-
Notifications
You must be signed in to change notification settings - Fork 3
/
Encoder_Alex.py
574 lines (489 loc) · 24.2 KB
/
Encoder_Alex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
# coding=utf-8
from __future__ import absolute_import
from __future__ import print_function, division
import time
import tensorflow as tf
from TripletLoss import *
from Utils import *
from Dataset import Dataset
from functools import reduce
import numpy as np
import math
ALEX_PATH = './data/models/alexnet.npy'
NUS_WORD_DICT = './data/nus21/nus21_wordvec.txt'
IMG_WORD_DICT = './data/imagenet/imagenet_wordvec.txt'
COCO_WORD_DICT = './data/coco/coco_wordvec.txt'
CIFAR_WORD_DICT = './data/cifar/cifar_wordvec.txt'
IMAGE_WIDTH = 256
IMAGE_HEIGHT = 256
def convolve(i, k):
return tf.nn.conv2d(i, k, [1, 1, 1, 1], padding='SAME')
class Encoder_Alex(object):
"""In Encoder(DVSQ), output feature dim is constant: 300 (The word embedding dim)"""
def __init__(self, dataset_name, batchSize, class_num, Lambda, subLevel=4, subCenters=256, multiLabel=False,
train=True):
self._stackLevel = subLevel
self._subCenters = subCenters
self._margin = 0.7
self._train = train
self.batch_size = batchSize
self.n_class = class_num
self._multiLabel = multiLabel
self._lambda = Lambda
self._name = dataset_name
# for primal test
self.loss_type = 'cos_softmargin_multi_label'
print("npy file loaded")
print(self.loss_type)
def Inference(self, x, labelHot):
self.alexnet(x)
self.buildEncoder(None)
self.ApplyLoss(labelHot)
def Inference_SIFT(self, x):
self.buildEncoder(x)
self.ApplyLossWithoutLabel()
def alexnet(self, inp):
self.train_layers = []
self.cluster_layer = []
self.distinction_layer = []
start_time = time.time()
PrintWithTime(BarFormat("build model started (AlexNet)"))
net_data = np.load(ALEX_PATH, encoding="latin1").item()
# swap(2,1,0)
reshaped_image = tf.cast(inp, tf.float32)
tm = tf.Variable([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=tf.float32)
reshaped_image = tf.reshape(
reshaped_image, [self.batch_size * IMAGE_WIDTH * IMAGE_HEIGHT, 3])
reshaped_image = tf.matmul(reshaped_image, tm)
reshaped_image = tf.reshape(
reshaped_image, [self.batch_size, IMAGE_WIDTH, IMAGE_HEIGHT, 3])
IMAGE_SIZE = 227
height = IMAGE_SIZE
width = IMAGE_SIZE
# Randomly crop a [height, width] section of each image
distorted_image = tf.stack([tf.random_crop(tf.image.random_flip_left_right(
each_image), [height, width, 3]) for each_image in tf.unstack(reshaped_image)])
# Zero-mean input
with tf.name_scope('preprocess') as scope:
mean = tf.constant([103.939, 116.779, 123.68], dtype=tf.float32, shape=[
1, 1, 1, 3], name='img-mean')
distorted_image = distorted_image - mean
''' ########### FOLLOWING STRUCTURES IN ALEXNET ########### '''
# Conv1
# Output 96, kernel 11, stride 4
with tf.name_scope('conv1') as scope:
kernel = tf.Variable(net_data['conv1'][0], name='weights')
conv = tf.nn.conv2d(distorted_image, kernel, [
1, 4, 4, 1], padding='VALID')
biases = tf.Variable(net_data['conv1'][1], name='biases')
out = tf.nn.bias_add(conv, biases)
