-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdecode.py
319 lines (304 loc) · 15.7 KB
/
decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import os
import json
import shutil
import torch
from torch.nn.functional import log_softmax
from PIL import Image
from argparse import ArgumentParser
from models.ViTLP.configuration_ViTLP import ViTLPConfig
from models.ViTLP.modeling_ViTLP import ViTLPModel
from transformers.feature_extraction_utils import FeatureExtractionMixin
from transformers.image_utils import IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ImageFeatureExtractionMixin
from transformers import BartTokenizer
BBOX_SEARCH_SIZE = 4
BBOX_SEARCH_SIZES = [BBOX_SEARCH_SIZE, BBOX_SEARCH_SIZE, BBOX_SEARCH_SIZE, BBOX_SEARCH_SIZE]
DECODER_START_TOKEN_ID = 2
LOCATE_TOKEN_ID = 50265
CONTINUE_DECODE_ID = 50266
PREFIX_RATIO = 0.25
MAX_SEGMENT_NUM = 4
EOS_TOKEN_ID = 2
MAX_LENGTH = 1280
IOU_THRESHOLD = 0.5
IOU_UPPERBOUND = 0.8
RETRY_NUM = 2
parser = ArgumentParser(description='ViTLP OCR')
parser.add_argument('--pretrained_model', default='ckpts/ViTLP-medium', type=str, help='Pretrained ViTLP model')
parser.add_argument('--images', nargs='+', required=True, help='Decode image paths')
args = parser.parse_args()
tokenizer_config = 'configs/ViTLP-1920-1600'
tokenizer = BartTokenizer.from_pretrained(tokenizer_config)
config = ViTLPConfig.from_pretrained(args.pretrained_model)
config.gradient_checkpointing = False
config.LOCATE_TOKEN_ID = LOCATE_TOKEN_ID
assert config.decoder_start_token_id == DECODER_START_TOKEN_ID and config.bin_size == 1001
assert all([image_file[-4:] in ['.jpg', '.png', '.tif'] for image_file in args.images]), 'Image format must be in [\'.jpg\', \'.png\', \'.tif\'].'
ViTLP = ViTLPModel.from_pretrained(args.pretrained_model, config=config)
ViTLP = ViTLP.cuda()
ViTLP.eval()
lm_decoder = ViTLP.decoder.lm_decoder
bbox_output_embeddings = lm_decoder.bbox_output_embeddings
bbox_decoder_start_embedding = lm_decoder.bbox_decoder_start_embedding
bbox_decoder = lm_decoder.bbox_decoder
bbox_head = lm_decoder.bbox_head
hidden_size = config.hidden_size
device = torch.device('cuda')
PAD_BBOXES = torch.full([1, 1, 4], config.bin_size, dtype=torch.int32, device=device)
decode_output_dir = 'decode_output/' + os.path.basename(args.pretrained_model)
if not os.path.exists(decode_output_dir):
os.makedirs(decode_output_dir)
# from https://github.com/huggingface/transformers/blob/v4.20.1/src/transformers/models/vit/feature_extraction_vit.py
class ViTFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
def __init__(
self,
do_resize=True,
size=[1600, 1920],
resample=Image.BILINEAR,
do_normalize=True,
image_mean=None,
image_std=None,
**kwargs
):
super().__init__(**kwargs)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __call__(self, image) -> torch.FloatTensor:
if self.do_resize and self.size is not None:
image = self.resize(image=image, size=self.size, resample=self.resample)
if self.do_normalize:
image = self.normalize(image=image, mean=self.image_mean, std=self.image_std)
