forked from RimaSGH/Lab_Project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Orange_ML_target_taxa.ows
354 lines (354 loc) · 36.2 KB
/
Orange_ML_target_taxa.ows
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
<?xml version='1.0' encoding='utf-8'?>
<scheme version="2.0" title="" description="">
<nodes>
<node id="0" name="Data Table" qualified_name="Orange.widgets.data.owtable.OWTable" project_name="Orange3" version="" title="Data Table" position="(623.2424242424245, 290.7142857142858)" />
<node id="1" name="File" qualified_name="Orange.widgets.data.owfile.OWFile" project_name="Orange3" version="" title="File" position="(469.3333333333335, 294.6190476190477)" />
<node id="2" name="Data Sampler" qualified_name="Orange.widgets.data.owdatasampler.OWDataSampler" project_name="Orange3" version="" title="Data Sampler" position="(1765.075757575757, 265.2738095238095)" />
<node id="3" name="Feature Statistics" qualified_name="Orange.widgets.data.owfeaturestatistics.OWFeatureStatistics" project_name="Orange3" version="" title="Feature Statistics" position="(762.575757575758, 143.71428571428567)" />
<node id="4" name="kNN" qualified_name="Orange.widgets.model.owknn.OWKNNLearner" project_name="Orange3" version="" title="kNN" position="(1373.932900432901, 523.511904761905)" />
<node id="5" name="Gradient Boosting" qualified_name="Orange.widgets.model.owgradientboosting.OWGradientBoosting" project_name="Orange3" version="" title="Gradient Boosting" position="(1785.6471861471864, 583.7500000000002)" />
<node id="6" name="SVM" qualified_name="Orange.widgets.model.owsvm.OWSVM" project_name="Orange3" version="" title="SVM" position="(746.0757575757575, 516.4166666666665)" />
<node id="7" name="Neural Network" qualified_name="Orange.widgets.model.owneuralnetwork.OWNNLearner" project_name="Orange3" version="" title="Neural Network" position="(887.4805194805194, 507.0952380952381)" />
<node id="8" name="Random Forest" qualified_name="Orange.widgets.model.owrandomforest.OWRandomForest" project_name="Orange3" version="" title="Random Forest" position="(614.2662337662341, 500.4166666666665)" />
<node id="9" name="Test and Score" qualified_name="Orange.widgets.evaluate.owtestandscore.OWTestAndScore" project_name="Orange3" version="" title="Test and Score" position="(1405.5360750360755, 742.011904761905)" />
<node id="10" name="Predictions" qualified_name="Orange.widgets.evaluate.owpredictions.OWPredictions" project_name="Orange3" version="" title="Predictions on labeled data" position="(1636.3376623376626, 721.3214285714284)" />
<node id="11" name="Confusion Matrix" qualified_name="Orange.widgets.evaluate.owconfusionmatrix.OWConfusionMatrix" project_name="Orange3" version="" title="Confusion Matrix" position="(1618.4805194805203, 838.9523809523807)" />