self.conv1 = tf.nn.relu(out, name=scope)
self.train_layers += [kernel, biases]
# Pool1
self.pool1 = tf.nn.max_pool(self.conv1,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool1')
# LRN1
radius = 2
alpha = 2e-05
beta = 0.75
bias = 1.0
''' FOLLOWING LRN IN ALEXNET '''
self.lrn1 = tf.nn.local_response_normalization(self.pool1,
depth_radius=radius,
alpha=alpha,
beta=beta,
bias=bias)
# Conv2
# Output 256, pad 2, kernel 5, group 2
with tf.name_scope('conv2') as scope:
kernel = tf.Variable(net_data['conv2'][0], name='weights')
group = 2
input_groups = tf.split(
self.lrn1, axis=3, num_or_size_splits=group)
kernel_groups = tf.split(kernel, axis=3, num_or_size_splits=group)
output_groups = [convolve(i, k)
for i, k in zip(input_groups, kernel_groups)]
# Concatenate the groups
conv = tf.concat(output_groups, 3)
biases = tf.Variable(net_data['conv2'][1], name='biases')
out = tf.nn.bias_add(conv, biases)
self.conv2 = tf.nn.relu(out, name=scope)
self.train_layers += [kernel, biases]
# Pool2
self.pool2 = tf.nn.max_pool(self.conv2,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool2')
# LRN2
radius = 2
alpha = 2e-05
beta = 0.75
bias = 1.0
self.lrn2 = tf.nn.local_response_normalization(self.pool2,
depth_radius=radius,
alpha=alpha,
beta=beta,
bias=bias)
# Conv3
# Output 384, pad 1, kernel 3
with tf.name_scope('conv3') as scope:
kernel = tf.Variable(net_data['conv3'][0], name='weights')
conv = tf.nn.conv2d(self.lrn2, kernel, [
1, 1, 1, 1], padding='SAME')
biases = tf.Variable(net_data['conv3'][1], name='biases')
out = tf.nn.bias_add(conv, biases)
self.conv3 = tf.nn.relu(out, name=scope)
self.train_layers += [kernel, biases]
# Conv4
# Output 384, pad 1, kernel 3, group 2
with tf.name_scope('conv4') as scope:
kernel = tf.Variable(net_data['conv4'][0], name='weights')
group = 2
input_groups = tf.split(
self.conv3, axis=3, num_or_size_splits=group)
kernel_groups = tf.split(kernel, axis=3, num_or_size_splits=group)
output_groups = [convolve(i, k)
for i, k in zip(input_groups, kernel_groups)]
# Concatenate the groups
conv = tf.concat(output_groups, 3)
biases = tf.Variable(net_data['conv4'][1], name='biases')
out = tf.nn.bias_add(conv, biases)
self.conv4 = tf.nn.relu(out, name=scope)
self.train_layers += [kernel, biases]
# Conv5
# Output 256, pad 1, kernel 3, group 2
with tf.name_scope('conv5') as scope:
kernel = tf.Variable(net_data['conv5'][0], name='weights')
group = 2
input_groups = tf.split(
self.conv4, axis=3, num_or_size_splits=group)
kernel_groups = tf.split(kernel, axis=3, num_or_size_splits=group)
output_groups = [convolve(i, k)
for i, k in zip(input_groups, kernel_groups)]
# Concatenate the groups
conv = tf.concat(output_groups, 3)
biases = tf.Variable(net_data['conv5'][1], name='biases')
out = tf.nn.bias_add(conv, biases)
self.conv5 = tf.nn.relu(out, name=scope)
self.train_layers += [kernel, biases]