return torch.from_numpy(image)
vitFeatureExtractor = ViTFeatureExtractor(do_resize=True, size=[config.image_width, config.image_height], resample=config.resample, do_normalize=True)
# bboxes : [num, 4]
# anchor_box : [4]
def IOU(bboxes, anchor_box):
num = bboxes.size(0)
anchor_box = anchor_box.float()
anchor_box = anchor_box.repeat(num).view([num, 4])
bboxes[:, 0] = torch.minimum(bboxes[:, 0], bboxes[:, 2])
bboxes[:, 1] = torch.minimum(bboxes[:, 1], bboxes[:, 3])
x_left = torch.maximum(bboxes[:, 0], anchor_box[:, 0])
y_top = torch.maximum(bboxes[:, 1], anchor_box[:, 1])
x_right = torch.minimum(bboxes[:, 2], anchor_box[:, 2])
y_bottom = torch.minimum(bboxes[:, 3], anchor_box[:, 3])
intersection_area = (x_right - x_left) * (y_bottom - y_top)
bboxes_area = (bboxes[:, 2] - bboxes[:, 0]) * (bboxes[:, 3] - bboxes[:, 1])
anchor_box_area = (anchor_box[:, 2] - anchor_box[:, 0]) * (anchor_box[:, 3] - anchor_box[:, 1])
iou = intersection_area / (bboxes_area + anchor_box_area - intersection_area)
iou.masked_fill_((x_right < x_left) | (y_bottom < y_top), 0)
return iou
# hidden_states : [batch_size, hidden_dim]
def bbox_decode(hidden_states, return_list):
batch_size, hidden_dim = hidden_states.size()
sample_num = BBOX_SEARCH_SIZES[0] * BBOX_SEARCH_SIZES[1] * BBOX_SEARCH_SIZES[2] * BBOX_SEARCH_SIZES[3]
N = sample_num
bbox_decode_index_table = torch.zeros([batch_size * sample_num, 4], dtype=torch.int64, device=device)
for i in range(4):
if i == 0:
h = bbox_decoder(bbox_decoder_start_embedding.repeat(batch_size, 1), hidden_states, 0)
else:
h = bbox_decoder(bbox_output_embeddings(indices.flatten()), h.repeat(1, BBOX_SEARCH_SIZES[i - 1]).view([-1, hidden_dim]), i)
probs = log_softmax(bbox_head[i % 2](h), dim=1)
probs, indices = torch.topk(probs, k=BBOX_SEARCH_SIZES[i], dim=1) # [batch_size, BBOX_SEARCH_SIZE]
#### update search table ####
if i == 0:
N //= BBOX_SEARCH_SIZES[i]
bbox_logprobs = probs.unsqueeze(dim=2).repeat(1, 1, N).flatten()
bbox_decode_index_table[:, 0] = indices.unsqueeze(dim=2).repeat(1, 1, N).flatten()
elif i < 3:
N //= BBOX_SEARCH_SIZES[i]
bbox_logprobs += probs.unsqueeze(dim=2).repeat(1, 1, N).flatten()
bbox_decode_index_table[:, i] = indices.unsqueeze(dim=2).repeat(1, 1, N).flatten()
else:
bbox_logprobs += probs.flatten()
bbox_decode_index_table[:, 3] = indices.flatten()
#### update search table ####
indices = torch.argmax(bbox_logprobs.view([batch_size, sample_num]), dim=1) + torch.arange(start=0, end=batch_size, dtype=torch.int64, device=device) * sample_num
decode_bboxes = bbox_decode_index_table.index_select(dim=0, index=indices)
if return_list:
return decode_bboxes, decode_bboxes.tolist()
return decode_bboxes
def greedy_search(image):
for _ in range(RETRY_NUM):
encoder_outputs = ViTLP.encoder(image).last_hidden_state
decoder_input_ids = torch.full([1, 1], config.decoder_start_token_id, dtype=torch.int32, device=device)
decoder_input_bboxes = PAD_BBOXES
i = 0
decode_ids = []
word_flag = True
bboxes = None
