-
Notifications
You must be signed in to change notification settings - Fork 25
/
config.py
197 lines (186 loc) · 6.58 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import configargparse
def config_parser():
parser = configargparse.ArgumentParser()
# general
parser.add_argument("--config", is_config_file=True, help="config file path")
parser.add_argument(
"--rootdir",
type=str,
default="./",
help="the path to the project root directory. Replace this path with yours!",
)
parser.add_argument("--expname", type=str, help="experiment name")
parser.add_argument("--distributed", action="store_true", help="if use distributed training")
parser.add_argument("--local_rank", type=int, default=0, help="rank for distributed training")
parser.add_argument(
"-j",
"--workers",
default=8,
type=int,
metavar="N",
help="number of data loading workers (default: 8)",
)
########## dataset options ##########
## train and eval dataset
parser.add_argument(
"--train_dataset",
type=str,
default="ibrnet_collected",
help="the training dataset, should either be a single dataset, "
'or multiple datasets connected with "+", for example, ibrnet_collected+llff+spaces',
)
parser.add_argument(
"--dataset_weights",
nargs="+",
type=float,
default=[],
help="the weights for training datasets, valid when multiple datasets are used.",
)
parser.add_argument(
"--train_scenes",
nargs="+",
default=[],
help="optional, specify a subset of training scenes from training dataset",
)
parser.add_argument(
"--eval_dataset", type=str, default="llff_test", help="the dataset to evaluate"
)
parser.add_argument(
"--eval_scenes",
nargs="+",
default=[],
help="optional, specify a subset of scenes from eval_dataset to evaluate",
)
## others
parser.add_argument(
"--testskip",
type=int,
default=8,
help="will load 1/N images from test/val sets, "
"useful for large datasets like deepvoxels or nerf_synthetic",
)
########## model options ##########
## ray sampling options
parser.add_argument(
"--sample_mode",
type=str,
default="uniform",
help="how to sample pixels from images for training:" "uniform|center",
)
parser.add_argument(
"--center_ratio", type=float, default=0.8, help="the ratio of center crop to keep"
)
parser.add_argument(
"--N_rand",
type=int,
default=32 * 16,
help="batch size (number of random rays per gradient step)",
)
parser.add_argument(
"--chunk_size",
type=int,
default=1024 * 4,
help="number of rays processed in parallel, decrease if running out of memory",
)
## model options
parser.add_argument(
"--coarse_feat_dim", type=int, default=32, help="2D feature dimension for coarse level"
)
parser.add_argument(
"--fine_feat_dim", type=int, default=32, help="2D feature dimension for fine level"
)
parser.add_argument(
"--num_source_views",
type=int,
default=10,
help="the number of input source views for each target view",
)
parser.add_argument(
"--rectify_inplane_rotation", action="store_true", help="if rectify inplane rotation"
)
parser.add_argument("--coarse_only", action="store_true", help="use coarse network only")
parser.add_argument(
"--anti_alias_pooling", type=int, default=1, help="if use anti-alias pooling"
)
parser.add_argument("--trans_depth", type=int, default=4, help="number of transformer layers")
parser.add_argument("--netwidth", type=int, default=64, help="network intermediate dimension")
parser.add_argument(
"--single_net",
type=bool,
default=True,
help="use single network for both coarse and/or fine sampling",
)
########## checkpoints ##########
parser.add_argument(
"--no_reload", action="store_true", help="do not reload weights from saved ckpt"
)
parser.add_argument(
"--ckpt_path",
type=str,
default="",
help="specific weights npy file to reload for coarse network",
)
parser.add_argument(
"--no_load_opt", action="store_true", help="do not load optimizer when reloading"
)
parser.add_argument(
"--no_load_scheduler", action="store_true", help="do not load scheduler when reloading"
)
########### iterations & learning rate options ##########
parser.add_argument("--n_iters", type=int, default=250000, help="num of iterations")
parser.add_argument(
"--lrate_feature", type=float, default=1e-3, help="learning rate for feature extractor"
)
parser.add_argument("--lrate_gnt", type=float, default=5e-4, help="learning rate for gnt")
parser.add_argument(
"--lrate_decay_factor",
type=float,
default=0.5,
help="decay learning rate by a factor every specified number of steps",
)
parser.add_argument(
"--lrate_decay_steps",
type=int,
default=50000,
help="decay learning rate by a factor every specified number of steps",
)
########## rendering options ##########
parser.add_argument(
"--N_samples", type=int, default=64, help="number of coarse samples per ray"
)
parser.add_argument(
"--N_importance", type=int, default=64, help="number of important samples per ray"
)
parser.add_argument(
"--inv_uniform", action="store_true", help="if True, will uniformly sample inverse depths"
)
parser.add_argument(
"--det", action="store_true", help="deterministic sampling for coarse and fine samples"
)
parser.add_argument(
"--white_bkgd",
action="store_true",
help="apply the trick to avoid fitting to white background",
)
parser.add_argument(
"--render_stride",
type=int,
default=1,
help="render with large stride for validation to save time",
)
########## logging/saving options ##########
parser.add_argument("--i_print", type=int, default=100, help="frequency of terminal printout")
parser.add_argument(
"--i_img", type=int, default=500, help="frequency of tensorboard image logging"
)
parser.add_argument(
"--i_weights", type=int, default=10000, help="frequency of weight ckpt saving"
)
########## evaluation options ##########
parser.add_argument(
"--llffhold",
type=int,
default=8,
help="will take every 1/N images as LLFF test set, paper uses 8",
)
return parser