-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathSIFT.py
93 lines (77 loc) · 2.61 KB
/
SIFT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#!/usr/bin/env python
# coding=utf-8
from __future__ import print_function
import numpy as np
from os import path
SIFT10K_PATH = './data/SIFT10K/'
SIFT1M_PATH = './data/SIFT1M/'
def fvecs_read(filename, c_contiguous=True):
fv = np.fromfile(filename, dtype=np.float32)
if fv.size == 0:
return np.zeros((0, 0))
dim = fv.view(np.int32)[0]
assert dim > 0
fv = fv.reshape(-1, 1 + dim)
if not all(fv.view(np.int32)[:, 0] == dim):
raise IOError("Non-uniform vector sizes in " + filename)
fv = fv[:, 1:]
if c_contiguous:
fv = fv.copy()
return fv
def ivecs_read(filename, c_contiguous=True):
fv = np.fromfile(filename, dtype=np.int32)
if fv.size == 0:
return np.zeros((0, 0))
dim = fv.view(np.int32)[0]
assert dim > 0
fv = fv.reshape(-1, 1 + dim)
if not all(fv.view(np.int32)[:, 0] == dim):
raise IOError("Non-uniform vector sizes in " + filename)
fv = fv[:, 1:]
if c_contiguous:
fv = fv.copy()
return fv
def sift10k_read():
if not path.exists(SIFT10K_PATH):
raise Exception("SIFT not found")
base = fvecs_read(SIFT10K_PATH + 'sift_base.fvecs')
learn = fvecs_read(SIFT10K_PATH + 'sift_learn.fvecs')
query = fvecs_read(SIFT10K_PATH + 'sift_query.fvecs')
gt = ivecs_read(SIFT10K_PATH + 'sift_groundtruth.ivecs')
print(base.shape, learn.shape, query.shape)
return base, learn, query, gt
def sift1m_read():
if not path.exists(SIFT1M_PATH):
raise Exception("SIFT not found")
base = fvecs_read(SIFT1M_PATH + 'sift_base.fvecs')
learn = fvecs_read(SIFT1M_PATH + 'sift_learn.fvecs')
query = fvecs_read(SIFT1M_PATH + 'sift_query.fvecs')
gt = ivecs_read(SIFT1M_PATH + 'sift_groundtruth.ivecs')
print(base.shape, learn.shape, query.shape, gt.shape)
return base, learn, query, gt
class Sift(object):
"""docstring for Sift."""
def __init__(self, mode):
print(mode)
if (mode != "database" and mode != "train" and mode != "test" and mode != "all"):
raise AttributeError("Argument of mode is invalid.")
self._mode = mode
base, learn, query, gt = sift1m_read()
if mode == "database":
self.X = base
elif mode == "train":
self.X = base
elif mode == "test":
self.X = query
else:
self.X = base
self.GroundTruth = gt
self.base = base
self.learn = learn
self.query = query
self._counts = self.X.shape[0]
def Get(self, index):
return self.X[index]
@property
def SamplesCount(self):
return self._counts