words = []
pre_i = i
repeat_cnt = {}
# Greedy search without repetition
while i < MAX_LENGTH:
if i == 0:
hidden_states, past_key_values = lm_decoder.forward_(encoder_outputs, decoder_input_ids, decoder_input_bboxes, past_key_values=None, use_cache=True)
else:
decoder_input_ids_ = decoder_input_ids[:, -1].unsqueeze(dim=1)
decoder_input_bboxes_ = decoder_input_bboxes[:, -1, :].unsqueeze(dim=1)
hidden_states, past_key_values = lm_decoder.forward_(encoder_outputs, decoder_input_ids_, decoder_input_bboxes_, past_key_values=past_key_values, use_cache=True)
hidden_states = hidden_states.select(dim=1, index=0)
if i == 0:
index = torch.argmax(lm_decoder.lm_head(hidden_states)[:, 4:-3], dim=1) + 4
elif word_flag:
index = torch.argmax(lm_decoder.lm_head(hidden_states)[:, 2:-3], dim=1) + 2
else:
index = torch.argmax(lm_decoder.lm_head(hidden_states)[:, 2:-1], dim=1) + 2
index_ = index.item()
if index_ == LOCATE_TOKEN_ID:
decode_bbox = bbox_decode(hidden_states, return_list=False)[0, :].unsqueeze(dim=0)
word = tokenizer.decode(decode_ids).strip()
if bboxes is None:
decode_flag = True
else:
ious = IOU(bboxes, decode_bbox.squeeze(dim=0)).tolist()
decode_flag = all([iou < IOU_THRESHOLD or (iou <= IOU_UPPERBOUND and word not in words[iou_index][0] and words[iou_index][0] not in word) for iou_index, iou in enumerate(ious)])
if decode_flag:
decoder_input_bboxes = torch.cat([decoder_input_bboxes, decode_bbox.unsqueeze(dim=1)], dim=1)
bboxes = decode_bbox if bboxes is None else torch.cat([bboxes, decode_bbox], dim=0)
words.append((word, decode_ids))
# print(bboxes[-1, :].tolist(), '\t', word)
pre_i = i + 1
repeat_cnt[pre_i] = 1
decode_ids = []
word_flag = True
else:
i = pre_i
repeat_cnt[pre_i] += 1
decoder_input_ids = decoder_input_ids[:, :i + 1]
decoder_input_bboxes = decoder_input_bboxes[:, :i + 1, :]
hidden_states, past_key_values = lm_decoder.forward_(encoder_outputs, decoder_input_ids, decoder_input_bboxes, past_key_values=None, use_cache=True)
hidden_states = hidden_states.select(dim=1, index=i)
topk_values, topk_indices = torch.topk(lm_decoder.lm_head(hidden_states)[:, 2:-1], k=repeat_cnt[i], dim=1)
index = topk_indices[:, -1] + 2
index_ = index.item()
if index_ == EOS_TOKEN_ID:
results = []
bboxes = bboxes.tolist()
for i, (word, decode_ids) in enumerate(words):
results.append([bboxes[i], word])
return results
decode_ids = [index_]
decoder_input_bboxes = torch.cat([decoder_input_bboxes, PAD_BBOXES], dim=1)
word_flag = False
elif index_ == EOS_TOKEN_ID:
results = []
bboxes = bboxes.tolist()
for i, (word, decode_ids) in enumerate(words):
results.append([bboxes[i], word])
return results
else:
decode_ids.append(index_)
decoder_input_bboxes = torch.cat([decoder_input_bboxes, PAD_BBOXES], dim=1)
word_flag = False
decoder_input_ids = torch.cat([decoder_input_ids, index.unsqueeze(dim=0)], dim=1)
i += 1
if bboxes is None:
image = torch.clamp(image * 2, -1, 1) # A workaround of improving image contrast to try to avoid decoding repetition. Mostly, this case would not happen.