# Pool5
# [13, 13, 256] -> [6, 6, 256]
# Local Max Pooling
# out = LMP(self.conv5, p=3)
# combine the pooled results on same axis
# p * [ {(13 // p - 3) // 2 + 1} , 6, 256] -> [ p * {(13 // p - 3) // 2 + 1} , 6, 256]
# self.pool5 = tf.concat(out, axis=1, name='pool5')
# print(self.pool5.get_shape().as_list())
self.pool5 = tf.nn.max_pool(self.conv5,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool5')
# FC6
# Output 4096
with tf.name_scope('fc6') as _:
shape = int(np.prod(self.pool5.get_shape()[1:]))
fc6w = tf.Variable(net_data['fc6'][0], name='weights')
fc6b = tf.Variable(net_data['fc6'][1], name='biases')
pool5_flat = tf.reshape(self.pool5, [-1, shape])
self.fc5 = pool5_flat
fc6l = tf.nn.bias_add(tf.matmul(pool5_flat, fc6w), fc6b)
self.fc6 = tf.nn.dropout(tf.nn.relu(
fc6l), 0.5) if self._train else tf.nn.relu(fc6l)
self.train_layers += [fc6w, fc6b]
# FC7
# Output 4096
with tf.name_scope('fc7') as _:
fc7w = tf.Variable(net_data['fc7'][0], name='weights')
fc7b = tf.Variable(net_data['fc7'][1], name='biases')
fc7l = tf.nn.bias_add(tf.matmul(self.fc6, fc7w), fc7b)
self.fc7 = tf.nn.dropout(tf.nn.relu(
fc7l), 0.5) if self._train else tf.nn.relu(fc7l)
self.train_layers += [fc7w, fc7b]
with tf.name_scope('fc8') as _:
fc8w = tf.Variable(tf.random_normal([4096, 212],
dtype=tf.float32,
stddev=1e-2), name='weights')
fc8b = tf.Variable(tf.constant(0.0, shape=[212],
dtype=tf.float32), name='biases')
fc8l = tf.nn.bias_add(tf.matmul(self.fc7, fc8w), fc8b)
self.fc8 = tf.nn.dropout(tf.nn.relu(
fc8l), 0.5) if self._train else tf.nn.relu(fc8l)
self.fc8h = tf.nn.tanh(fc8l)
self.cluster_layer += [fc8w, fc8b]
self.distinction_layer += [fc8w, fc8b]
with tf.name_scope('fc9') as _:
fc9w = tf.Variable(tf.random_normal([212, 300],
dtype=tf.float32,
stddev=1e-2), name='weights')
fc9b = tf.Variable(tf.constant(0.0, shape=[300],
dtype=tf.float32), name='biases')
fc9l = tf.nn.bias_add(tf.matmul(self.fc8, fc9w), fc9b)
self.fc9 = tf.nn.tanh(fc9l)
self.cluster_layer += [fc9w, fc9b]
self.distinction_layer += [fc9w, fc9b]
# ''' ADD ONE MORE DENSE 4096 -> D '''
# FC8
# Output output_dim
# with tf.name_scope('fc8') as _:
# fc8w = tf.Variable(tf.random_normal([4096, 300],
# dtype=tf.float32,
# stddev=1e-2), name='weights')
# fc8b = tf.Variable(tf.constant(0.0, shape=[300],
# dtype=tf.float32), name='biases')
# self.fc8l = tf.nn.bias_add(tf.matmul(self.fc7, fc8w), fc8b)
# self.fc8 = tf.nn.tanh(self.fc8l)
# self.train_last_layer += [fc8w, fc8b]
# Classify
# Output label_num
# with tf.name_scope('cls') as _:
# clsw = tf.Variable(tf.random_normal([1748, self.n_class],
# dtype=tf.float32,
# stddev=1e-2), name='weights')
# clsb = tf.Variable(tf.constant(0.0, shape=[self.n_class],
# dtype=tf.float32), name='biases')
# self.cls = tf.nn.bias_add(tf.matmul(self.fc8, clsw), clsb)
# self.clsmax = tf.nn.softmax(self.cls)
# self.distinction_layer += [clsw, clsb]
self.quan = tf.concat([fc8l, fc9l], axis=1)
PrintWithTime(("build model finished: %ds" %
(time.time() - start_time)))
def buildEncoder(self, inp=None):
PrintWithTime("Deep Stacked Quantizer")
PrintWithTime(BarFormat("Integrating NetPQ"))
if inp is None:
self.X = self.quan
else:
self.X = inp
residual = self.X
self.HardCode = [None] * self._stackLevel
