-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathUtils.py
308 lines (253 loc) · 9.1 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#!/usr/bin/env python
# coding=utf-8
from __future__ import absolute_import
from __future__ import print_function, division
import errno
import os
import random
from datetime import datetime
import numpy as np
def PrintWithTime(string=None):
if string is None:
print("{0}".format(datetime.now().strftime("%m-%d %H:%M:%S")))
else:
print("{0} {1}".format(datetime.now().strftime("%m-%d %H:%M:%S"), string))
def ProgressBar(progress):
progress *= 100
progress = round(progress)
a = '=' * int(progress) + '-' * (100 - int(progress))
a = a[:47] + (' 100 ' if progress >= 100 else " %2d%% " % progress) + a[52:] + '\n'
print(a)
def BarFormat(string):
l = len(string)
a = (100 - 2 - l) // 2
b = 2 * a + 2 + l == 99
return '=' * a + ' {0} '.format(string) + '=' * (a + 1) if b else '=' * a + ' {0} '.format(string) + '=' * a
def cosine_distance(u, v):
# [N1, D] dot [D, N2] -> [N1, N2]
ux, vy = np.meshgrid(np.linalg.norm(u, 2, 1), np.linalg.norm(v, 2, 1))
return 1 - (u.dot(v.T) / (ux * vy).T)
class mAP:
def __init__(self, C, S, R, database):
"""[summary]
[description]
Parameters
----------
C : ndarray
Codebook, [M, K, d],
the codeword is M * [0 ~ K - 1],
for getting quantized result:
first get the subspace results: C[range(M), codeword] -> [M, d]
then concate -> [D, ]
R : int
retrieve top R results, set it same as query count
database: Object
label: the class label
codes: the codeword, [N, M]
output: the feature vector, [N, D]
"""
# Codebook, M * center_num
self.C = C
# retrieve top R results
self.R = R
self.S = S
self._database = database
def calculatemAP(self, query_labels, distance):
# sort by distance for each query
ids = np.argsort(distance, 1)
database_labels = self._database.label
APx = []
for i in range(distance.shape[0]):
label = query_labels[i, :]
label[label == 0] = -1
idx = ids[i, :]
imatch = np.sum(database_labels[idx[0: self.R], :] == label, 1) > 0
rel = np.sum(imatch)
Lx = np.cumsum(imatch)
Px = Lx.astype(float) / np.arange(1, self.R + 1, 1)
if rel != 0:
APx.append(np.sum(Px * imatch) / rel)
else:
APx.append(0.0)
return APx
@staticmethod
# [N, M], [M, K, d]
def Quantize_PQ(codes, codebook):
M, k, d = codebook.shape
# [N, K, d]
q = codebook[range(M), codes[:]]
# [N, D]
return q.reshape([codes.shape[0], -1])
@staticmethod
# [N, M], [M, K, d]
def Quantize_AQ(codes, codebook, level):
M, k, D = codebook.shape
assert M >= level, "Quantize level out of range"
# [N, D]
q = np.zeros([codes.shape[0], D])
for i in range(level):
print('Codebook %d' % i)
q += codebook[i, codes[:, i]]
# [N, D]
return q
@staticmethod
# [N, M], [M, K, d]
def Quantize_AQ_1(codes, codebook, level):
k, D = codebook.shape
# [N, D]
q = np.zeros([codes.shape[0], D])
for i in range(level):
print('Codebook %d' % i)
q += codebook[codes[:, i]]
# [N, D]
return q
@staticmethod
# [N, M], [M, K, d]
def Quantize_RQ(codes, codebook, level, scale):
k, D = codebook.shape
# [N, D]
q = np.zeros([codes.shape[0], D])
for i in range(level):
if i > 0:
rotated = codebook * scale[i - 1]
else:
rotated = codebook
print('Codebook %d' % i)
q += rotated[codes[:, i]]
# [N, D]
return q
def SQD_mAP(self, query):
# all the distance between query and data
# using quantized - quantized
# [N, D]
db = self.Quantize_AQ(self._database.codes, self.C)
qy = self.Quantize_AQ(query.codes, self.C)
print('distance')
APx = np.zeros([qy.shape[0]])
for j in range(qy.shape[0] // 50 + 1):
q = qy[j * 50:(j + 1) * 50]
d = -np.dot(q, db.T)
ids = np.argsort(d, 1)
for i in range(d.shape[0]):