continue
for i in range(MAX_SEGMENT_NUM):
flag, bboxes, words = greedy_search_continue(encoder_outputs, bboxes, words) # multi-segment decoding
if flag:
break
results = []
bboxes = bboxes.tolist()
for i, (word, decode_ids) in enumerate(words):
results.append([bboxes[i], word])
return results
return None
def greedy_search_continue(encoder_outputs, bboxes, words):
n = len(words)
decoder_input_ids = torch.zeros([MAX_LENGTH], dtype=torch.int32)
decoder_input_bboxes = torch.full([MAX_LENGTH, 4], config.bin_size, dtype=torch.int32)
decoder_input_ids[0] = CONTINUE_DECODE_ID
pos = 1
for i in range(n - int(n * PREFIX_RATIO), n):
bbox, ids = bboxes[i], words[i][1]
K = len(ids)
for offset in range(K):
decoder_input_ids[pos + offset] = ids[offset]
pos += K
decoder_input_ids[pos] = LOCATE_TOKEN_ID
decoder_input_bboxes[pos] = bbox
pos += 1
decoder_input_ids = decoder_input_ids[:pos].cuda().unsqueeze(dim=0)
decoder_input_bboxes = decoder_input_bboxes[:pos, :].cuda().unsqueeze(dim=0)
flag = False
i = pos - 1
decode_ids = []
word_flag = True
pre_i = i
repeat_cnt = {pre_i: 1}
past_key_values = None
# Greedy search without repetition
while i < MAX_LENGTH:
if past_key_values is None:
hidden_states, past_key_values = lm_decoder.forward_(encoder_outputs, decoder_input_ids, decoder_input_bboxes, past_key_values=past_key_values, use_cache=True)
hidden_states = hidden_states.select(dim=1, index=i)
else:
decoder_input_ids_ = decoder_input_ids[:, -1].unsqueeze(dim=1)
decoder_input_bboxes_ = decoder_input_bboxes[:, -1, :].unsqueeze(dim=1)
hidden_states, past_key_values = lm_decoder.forward_(encoder_outputs, decoder_input_ids_, decoder_input_bboxes_, past_key_values=past_key_values, use_cache=True)
hidden_states = hidden_states.select(dim=1, index=0)
if word_flag:
index = torch.argmax(lm_decoder.lm_head(hidden_states)[:, 2:-3], dim=1) + 2
else:
index = torch.argmax(lm_decoder.lm_head(hidden_states)[:, 2:-1], dim=1) + 2
index_ = index.item()
if index_ == LOCATE_TOKEN_ID:
decode_bbox = bbox_decode(hidden_states, return_list=False)[0, :].unsqueeze(dim=0)
word = tokenizer.decode(decode_ids).strip()
ious = IOU(bboxes, decode_bbox.squeeze(dim=0)).tolist()
decode_flag = all([iou < IOU_THRESHOLD or (iou <= IOU_UPPERBOUND and word not in words[iou_index][0] and words[iou_index][0] not in word) for iou_index, iou in enumerate(ious)])
if decode_flag:
decoder_input_bboxes = torch.cat([decoder_input_bboxes, decode_bbox.unsqueeze(dim=1)], dim=1)
bboxes = torch.cat([bboxes, decode_bbox], dim=0)
words.append((word, decode_ids))
# print('\t', bboxes[-1, :].tolist(), '\t', word)
pre_i = i + 1
repeat_cnt[pre_i] = 1
decode_ids = []
word_flag = True
else:
i = pre_i
repeat_cnt[pre_i] += 1
decoder_input_ids = decoder_input_ids[:, :i + 1]
decoder_input_bboxes = decoder_input_bboxes[:, :i + 1, :]
hidden_states, past_key_values = lm_decoder.forward_(encoder_outputs, decoder_input_ids, decoder_input_bboxes, past_key_values=None, use_cache=True)
hidden_states = hidden_states.select(dim=1, index=i)
topk_values, topk_indices = torch.topk(lm_decoder.lm_head(hidden_states)[:, 2:-1], k=repeat_cnt[i], dim=1)
index = topk_indices[:, -1] + 2
index_ = index.item()
if index_ == EOS_TOKEN_ID:
flag = True
break
decode_ids = [index_]
decoder_input_bboxes = torch.cat([decoder_input_bboxes, PAD_BBOXES], dim=1)
word_flag = False
elif index_ == EOS_TOKEN_ID:
flag = True
break
else:
decode_ids.append(index_)
decoder_input_bboxes = torch.cat([decoder_input_bboxes, PAD_BBOXES], dim=1)
word_flag = False
decoder_input_ids = torch.cat([decoder_input_ids, index.unsqueeze(dim=0)], dim=1)
i += 1
return flag, bboxes, words
if __name__ == '__main__':
for image_file in args.images:
result_file = os.path.join(decode_output_dir, os.path.basename(image_file).replace('.png', '.json').replace('.jpg', '.json').replace('.tif', '.json'))
print('\nDecoding: ' + image_file)
with torch.no_grad():
image = Image.open(image_file).convert('RGB')
image = vitFeatureExtractor(image)
image = image.cuda().unsqueeze(dim=0)
results = greedy_search(image)
shutil.copy(image_file, os.path.join(decode_output_dir, os.path.basename(image_file)))
with open(result_file, 'w', encoding='utf-8') as f:
json.dump(results if results is not None else [], f)