-
Notifications
You must be signed in to change notification settings - Fork 3
/
Visual.py
213 lines (169 loc) · 6.29 KB
/
Visual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env python
# coding=utf-8
from __future__ import absolute_import
from __future__ import print_function, division
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=DeprecationWarning)
import os
from os import path
import numpy as np
from Dataset import Dataset
import json
import cv2
'''
import tensorflow as tf
from DSQ import DSQ, IMAGE_WIDTH, IMAGE_HEIGHT
tf.logging.set_verbosity(tf.logging.ERROR)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string("Dataset", "NUS", "The preferred dataset")
tf.app.flags.DEFINE_string("Mode", "eval", "train or evaluate")
tf.app.flags.DEFINE_integer("BitLength", 32, "The quantization code length")
tf.app.flags.DEFINE_integer("ClassNum", 21, "The classification class number")
tf.app.flags.DEFINE_integer("K", 256, "The centroids number")
tf.app.flags.DEFINE_integer("PrintEvery", 50, "How many batches after one print")
tf.app.flags.DEFINE_float("LearningRate", 1e-4, "Init learning rate")
tf.app.flags.DEFINE_integer("Epoch", 64, "How many epoches")
tf.app.flags.DEFINE_integer("BatchSize", 256, "Batch size")
tf.app.flags.DEFINE_string("Device", "0", "Device ID")
tf.app.flags.DEFINE_boolean("UseGPU", True, "Batch size")
tf.app.flags.DEFINE_boolean("SaveModel", True, "Options to save in every epoch")
tf.app.flags.DEFINE_integer("R", 5000, "Recall@R, -1 for all")
tf.app.flags.DEFINE_float("Lambda", 0.1, "lambda")
tf.app.flags.DEFINE_float("Tau", 1, "tau")
tf.app.flags.DEFINE_float("Mu", 1, "Mu")
tf.app.flags.DEFINE_float("Nu", 0.1, "Nu")
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.Device)
'''
def main():
'''
model = DSQ(FLAGS)
a = "/device:GPU:0" if FLAGS.UseGPU else "/cpu:0"
print("Using device:", a, "<-", FLAGS.Device)
with tf.device(a):
queryX, queryY, db = Dataset.PreparetoEval(FLAGS.Dataset, IMAGE_WIDTH, IMAGE_HEIGHT)
query, database = model.GetRetrievalMat(queryX, queryY, db)
'''
q_data = Dataset('NUS', 'query', 256, 256, 256)
data = Dataset('NUS', 'database', 256, 256, 256)
ret = np.load('retrievalMat_NUS.npy')
ids = np.load('ids.npy')
# dvsq_ret = np.load('DVSQ_retrieval_mat.npy')
# dvsq_ids = np.load("DVSQ_ids.npy")
top100 = np.sum(ret[:, :100], axis=1)
good = np.argwhere(top100 > 80).reshape(-1)
good = np.random.permutation(good)[:20]
good_paths = q_data.data.ShowPath(good)
good_results = ids[good, :25]
result_paths = []
for i in range(good_results.shape[0]):
result_paths.append(data.data.ShowPath(good_results[i]))
TARGET_SIZE = 80
canvas = np.zeros([len(good_paths)*TARGET_SIZE, (26)*TARGET_SIZE+20, 3], np.uint8)
print(canvas.shape)
i = 0
# draw first row, query
for p in good_paths:
p = p.split()[0]
im = cv2.imread(p)
h, w = im.shape[0], im.shape[1]
small = h if w > h else w
im = cv2.resize(im[(h-small)//2:(h+small)//2, (w-small)//2:(w+small)//2], (TARGET_SIZE, TARGET_SIZE), interpolation=cv2.INTER_LANCZOS4)
canvas[i*TARGET_SIZE:(i+1)*TARGET_SIZE, 0:TARGET_SIZE] = im
i += 1
# draw every result
offset = TARGET_SIZE + 20
for row in range(len(good_paths)):
for col in range(len(result_paths[row])):
p = result_paths[row][col]
p = p.split()[0]
im = cv2.imread(p)
h, w = im.shape[0], im.shape[1]
small = h if w > h else w
im = cv2.resize(im[(h-small)//2:(h+small)//2, (w-small)//2:(w+small)//2], (TARGET_SIZE, TARGET_SIZE), interpolation=cv2.INTER_LANCZOS4)
canvas[row*TARGET_SIZE:(row+1)*TARGET_SIZE, col*TARGET_SIZE+offset:(col+1)*TARGET_SIZE+offset] = im
cv2.imwrite('./retrieval.png', canvas)
return
b_left = top3 > 1
b_right = top3 > dvsq_top3
b_and = b_left * b_right
better = np.argwhere(b_and).reshape(-1)
better = np.random.permutation(better)
bad = np.argwhere(top3 == 0).reshape(-1)
bad = np.random.permutation(bad)
''' good '''
sample_query = q_data.data.ShowPath(good[:5])
a = ids[good[:5], :10]
b = dvsq_ids[good[:5], :10]
ours = []
dvsq = []
for i in range(a.shape[0]):
ours.append(data.data.ShowPath(a[i]))
dvsq.append(data.data.ShowPath(b[i]))
result = {}
result['query'] = sample_query
result['ours'] = ours
result['dvsq'] = dvsq
with open('good.json', 'w') as fp:
json.dump(result, fp)
''' better '''
sample_query = q_data.data.ShowPath(better[:5])
a = ids[better[:5], :10]
b = dvsq_ids[better[:5], :10]
ours = []
dvsq = []
for i in range(a.shape[0]):
ours.append(data.data.ShowPath(a[i]))
dvsq.append(data.data.ShowPath(b[i]))
result = {}
result['query'] = sample_query
result['ours'] = ours
result['dvsq'] = dvsq
with open('better.json', 'w') as fp:
json.dump(result, fp)
''' bad '''
sample_query = q_data.data.ShowPath(bad[:5])
a = ids[bad[:5], :10]
b = dvsq_ids[bad[:5], :10]
ours = []
dvsq = []
for i in range(a.shape[0]):
ours.append(data.data.ShowPath(a[i]))
dvsq.append(data.data.ShowPath(b[i]))
result = {}
result['query'] = sample_query
result['ours'] = ours
result['dvsq'] = dvsq
with open('bad.json', 'w') as fp:
json.dump(result, fp)
'''
sample_query = q_data.data.ShowPath(highest[:5])
q = query.output[highest[:5]]
d = -np.dot(q, database.output.T)
ids = np.argsort(d, 1)[:, :10]
sample_database = []
for i in ids:
sample_database.append(data.data.ShowPath(i))
result = {}
result['query'] = sample_query
result['database'] = sample_database
with open('highest.txt', 'w') as fp:
json.dump(result, fp)
lowest = np.argwhere(top20==0).reshape(-1)
lowest = np.random.permutation(lowest)
sample_query = q_data.data.ShowPath(lowest[:5])
q = query.output[lowest[:5]]
d = -np.dot(q, database.output.T)
ids = np.argsort(d, 1)[:, :10]
sample_database = []
for i in ids:
sample_database.append(data.data.ShowPath(i))
result = {}
result['query'] = sample_query
result['database'] = sample_database
with open('lowest.txt', 'w') as fp:
json.dump(result, fp)
'''
if __name__ == '__main__':
main()