-
Notifications
You must be signed in to change notification settings - Fork 3
/
Cifar.py
186 lines (146 loc) · 5.19 KB
/
Cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/env python
from __future__ import absolute_import
from __future__ import print_function, division
import os
from os import path
import numpy as np
import pickle as p
import cv2
from Utils import ProgressBar
import sys
py3 = sys.version_info >= (3, 4)
# Global constants describing the CIFAR-10 data set.
NUM_CLASSES = 10
LABEL_NAME = ["airplane", "automobile", "bird", "cat",
"deer", "dog", "frog", "horse", "ship", "truck"]
TRAINX = "./data/cifar/train_x.npy"
TRAINY = "./data/cifar/train_y.npy"
TESTX = "./data/cifar/test_x.npy"
TESTY = "./data/cifar/test_y.npy"
DATABASEX = "./data/cifar/data_x.npy"
DATABASEY = "./data/cifar/data_y.npy"
class Cifar(object):
"""docstring for Cifar."""
def __init__(self, mode, resizeWidth, resizeHeight):
print(TRAINX)
if (mode != "database" and mode != "train" and mode != "query" and mode != "all"):
raise AttributeError("Argument of mode is invalid.")
self._mode = mode
self.TrainName = ["data_batch_1", "data_batch_2",
"data_batch_3", "data_batch_4", "data_batch_5"]
self.TestName = ["test_batch"]
self.DataFolder = "./data/cifar-10-batches-py"
self._width = resizeWidth
self._height = resizeHeight
self.readCifar()
self._counts = self.X.shape[0]
def ReadAll(self):
imgs = list()
labels = list()
filenames = [path.join(self.DataFolder, name)
for name in (self.TrainName + self.TestName)]
for f in filenames:
x, y = LoadCifarFile(f)
imgs.append(x)
labels.append(y)
imgs = np.array(imgs)
labels = np.array(labels)
X = imgs.reshape(
(-1, imgs.shape[2], imgs.shape[3], imgs.shape[4]))
Y = labels.reshape((-1))
idx = np.random.permutation(X.shape[0])
self.X = X[idx]
self.Y = Y[idx]
def readCifar(self):
if self._mode == "all":
print('all')
self.ReadAll()
self.DataNum = self.X.shape[0]
self.ClassNum = NUM_CLASSES
self.n_samples = self.DataNum
self.Onehot()
print("Loaded from Saved file")
print("Label shape:", self.Y.shape)
print("Data shape:", self.X.shape)
return
if self._mode == "database":
print('database')
self.X = np.load(DATABASEX).astype(np.uint8)
self.Y = np.load(DATABASEY)
self.DataNum = self.X.shape[0]
self.ClassNum = NUM_CLASSES
self.n_samples = self.DataNum
self.Onehot()
print("Loaded from Saved file")
print("Label shape:", self.Y.shape)
print("Data shape:", self.X.shape)
return
if self._mode == "train":
print('train')
self.X = np.load(TRAINX).astype(np.uint8)
self.Y = np.load(TRAINY)
self.DataNum = self.X.shape[0]
self.ClassNum = NUM_CLASSES
self.n_samples = self.DataNum
self.Onehot()
print("Loaded from Saved file")
print("Label shape:", self.Y.shape)
print("Data shape:", self.X.shape)
return
else:
print('query')
self.X = np.load(TESTX).astype(np.uint8)
self.Y = np.load(TESTY)
self.DataNum = self.X.shape[0]
self.ClassNum = NUM_CLASSES
self.n_samples = self.DataNum
self.Onehot()
print("Loaded from Saved file")
print("Label shape:", self.Y.shape)
print("Data shape:", self.X.shape)
return
def Onehot(self):
# one-hot encoding
y = np.zeros((self.X.shape[0], 10), dtype=int)
y[range(self.X.shape[0]), self.Y] = 1
self.Y = y
def Check(self):
rnd_idx = np.random.permutation(self.X.shape[0])
i = 0
import matplotlib.pyplot as plt
_, axes = plt.subplots(4, 4)
for ax in axes.ravel():
ax.imshow(self.X[rnd_idx[i]].astype(int))
ax.set_title(LABEL_NAME[self.Y[rnd_idx[i]]])
i += 1
plt.show()
def resizeX(self, X, w, h):
N = X.shape[0]
# Resize img to 256 * 256
resized = np.zeros((N, h, w, 3))
for i in range(N):
resized[i] = cv2.resize(X[i], (w, h), interpolation=cv2.INTER_LANCZOS4)
return resized
# normalize [0~255] to [-1, 1]]
def normalize(self, inp):
inp /= 255.0
inp = 2 * inp - 1.0
return inp
def Get(self, index):
return self.resizeX(self.X[index], self._width, self._height), self.Y[index]
def GetX(self):
return self.resizeX(self.X, self._width, self._height)
@property
def SamplesCount(self):
return self._counts
def LoadCifarFile(filename):
with open(filename, 'rb') as f:
if py3:
datadict = p.load(f, encoding='latin-1')
else:
datadict = p.load(f)
X = datadict['data']
Y = datadict['labels']
X = X.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).astype("float")
Y = np.array(Y)
return X, Y