<node id="12" name="Select Rows" qualified_name="Orange.widgets.data.owselectrows.OWSelectRows" project_name="Orange3" version="" title="Select Leviviruses" position="(807.7186147186148, 293.8571428571427)" />
<node id="13" name="Select Rows" qualified_name="Orange.widgets.data.owselectrows.OWSelectRows" project_name="Orange3" version="" title="Select unlabeled data" position="(1511.614718614719, 241.4069264069263)" />
<node id="14" name="Data Sampler" qualified_name="Orange.widgets.data.owdatasampler.OWDataSampler" project_name="Orange3" version="" title="Downsample Levi" position="(1052.4567099567103, 187.36904761904748)" />
<node id="15" name="Concatenate" qualified_name="Orange.widgets.data.owconcatenate.OWConcatenate" project_name="Orange3" version="" title="Concatenate" position="(1306.909090909091, 266.95238095238096)" />
<node id="16" name="Naive Bayes" qualified_name="Orange.widgets.model.ownaivebayes.OWNaiveBayes" project_name="Orange3" version="" title="Naive Bayes" position="(1647.1948051948057, 566.3333333333333)" />
<node id="17" name="AdaBoost" qualified_name="Orange.widgets.model.owadaboost.OWAdaBoost" project_name="Orange3" version="" title="AdaBoost" position="(1213.1948051948057, 509.0000000000002)" />
<node id="18" name="CN2 Rule Induction" qualified_name="Orange.widgets.model.owrules.OWRuleLearner" project_name="Orange3" version="" title="CN2 Rule Induction" position="(1064.5281385281387, 512.0000000000001)" />
</nodes>
<links>
<link id="0" source_node_id="1" sink_node_id="0" source_channel="Data" sink_channel="Data" enabled="true" source_channel_id="data" sink_channel_id="data" />
<link id="1" source_node_id="0" sink_node_id="3" source_channel="Selected Data" sink_channel="Data" enabled="true" source_channel_id="selected_data" sink_channel_id="data" />
<link id="2" source_node_id="9" sink_node_id="10" source_channel="Predictions" sink_channel="Data" enabled="true" source_channel_id="predictions" sink_channel_id="data" />
<link id="3" source_node_id="2" sink_node_id="4" source_channel="Data Sample" sink_channel="Data" enabled="true" source_channel_id="data_sample" sink_channel_id="data" />
<link id="4" source_node_id="4" sink_node_id="9" source_channel="Learner" sink_channel="Learner" enabled="true" source_channel_id="learner" sink_channel_id="learner" />
<link id="5" source_node_id="9" sink_node_id="11" source_channel="Evaluation Results" sink_channel="Evaluation Results" enabled="true" source_channel_id="evaluations_results" sink_channel_id="evaluation_results" />
<link id="6" source_node_id="2" sink_node_id="5" source_channel="Data Sample" sink_channel="Data" enabled="true" source_channel_id="data_sample" sink_channel_id="data" />
<link id="7" source_node_id="5" sink_node_id="9" source_channel="Learner" sink_channel="Learner" enabled="true" source_channel_id="learner" sink_channel_id="learner" />