D = residual.get_shape().as_list()[-1]
N = residual.get_shape().as_list()[0]
# self.CodebookTransform = tf.Variable(tf.random_normal([D, D], dtype=tf.float32, stddev=1e-2),
# name="CodebookTransform")
# self.FeatureTransform = tf.Variable(tf.random_normal([D, D], dtype=tf.float32, stddev=1e-2),
# name="FeatureTransform")
self.CodebookScale = [
tf.Variable(tf.random_normal([1], dtype=tf.float32, stddev=1e-2), name='CodebookScale' + str(i),
trainable=True) for i in range(self._stackLevel - 1)]
# [nlevel, centers, D]
self.Codebook = tf.Variable(tf.random_normal([self._subCenters, D], dtype=tf.float32, stddev=1e-2),
name="Codebook", trainable=True)
# self.Transform = tf.Variable(tf.random_normal([self._stackLevel - 1, D, D], dtype=tf.float32, stddev=1e-2), name="Transform")
self.QSoft = tf.zeros([N, D])
self.QHard = tf.zeros([N, D])
self.SoftDistortion = tf.Variable(0.0, name="soft_distortion")
self.HardDistortion = tf.Variable(0.0, name="hard_distortion")
for level in range(self._stackLevel):
if level != 0:
scale = self.CodebookScale[level - 1]
codes = self.Codebook * scale
else:
codes = self.Codebook
# residual = residual @ self.FeatureTransform
# [N, d] · [d, k] -> [N, k]
distance = tf.matmul(residual, tf.transpose(codes, [1, 0]))
# [k]
Cm_square = tf.reduce_sum(tf.square(codes), axis=1)
# [N]
Xm_square = tf.reduce_sum(tf.square(residual), axis=1)
# meshgrid(k, N) -> [N, k]
meshX, meshY = tf.meshgrid(Cm_square, Xm_square)
# [N, k], l2 mod for all X and C
mod = tf.sqrt(tf.multiply(meshX, meshY))
# [N, k] distances, larger distance means more similar
distance = distance / mod
# [N, K] dot [K, D]
soft = tf.matmul(tf.nn.softmax(distance), codes)
code = tf.argmax(distance, axis=1)
self.HardCode[level] = code
hard = tf.gather(codes, code)
residual -= hard
# if level < self._stackLevel - 1:
# trans = tf.gather(self.Transform, level)
# residual = residual @ trans
self.QSoft += soft
self.QHard += hard
if level == 0:
self._8SoftDistortion = tf.reduce_mean(
tf.square(self.X - soft))
self._8HardDistortion = tf.reduce_mean(
tf.square(self.X - hard))
self._8JointCenter = tf.reduce_mean(
tf.square(soft - hard))
else:
self.SoftDistortion += tf.reduce_mean(
tf.square(self.X - self.QSoft))
self.HardDistortion += tf.reduce_mean(
tf.square(self.X - self.QHard))
# self.train_last_layer += [self.Codebook]
# self.classifyLastLayer += [self.Codebook]
PrintWithTime("NetPQ output: ")
print("Qsoft:", self.QSoft.get_shape())
print("Qhard:", self.QHard.get_shape())
def metric(self, X1, X2):
return tf.sqrt((X1 - X2) @ self.Mahalanobis @ tf.transpose(X1 - X2))
def ApplyLossWithoutLabel(self):
D = self.X.get_shape().as_list()[-1]
""" Quantization Loss """
# JCL
self.JointCenter = tf.reduce_mean(tf.square(self.QSoft - self.QHard))
# Distortion summarized at Inference
PrintWithTime(BarFormat("Loss built"))
def ApplyLoss(self, labelInt):
D = self.X.get_shape().as_list()[-1]
# self.Mahalanobis = tf.Variable(tf.random_normal([D, D], dtype=tf.float32, stddev=1e-2), name="Mahalanobis")
label = tf.cast(labelInt, tf.float32)