label = query.label[j * 50 + i, :]
label[label == 0] = -1
imatch = np.sum(self._database.label[ids[i, :self.R], :] == label, 1) > 0
rel = np.sum(imatch)
Lx = np.cumsum(imatch)
Px = Lx.astype(float) / np.arange(1, self.R + 1, 1)
if rel != 0:
APx[j * 50 + i] = np.sum(Px * imatch) / rel
else:
APx[j * 50 + i] = 0
print("%d / %d" % (j, qy.shape[0] // 50 + 1))
result = np.mean(APx)
PrintWithTime("SQD mAPs: " + str(result))
return np.asscalar(result)
def AQD_mAP(self, query):
# all the distance between query and data
# using actual - quantized
print(self.R)
print(self._database.codes.shape[0])
results = ''
for k in [4, 3, 2, 1]:
# [N, D]
db = self.Quantize_RQ(self._database.codes, self.C, k, self.S)
print('level %d' % k)
# APx = np.zeros([query.output.shape[0]])
ids = np.argsort(-query.output.dot(db.T), 1)
query.label[query.label == 0] = -1
imatchs = np.sum(self._database.label[ids[:, :self.R]] == np.expand_dims(query.label, 1), 2) > 0
rel = np.sum(imatchs, 1)
Px = np.cumsum(imatchs, 1).astype(float) / np.arange(1, self.R + 1, 1)
rel[rel == 0] = -1
APx = np.sum(Px * imatchs, 1) / rel
APx[APx < 0] = 0
# for i in range(d.shape[0]):
# label = query.label[j*50 + i, :]
# label[label == 0] = -1
# idx = ids[i, :]
# imatch = np.sum(self._database.label[idx[0: self.R], :] == label, 1) > 0
# rel = np.sum(imatch)
# Lx = np.cumsum(imatch)
# Px = Lx.astype(float) / np.arange(1, self.R + 1, 1)
# if rel != 0:
# APx[j*50+i] = np.sum(Px * imatch) / rel
# else:
# APx[j*50+i] = 0
# print("%d / %d" % (k, query.output.shape[0] // 50 + 1))
result = np.mean(APx)
del db
del APx
results += "\nQuantize level %d, AQD mAP@%d: %f" % (k, self.R, result)
print(results)
return results
def Feature_mAP(self, query):
# all the distance between query and data
# using actual - actual
print('distance')
APx = np.zeros([query.output.shape[0]])
for j in range(query.output.shape[0] // 50 + 1):
q = query.output[j * 50:(j + 1) * 50]
d = -np.dot(q, self._database.output.T)
ids = np.argsort(d, 1)
for i in range(d.shape[0]):
label = query.label[j * 50 + i, :]
label[label == 0] = -1
idx = ids[i, :]
imatch = np.sum(self._database.label[idx[0: self.R], :] == label, 1) > 0
rel = np.sum(imatch)
Lx = np.cumsum(imatch)
Px = Lx.astype(float) / np.arange(1, self.R + 1, 1)
if rel != 0:
APx[j * 50 + i] = np.sum(Px * imatch) / rel
else:
APx[j * 50 + i] = 0
print("%d / %d" % (j, query.output.shape[0] // 50 + 1))
result = np.mean(APx)
print("Feature mAP@%d: %f" % (self.R, result))
return np.asscalar(result)
class Object(object):
pass
def L2Distance(a, b):
"""square distance of mat A and B
compute Euclidean distance of A and B into output mat
Parameters
----------
a : ndarray
A [k, d]
b : ndarray
B [N, d]
Returns
-------
ndarray, [k, N]
"""
# [N, k]
d = -2 * b.dot(a.T) + np.sum(np.square(b), axis=1, keepdims=True)
# [k, N]
d = np.abs(d.T + np.sum(np.square(a), axis=1, keepdims=True))
# [k, N]
return d
def CreateFile(path):
directory = os.path.dirname(path)
if not os.path.exists(directory):
try:
os.makedirs(directory)
except OSError as exc: # Guard against race condition
if exc.errno != errno.EEXIST:
raise
def RandInt(num):
return int(random.random() * num)
def CountVariables(var_list):
return np.sum([np.prod(v.get_shape().as_list()) for v in var_list])
if __name__ == "__main__":
database = Object()
query = Object()
codebook = np.random.rand(4, 256, 300)
l = np.random.rand(54000, 10) > 0.5
database.label = l.astype(int)
l = np.random.rand(5000, 10) > 0.5
query.label = l.astype(int)
database.codes = np.random.randint(255, size=(54000, 4))
query.output = np.random.rand(5000, 300)
map = mAP(codebook, 54000, database)
map.AQD_mAP(query)