<link id="8" source_node_id="2" sink_node_id="6" source_channel="Data Sample" sink_channel="Data" enabled="true" source_channel_id="data_sample" sink_channel_id="data" />
<link id="9" source_node_id="6" sink_node_id="9" source_channel="Learner" sink_channel="Learner" enabled="true" source_channel_id="learner" sink_channel_id="learner" />
<link id="10" source_node_id="2" sink_node_id="8" source_channel="Data Sample" sink_channel="Data" enabled="true" source_channel_id="data_sample" sink_channel_id="data" />
<link id="11" source_node_id="8" sink_node_id="9" source_channel="Learner" sink_channel="Learner" enabled="true" source_channel_id="learner" sink_channel_id="learner" />
<link id="12" source_node_id="14" sink_node_id="15" source_channel="Data Sample" sink_channel="Additional Data" enabled="true" source_channel_id="data_sample" sink_channel_id="additional_data" />
<link id="13" source_node_id="15" sink_node_id="13" source_channel="Data" sink_channel="Data" enabled="true" source_channel_id="data" sink_channel_id="data" />
<link id="14" source_node_id="12" sink_node_id="14" source_channel="Matching Data" sink_channel="Data" enabled="true" source_channel_id="matching_data" sink_channel_id="data" />
<link id="15" source_node_id="12" sink_node_id="15" source_channel="Unmatched Data" sink_channel="Primary Data" enabled="true" source_channel_id="unmatched_data" sink_channel_id="primary_data" />
<link id="16" source_node_id="2" sink_node_id="7" source_channel="Data Sample" sink_channel="Data" enabled="true" source_channel_id="data_sample" sink_channel_id="data" />
<link id="17" source_node_id="7" sink_node_id="9" source_channel="Learner" sink_channel="Learner" enabled="true" source_channel_id="learner" sink_channel_id="learner" />
<link id="18" source_node_id="13" sink_node_id="2" source_channel="Unmatched Data" sink_channel="Data" enabled="true" source_channel_id="unmatched_data" sink_channel_id="data" />
<link id="19" source_node_id="2" sink_node_id="9" source_channel="Data Sample" sink_channel="Data" enabled="true" source_channel_id="data_sample" sink_channel_id="train_data" />
<link id="20" source_node_id="2" sink_node_id="9" source_channel="Remaining Data" sink_channel="Test Data" enabled="true" source_channel_id="remaining_data" sink_channel_id="test_data" />
<link id="21" source_node_id="2" sink_node_id="16" source_channel="Data Sample" sink_channel="Data" enabled="true" source_channel_id="data_sample" sink_channel_id="data" />
<link id="22" source_node_id="16" sink_node_id="9" source_channel="Learner" sink_channel="Learner" enabled="true" source_channel_id="learner" sink_channel_id="learner" />