if self._name == 'NUS':
print(NUS_WORD_DICT)
word_dict = tf.constant(np.loadtxt(NUS_WORD_DICT), dtype=tf.float32)
elif self._name == 'COCO':
print(COCO_WORD_DICT)
word_dict = tf.constant(np.loadtxt(COCO_WORD_DICT), dtype=tf.float32)
elif self._name == 'IMAGENET':
print(IMG_WORD_DICT)
word_dict = tf.constant(np.loadtxt(IMG_WORD_DICT), dtype=tf.float32)
else:
print(CIFAR_WORD_DICT)
word_dict = tf.constant(np.loadtxt(CIFAR_WORD_DICT), dtype=tf.float32)
if self.loss_type == 'cos_margin_multi_label':
# apply L = sum(sum(max(0, delta - cos1 + cos2)))
# equation (1) in paper
# hard margin just set delta = constant
margin_param = tf.constant(self._margin, dtype=tf.float32)
# N: batch_num, L: label_dim, D: 300
# img_label: N * L
# word_dic: L * D
# v_label: N * L * D
# the correct label embedding {Vi}
# label is k-hot (multi-label)
# the v_label is
# [[[ 0, 0, 0],
# [ 0, 0, 0],
# [-1, -2, -3],
# [ 0, 0, 0]],
# [[ 2, 3, 4],
# [ 0, 0, 0],
# [-1, -2, -3],
# [ 0, 0, 0]],
# [[ 2, 3, 4],
# [ 7, 8, 9],
# [ 0, 0, 0],
# [ 0, 0, 0]]]
# determine that for x1, the label is [0,0,1,0] and pick the 3rd word vec
# x2 is [1,0,1,0] and pick the 1st and 3rd word vecs. etc.
v_label = tf.multiply(tf.expand_dims(
label, 2), tf.expand_dims(word_dict, 0))
# img_last: N * D
# ip_1: N * L
# dot product: < {Vi}.T, Z >, here has broadcasting
# [N, 1, D] * [N, L, D] = [N, L, D], sum -> [N, L]
ip_1 = tf.reduce_sum(tf.multiply(
tf.expand_dims(self.fc9, 1), v_label), 2)
# mod_1: N * L
# || Vi || * || Z ||
v_label_mod = tf.multiply(tf.expand_dims(
tf.ones([self.batch_size, self.n_class]), 2), tf.expand_dims(word_dict, 0))
mod_1 = tf.sqrt(tf.multiply(tf.expand_dims(tf.reduce_sum(
tf.square(self.fc9), 1), 1), tf.reduce_sum(tf.square(v_label_mod), 2)))
# mod_1 = tf.where(tf.less(mod_1_1, tf.constant(0.0000001)),
# tf.ones([self.batch_size, self.n_class]), mod_1_1)
# cos_1: N * L
cos_1 = tf.div(ip_1, mod_1)
# all label embedding {V}
ip_2 = tf.matmul(self.fc9, word_dict, transpose_b=True)
# multiply ids to inner product
# ip_2 = tf.multiply(ip_2_1, ids_dict)
def reduce_shaper(t):
return tf.reshape(tf.reduce_sum(t, 1), [tf.shape(t)[0], 1])
# same calculation as mod_1, 很迷的操作
mod_2_2 = tf.sqrt(tf.matmul(reduce_shaper(tf.square(self.fc9)), reduce_shaper(
tf.square(word_dict)), transpose_b=True))
# pick where label is 1, set them to 0, 相当于去掉对的词
mod_2 = tf.where(tf.less(mod_2_2, tf.constant(0.0000001)), tf.ones(
[self.batch_size, self.n_class]), mod_2_2)
# cos_2: N * L
cos_2 = tf.div(ip_2, mod_2)
# cos - cos: N * L * L
# delta - cos1 + cos2
cos_cos_1 = tf.subtract(margin_param, tf.subtract(
tf.expand_dims(cos_1, 2), tf.expand_dims(cos_2, 1)))
# we need to let the wrong place be 0
# only use i∈Y, as in the first sum
cos_cos = tf.multiply(cos_cos_1, tf.expand_dims(label, 2))
# sum up
cos_loss = tf.reduce_sum(tf.maximum(
tf.constant(0, dtype=tf.float32), cos_cos))
# average them here is the total num of sample
self.Clustering = tf.div(cos_loss, tf.multiply(tf.constant(
self.n_class, dtype=tf.float32), tf.reduce_sum(label)))
