-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmk_dataset.py
234 lines (183 loc) · 7.72 KB
/
mk_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import copy
import os
import random
import sys
import numpy as np
import scipy.stats as st
import Libs.confs
import Libs.genos_file_formats
import Libs.logger
import Libs.pretty_printing
import Libs.priors
def ParseCmd(argv):
if len(argv) < 5:
print('Usage ' + os.path.basename(argv[0]) + ' K N L D [--disease]')
print('')
print(' K : Number of clusters')
print(' N : Number of individuals in each cluster')
print(' L : Number of loci')
print(' D : Percent of loci with different MAF')
print(' --disease : Make disease labels (default is false)')
exit(1)
num_clusters = int(argv[1])
num_indivs = int(argv[2])
num_loci = int(argv[3])
diff_maf = int(argv[4])
is_disease = False
if '--disease' in argv:
is_disease = True
Libs.logger.Log(' K : ' + str(num_clusters))
Libs.logger.Log(' N : ' + str(num_indivs))
Libs.logger.Log(' L : ' + str(num_loci))
Libs.logger.Log(' D : ' + str(diff_maf))
Libs.logger.Log(' Is Disease : ' + str(is_disease))
return num_clusters, num_indivs, num_loci, diff_maf, is_disease
def SelectLociDiffMAFs(num_loci, diff_mafs_percent):
loci_list = []
num_diff_loci = int(num_loci / 100.0 * diff_mafs_percent)
Libs.logger.Log('Num Diff Loci : %d' % num_diff_loci)
num_diff_loci = max(1, int(num_diff_loci + 0.5))
while len(loci_list) < num_diff_loci:
l = int(random.uniform(0, num_loci))
if l not in loci_list:
loci_list.append(l)
loci_list = sorted(loci_list)
return loci_list
def IsDuplicated(loci, loci_list):
for k in range(len(loci_list)):
if loci in loci_list[k]:
return True
return False
def SelectDiseaseLociAndSNPs(num_loci, num_clusters, diff_loci):
loci_list = [ [] for k in range(num_clusters) ]
for k in range(num_clusters):
while len(loci_list[k]) < 3:
l = int(random.uniform(0, num_loci))
if not IsDuplicated(l, loci_list):
loci_list[k].append(l)
loci_list[k] = sorted(loci_list[k])
snp_list = [ [ int(random.uniform(0, Libs.priors.NUM_ALLELES)) for i in range(3) ] for k in range(num_clusters) ]
return loci_list, snp_list
def MakeRandomBaseFreq(num_loci):
return [ round(random.uniform(0, 1), 2) for l in range(num_loci) ]
def GetRoundGenoProb():
GENOS_WHEEL = [ 1.0 / 3, 2.0 / 3, 1.0 ]
PROBS = [ 0, 0.5, 1 ]
u = random.uniform(0, 1)
for g in range(len(GENOS_WHEEL)):
if u < GENOS_WHEEL[g]:
return PROBS[g]
return PROBS[len(PROBS)]
def MakeRoundBaseFreq(num_loci):
return [ GetRoundGenoProb() for l in range(num_loci) ]
def MakeRandomFreqs(num_clusters, num_loci, diff_loci):
base_freq = MakeRandomBaseFreq(num_loci)
freqs = [ copy.deepcopy(base_freq) for k in range(num_clusters) ]
for k in range(1, num_clusters):
for l in diff_loci:
freqs[k][l] = round(random.uniform(0, 1), 2)
return freqs
def MakeRoundFreqs(num_clusters, num_loci, diff_loci):
base_freq = MakeRoundBaseFreq(num_loci)
freqs = [ copy.deepcopy(base_freq) for k in range(num_clusters) ]
for k in range(1, num_clusters):
for l in diff_loci:
freqs[k][l] = GetRoundGenoProb()
return freqs
def MakeFreqs(num_clusters, num_loci, diff_loci, is_random=False):
if is_random:
return MakeRandomFreqs(num_clusters, num_loci, diff_loci)
return MakeRoundFreqs(num_clusters, num_loci, diff_loci)
def GetGenos(freq):
u1 = random.uniform(0, 1)
a1 = 1 if u1 < freq else 0
u2 = random.uniform(0, 1)
a2 = 1 if u2 < freq else 0
return a1 + a2
def DrawGenos(freqs):
num_loci = len(freqs)
genos = [ GetGenos(freqs[l]) for l in range(num_loci) ]
return genos
def CalcDiseaseStatus(genotype, cluster, dise_loci, snp_list, is_bernoulli=False):
snps = [ genotype[l] for l in dise_loci[cluster] ]
indic = [ 1 if snps[l] == snp_list[cluster][l] else 0 for l in range(len(snps)) ]
z = 1.5 * np.prod(indic)
prob = 1.0 / (1.0 + np.exp(-z))
y = 0 if prob <= 0.5 else 1
if is_bernoulli:
y = st.bernoulli.rvs(prob)
return y == 1
def WriteToFile(genos, labels, diff_loci, freqs, dise_loci, snp_list, params_tuple):
num_clusters = params_tuple[0]
if not os.path.isdir('Dataset'):
os.makedirs('Dataset')