<link id="23" source_node_id="2" sink_node_id="17" source_channel="Data Sample" sink_channel="Data" enabled="true" source_channel_id="data_sample" sink_channel_id="data" />
<link id="24" source_node_id="17" sink_node_id="9" source_channel="Learner" sink_channel="Learner" enabled="true" source_channel_id="learner" sink_channel_id="learner" />
<link id="25" source_node_id="2" sink_node_id="18" source_channel="Data Sample" sink_channel="Data" enabled="true" source_channel_id="data_sample" sink_channel_id="data" />
<link id="26" source_node_id="18" sink_node_id="9" source_channel="Learner" sink_channel="Learner" enabled="true" source_channel_id="learner" sink_channel_id="learner" />
<link id="27" source_node_id="0" sink_node_id="12" source_channel="Data" sink_channel="Data" enabled="true" source_channel_id="annotated_data" sink_channel_id="data" />
</links>
<annotations />
<thumbnail />
<node_properties>
<properties node_id="0" format="literal">{'auto_commit': True, 'color_by_class': True, 'controlAreaVisible': True, 'savedWidgetGeometry': b'\x01\xd9\xd0\xcb\x00\x03\x00\x00\x00\x00\x01A\x00\x00\x00j\x00\x00\x04`\x00\x00\x02[\x00\x00\x01A\x00\x00\x00j\x00\x00\x04`\x00\x00\x02[\x00\x00\x00\x00\x00\x00\x00\x00\x05\xb7\x00\x00\x01A\x00\x00\x00j\x00\x00\x04`\x00\x00\x02[', 'select_rows': True, 'show_attribute_labels': True, 'show_distributions': True, 'stored_selection': {'rows': [], 'columns': []}, 'stored_sort': [], '__version__': 1}</properties>
<properties node_id="1" format="pickle">gASVrxIAAAAAAAB9lCiMEmNvbnRyb2xBcmVhVmlzaWJsZZSIjAxyZWNlbnRfcGF0aHOUXZQojB5v
cmFuZ2V3aWRnZXQudXRpbHMuZmlsZWRpYWxvZ3OUjApSZWNlbnRQYXRolJOUKYGUfZQojAdhYnNw
YXRolIxYL2hvbWUvbmVyaS93b3JrL1JpbWEvZ2l0aHViL1JOQWZvbGRfdmlydXMvTm9ybWFsaXpl
ZF9TdHJ1Y3R1cmFsX0VsZW1lbnRfd2l0aF9sZW5ndGhzLnRzdpSMBnByZWZpeJSMB2Jhc2VkaXKU
jAdyZWxwYXRolIwuTm9ybWFsaXplZF9TdHJ1Y3R1cmFsX0VsZW1lbnRfd2l0aF9sZW5ndGhzLnRz
dpSMBXRpdGxllIwAlIwFc2hlZXSUaBCMC2ZpbGVfZm9ybWF0lE51YmgGKYGUfZQoaAmMUC9ob21l
L25lcmkvd29yay9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvT3Jhbmdl
L2RhdGFzZXRzL2lyaXMudGFilGgLjA9zYW1wbGUtZGF0YXNldHOUaA2MCGlyaXMudGFilGgPaBBo
EWgQaBJOdWJoBimBlH2UKGgJjFMvaG9tZS9uZXJpL3dvcmsvbWluaWNvbmRhMy9saWIvcHl0aG9u
My4xMC9zaXRlLXBhY2thZ2VzL09yYW5nZS9kYXRhc2V0cy90aXRhbmljLnRhYpRoC2gWaA2MC3Rp
dGFuaWMudGFilGgPaBBoEWgQaBJOdWJoBimBlH2UKGgJjFMvaG9tZS9uZXJpL3dvcmsvbWluaWNv
bmRhMy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL09yYW5nZS9kYXRhc2V0cy9ob3VzaW5n
LnRhYpRoC2gWaA2MC2hvdXNpbmcudGFilGgPaBBoEWgQaBJOdWJoBimBlH2UKGgJjFkvaG9tZS9u
ZXJpL3dvcmsvbWluaWNvbmRhMy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL09yYW5nZS9k
YXRhc2V0cy9oZWFydF9kaXNlYXNlLnRhYpRoC2gWaA2MEWhlYXJ0X2Rpc2Vhc2UudGFilGgPaBBo
EWgQaBJOdWJoBimBlH2UKGgJjFovaG9tZS9uZXJpL3dvcmsvbWluaWNvbmRhMy9saWIvcHl0aG9u
My4xMC9zaXRlLXBhY2thZ2VzL09yYW5nZS9kYXRhc2V0cy9icm93bi1zZWxlY3RlZC50YWKUaAto
