0, 0, 0, 0, 169, 0, 51,
0, 0, 0, 0, 0, 0, 0, 0, 0, 85, 85, 0, 0, 85, 85,
0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 254, 0, 0, 0,
0, 0, 0, 85, 254, 169, 169, 254, 85, 254, 254, 0, 254, 169, 0,
0,0,0,0,0,0,0,0,0
]
input = input.detach()
if multi_channel :
input = ndim_tensor2im(input,batch=batch)
else :
input = input[batch][0].cpu()
input = np.asarray(input)
input = input.astype(np.uint8)
input = Image.fromarray(input, 'P')
input.putpalette(palette)
if tensor_out :
trans = T.ToTensor()
return trans(input.convert('RGB'))
return input
def ndim_tensor2im(image_tensor, imtype=np.uint8, batch=0):
image_numpy = image_tensor[batch].cpu().float().numpy()
result = np.argmax(image_numpy, axis=0)
return result.astype(imtype)
class WrappedModel(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
self.mean = torch.Tensor([0.485, 0.456, 0.406]).cuda().reshape([1, 3, 1, 1])
self.std = torch.Tensor([0.229, 0.224, 0.225]).cuda().reshape([1, 3, 1, 1])
@torch.inference_mode()
def forward(self, data, fp16=True):
data = data.permute(0, 3, 1, 2).contiguous()
data = data.div(255).sub(self.mean).div_(self.std)
pred = self.model(data)
pred = fun.interpolate(pred[0][-1], (1024, 768), mode = 'bilinear')
return pred.contiguous()
wrp_model = WrappedModel(net).cuda().eval()
torch.cuda.synchronize()
with torch.no_grad():
svd_out = wrp_model(data)
torch.cuda.synchronize()
print(svd_out.shape)
w1 = visualize_segmap(svd_out, tensor_out = False)
w1.save('w1.png')
OUT_PATH = "out"
os.makedirs(OUT_PATH, exist_ok=True)
wrp_model = wrp_model.half()
with torch.inference_mode(), torch.jit.optimized_execution(True):
traced_script_module = torch.jit.trace(wrp_model, data)
traced_script_module = torch.jit.optimize_for_inference(
traced_script_module)
print(traced_script_module.code)
print(f"{OUT_PATH}/model.pt")
traced_script_module.save(f"{OUT_PATH}/model.pt")
traced_script_module = torch.jit.load(f"{OUT_PATH}/model.pt")
torch.cuda.synchronize()
with torch.no_grad():
o = traced_script_module(data)
torch.cuda.synchronize()
print(o.shape)
w2 = visualize_segmap(o, tensor_out = False)
w2.save('w2.png')