# Write compressed file.
str_path = os.path.join('Dataset', 'genos_K%d_N%d_L%d_D%d.str' % params_tuple)
Libs.genos_file_formats.WriteSTRUCTURE(str_path, genos)
# Write STRUCTURE formatted genotypes.
my_str_path = os.path.join('Dataset', 'genos_K%d_N%d_L%d_D%d.txt' % params_tuple )
Libs.genos_file_formats.WriteMySTRUCTURE(my_str_path, genos, lbls, num_clusters)
# Write allele frequencies.
freq_path = os.path.join('Dataset', 'freqs_K%d_N%d_L%d_D%d.txt' % params_tuple)
with open(freq_path, 'w') as f:
f.write('\n'.join([ str(f) for f in freqs ]))
# Write loci with difference in MAF.
diff_path = os.path.join('Dataset', 'diffs_K%d_N%d_L%d_D%d.txt' % params_tuple)
with open(diff_path, 'w') as f:
f.write(str(diff_loci))
if len(lbls) != 0:
# Write BEAM formatted genotypes.
beam_path = os.path.join('Dataset', 'genos_beam_K%d_N%d_L%d_D%d.txt' % params_tuple)
Libs.genos_file_formats.WriteBEAM(beam_path, genos, lbls)
if len(dise_loci) != 0 and len(snp_list) != 0:
# Write disease affected loci and corresponding SNPs.
dise_path = os.path.join('Dataset', 'dise_K%d_N%d_L%d_D%d.txt' % params_tuple)
with open(dise_path, 'w') as f:
for k in range(num_clusters):
f.write(' '.join([ str(d) for d in dise_loci[k] ]) + '\n')
f.write('\n')
for k in range(num_clusters):
f.write(' '.join([ str(s) for s in snp_list[k] ]) + '\n')
if __name__ == '__main__':
Libs.logger.Log('\n\nStart of mk_dataset.py')
NUM_CLUSTERS, NUM_INDIVS, NUM_LOCI, DIFF_MAF, IS_DISEASE = ParseCmd(sys.argv)
diff_loci = SelectLociDiffMAFs(NUM_LOCI, DIFF_MAF)
Libs.logger.Log('\ndiff loci:')
Libs.pretty_printing.PrintList(diff_loci)
freqs = MakeFreqs(NUM_CLUSTERS, NUM_LOCI, diff_loci, True)
Libs.logger.Log('\nfreqs:')
Libs.pretty_printing.PrintListOfLists(freqs)
dise_loci = []
snp_list = []
genos = []
lbls = []
if IS_DISEASE:
dise_loci, snp_list = SelectDiseaseLociAndSNPs(NUM_LOCI, NUM_CLUSTERS, diff_loci)
Libs.logger.Log('\ndisease loci:')
Libs.pretty_printing.PrintListOfLists(dise_loci)
Libs.logger.Log('\ndisease SNPs:')
Libs.pretty_printing.PrintListOfLists(snp_list)
for k in range(NUM_CLUSTERS):
if IS_DISEASE:
cases = []
ctrls = []
while len(cases) + len(ctrls) < NUM_INDIVS:
g = DrawGenos(freqs[k])
y = CalcDiseaseStatus(g, k, dise_loci, snp_list)
if y == True:
if len(cases) < NUM_INDIVS // 2:
cases.append(g)
else:
if len(ctrls) < NUM_INDIVS // 2 + (0 if NUM_INDIVS % 2 == 0 else 1):
ctrls.append(g)
genos += ctrls + cases
lbls += [ 0 for i in range(len(ctrls)) ] + [ 1 for i in range(len(cases)) ]
else:
genos += [ DrawGenos(freqs[k]) for n in range(NUM_INDIVS) ]
Libs.logger.Log('\ngenos:')
Libs.pretty_printing.PrintListOfLists(genos)
if IS_DISEASE:
Libs.logger.Log('\nlabels:')
Libs.pretty_printing.PrintList(lbls)
params_tuple = (NUM_CLUSTERS, NUM_INDIVS, NUM_LOCI, DIFF_MAF)
WriteToFile(genos, lbls, diff_loci, freqs, dise_loci, snp_list, params_tuple)