
Perturbation Monte Carlo estimators and derivatives:

1 Discrete Absorption Weighting (DAW)

Discrete absorption weighting adjusts the photon weight at each collision. In a homogeneous
medium, the terminal estimator with discrete absorption weigthing modifies the photon weight
at each collision by a factor µs

µt

. Therefore, if a photon suffers k collisions before being detected, the

“modified” terminal estimator with discrete absorption weighting tallies[1]

ξDAW =




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(

µs
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)k
if the photon exits the tissue at the detector

0 otherwise.
(1)

This estimator is unbiased, and so E[ξDAW ] =
∫

ξDAWdν = I.
Determination of the perturbed reaction rate I∗ using the terminal estimator with discrete

absorption weighting is accomplished by modifying the weight at each collision by the appropriate
weight factors. If the photon suffers k collisions and is absorbed in the detector volume V , then the
resulting weight is
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=
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exp [− (µ∗

s + µ∗

a − µs − µa)S] (3)

where k is the number of collisions prior to detection, j is the number of collisions in the perturbed
region and S is the total path length in the perturbed region. If the photon does not get absorbed
in V , the estimator scores 0. This estimator is unbiased with respect to the background measure
and so Eν [ξ

∗

DAW ] = I∗.

2 Discrete Absorption Weighting Derivatives

2.1 With respect to µ∗

a

Derivative can be taken directly:

∂ξ∗DAW

dµ∗

a

=

(

µs

µt

)k (

µ∗

s

µs

)j

(−S) exp [− (µ∗

s + µ∗

a − µs − µa)S] (4)

Simplified for numerical stability to (which applies if j = 1):
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(5)

2.2 With respect to µ∗

s

Taking derivative with respect to µ∗

s gives:
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Multiplying by
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= 1 and rearranging terms:
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Simplified for numerical stability to:
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(12)

3 Continuous Absorption Weighting (CAW)

Continuous absorption weighting decays the photon weight continuously along its path length. In
a homogenous medium, if the photon’s path length from source to exiting the tissue is L, then [1]

ξCAW =

{

exp{−µaL} if the photon exits the tissue at the detector
0 otherwise.

(13)

This estimator is unbiased, and so E[ξCAW ] =
∫

ξCAWdν = I.
Again, determination of the perturbed reaction rate I∗ using the terminal estimator with con-

tinuous absorption weighting is accomplished by modifying the weight at each collision by the
appropriate weight factors.

ξ∗CAW = exp{−µaL}
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where j is the number of collisions in the perturbed region and S is the total path length in the
perturbed region.

Note! The weight modifications due to the Nadon-Nikodym derivative for both DAW and CAW
are equivalent upon reorganization of terms (for j ≥ 0). Therefore, derivative factors are equivalent.
Just to check...



4 Continuous Absorption Weighting Derivatives (CAW)

4.1 With respect to µ∗

a

Derivative can be taken directly:

∂ξ∗CAW
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Simplified for numerical stability to (which holds for j = 1):
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4.2 With respect to µ∗

s

Taking derivative with respect to µ∗

s gives:
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Multiplying by
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= 1 and rearranging terms:
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Simplified for numerical stability to:
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