elif self.loss_type == 'cos_softmargin_multi_label':
# N: batchsize, L: label_dim, D: 300
# img_label: N * L
# word_dic: L * D
# v_label: N * L * D
v_label = tf.multiply(tf.expand_dims(label, 2), tf.expand_dims(word_dict, 0))
# img_last: N * D
# ip_1: N * L
ip_1 = tf.reduce_sum(tf.multiply(tf.expand_dims(self.fc9, 1), v_label), 2)
# mod_1: N * L
v_label_mod = tf.multiply(tf.expand_dims(tf.ones([self.batch_size, self.n_class]), 2),
tf.expand_dims(word_dict, 0))
mod_1 = tf.sqrt(tf.multiply(tf.expand_dims(tf.reduce_sum(tf.square(self.fc9), 1), 1),
tf.reduce_sum(tf.square(v_label_mod), 2)))
# mod_1 = tf.where(tf.less(mod_1_1, tf.constant(0.0000001)),
# tf.ones([self.batch_size, self.n_class]), mod_1_1)
# cos_1: N * L
cos_1 = tf.div(ip_1, mod_1)
ip_2 = tf.matmul(self.fc9, word_dict, transpose_b=True)
# multiply ids to inner product
# ip_2 = tf.multiply(ip_2_1, ids_dict)
def reduce_shaper(t):
return tf.reshape(tf.reduce_sum(t, 1), [tf.shape(t)[0], 1])
mod_2_2 = tf.sqrt(tf.matmul(reduce_shaper(tf.square(self.fc9)), reduce_shaper(
tf.square(word_dict)), transpose_b=True))
mod_2 = tf.where(tf.less(mod_2_2, tf.constant(0.0000001)), tf.ones(
[self.batch_size, self.n_class]), mod_2_2)
# cos_2: N * L
cos_2 = tf.div(ip_2, mod_2)
# word_dic: L * D
# ip_3: L * L
# compute soft margin
ip_3 = tf.matmul(word_dict, word_dict, transpose_b=True)
# use word_dic to avoid 0 in /
mod_3 = tf.sqrt(tf.matmul(reduce_shaper(tf.square(word_dict)), reduce_shaper(
tf.square(word_dict)), transpose_b=True))
# soft_margin is explained as paper
margin_param = 1 - (ip_3 / mod_3)
# cos - cos: N * L * L
cos_cos_1 = tf.subtract(tf.expand_dims(margin_param, 0), tf.subtract(
tf.expand_dims(cos_1, 2), tf.expand_dims(cos_2, 1)))
# we need to let the wrong place be 0
cos_cos = tf.multiply(cos_cos_1, tf.expand_dims(label, 2))
cos_loss = tf.reduce_sum(tf.maximum(
tf.constant(0, dtype=tf.float32), cos_cos))
self.Clustering = tf.div(cos_loss, tf.multiply(tf.constant(
self.n_class, dtype=tf.float32), tf.reduce_sum(label)))
# anchor : [N, D]
# sparse anchor label : N * [N, label_dim] list
# associated positives: [N, D]
# we first collect a batch of anchor, then randomly find positives along with anchor
# the labels of anchors are tf.sparse.SparseTensor, is the label for the anchor-positive pairs
# self.npair_loss = tf.contrib.losses.metric_learning.npairs_loss_multilabel()
# self.Margin = tf.Variable(1.0, trainable=False, name="triplet_margin")
self.Distinction = tf.reduce_mean(
triplet_semihard_loss_multilabel(labelInt, tf.nn.l2_normalize(self.quan, 1), use_cos=False, margin=2.5))
# self.Distinction = self._lambda * tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.cls,
# labels=label) if not self._multiLabel else tf.nn.sigmoid_cross_entropy_with_logits(
# logits=self.cls, labels=label))
print("Multi Label:", self._multiLabel)
self.loss = self.Clustering + self.Distinction
""" Quantization Loss """
# JCL
self.JointCenter = tf.reduce_mean(tf.square(self.QSoft - self.QHard))
# Distortion summarized at Inference
PrintWithTime(BarFormat("Loss built"))