FmgNjBJicm93bi1zZWxlY3RlZC50YWKUaA9oEGgRaBBoEk51YmgGKYGUfZQoaAmMTy9ob21lL25l
cmkvd29yay9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvT3JhbmdlL2Rh
dGFzZXRzL3pvby50YWKUaAtoFmgNjAd6b28udGFilGgPaBBoEWgQaBJOdWJljAtyZWNlbnRfdXJs
c5RdlIwTc2F2ZWRXaWRnZXRHZW9tZXRyeZRDQgHZ0MsAAwAAAAABpAAAAB4AAAP7AAAClgAAAaQA
AAAeAAAD+wAAApYAAAAAAAAAAAW3AAABpAAAAB4AAAP7AAAClpSMC3NoZWV0X25hbWVzlH2UjAZz
b3VyY2WUSwCMA3VybJRoEIwNZG9tYWluX2VkaXRvcpR9lIwLX192ZXJzaW9uX1+USwGMEGNvbnRl
eHRfc2V0dGluZ3OUXZQojBVvcmFuZ2V3aWRnZXQuc2V0dGluZ3OUjAdDb250ZXh0lJOUKYGUfZQo
jAZ2YWx1ZXOUfZQojAl2YXJpYWJsZXOUXZRoNH2UaEBdlChdlCiMCUZlYXR1cmUgMZSMFE9yYW5n
ZS5kYXRhLnZhcmlhYmxllIwQRGlzY3JldGVWYXJpYWJsZZSTlEsDaBCIZV2UKIwEVGF4YZRoSEsB
jJtBbWFsZ2F2aXJpZGFlLCBBcmVuYXZpcmlkYWUsIENocnlzb3ZpcmlkYWUsIEN5c3RvdmlyaWRh
ZSwgRmxhdml2aXJpZGFlLCBIZXBldmlyaWRhZSwgTGV2aXZpcmljZXRlcywgTXltb25hdmlyaWRh
ZSwgUmlib3p5LCBTZWNvdmlyaWRhZSwgcC4wMDAyLmJhc2UtS2l0cmlub5SJZV2UKIwIUG9sYXJp
dHmUaEhLA4wiVW5rbm93biwgZHNSTkEsIHNzUk5BKCspLCBzc1JOQSgtKZSJZV2UKIwJU2VnbWVu
dGVklGhISwNoEIhlXZQojAZsZW5ndGiUaEaMEkNvbnRpbnVvdXNWYXJpYWJsZZSTlEsDaBCIZV2U
KIwLZnJlZV9lbmVyZ3mUaFRLAGgQiGVdlCiMDnVucGFpcmVkX3JhdGlvlGhUSwBoEIhlXZQojAVz
dGVtc5RoVEsAaBCIZV2UKIwKbXVsdGlsb29wc5RoVEsAaBCIZV2UKIwIaGFpcnBpbnOUaFRLAGgQ
iGVdlCiMDmludGVyaW9yX2xvb3BzlGhUSwBoEIhlXZQojBNzdGVtc19tZWRpYW5fbGVuZ3RolGhU
SwBoEIhlXZQojBxpbnRlcmlvcl9sb29wc19tZWRpYW5fbGVuZ3RolGhUSwBoEIhlXZQojBZoYWly
cGluc19tZWRpYW5fbGVuZ3RolGhUSwBoEIhlXZQojBNUb3RhbF9FbGVtZW50X0NvdW50lGhUSwBo
EIhlXZQojARuYW1llGhGjA5TdHJpbmdWYXJpYWJsZZSTlEsCaBCJZWVzaDZLAXWMCmF0dHJpYnV0
ZXOUKGhFSwKGlGhKXZQojA1BbWFsZ2F2aXJpZGFllIwMQXJlbmF2aXJpZGFllIwNQ2hyeXNvdmly
aWRhZZSMDEN5c3RvdmlyaWRhZZSMDEZsYXZpdmlyaWRhZZSMC0hlcGV2aXJpZGFllIwNTGV2aXZp
cmljZXRlc5SMDU15bW9uYXZpcmlkYWWUjAZSaWJvenmUjAtTZWNvdmlyaWRhZZSME3AuMDAwMi5i
YXNlLUtpdHJpbm+UZYaUaE1dlCiMB1Vua25vd26UjAVkc1JOQZSMCHNzUk5BKCsplIwIc3NSTkEo
LSmUZYaUaFBLAoaUaFJLAoaUaFZLAoaUaFhLAoaUaFpLAoaUaFxLAoaUaF5LAoaUaGBLAoaUaGJL
AoaUaGRLAoaUaGZLAoaUaGhLAoaUdJSMBW1ldGFzlIwEbmFtZZRLA4aUhZSMCmNsYXNzX3ZhcnOU
KYwSbW9kaWZpZWRfdmFyaWFibGVzlF2UdWJoOymBlH2UKGg+fZQojAl2YXJpYWJsZXOUXZSMDWRv
bWFpbl9lZGl0b3KUfZRomV2UKF2UKIwJRmVhdHVyZSAxlGhUSwNoEIhlXZQojARUYXhhlGhISwCM
m0FtYWxnYXZpcmlkYWUsIEFyZW5hdmlyaWRhZSwgQ2hyeXNvdmlyaWRhZSwgQ3lzdG92aXJpZGFl
LCBGbGF2aXZpcmlkYWUsIEhlcGV2aXJpZGFlLCBMZXZpdmlyaWNldGVzLCBNeW1vbmF2aXJpZGFl
LCBSaWJvenksIFNlY292aXJpZGFlLCBwLjAwMDIuYmFzZS1LaXRyaW5vlIllXZQojAhQb2xhcml0
eZRoSEsCjCJVbmtub3duLCBkc1JOQSwgc3NSTkEoKyksIHNzUk5BKC0plIllXZQojAlTZWdtZW50
ZWSUaFRLAmgQiGVdlCiMClVubmFtZWQ6IDCUaFRLA2gQiGVdlCiMBmxlbmd0aJRoVEsAaBCIZV2U
KIwLZnJlZV9lbmVyZ3mUaFRLAGgQiGVdlCiMDnVucGFpcmVkX3JhdGlvlGhUSwBoEIhlXZQojAVz
dGVtc5RoVEsAaBCIZV2UKIwKbXVsdGlsb29wc5RoVEsAaBCIZV2UKIwIaGFpcnBpbnOUaFRLAGgQ
iGVdlCiMDmludGVyaW9yX2xvb3BzlGhUSwBoEIhlXZQojBNzdGVtc19tZWRpYW5fbGVuZ3RolGhU
SwBoEIhlXZQojBxpbnRlcmlvcl9sb29wc19tZWRpYW5fbGVuZ3RolGhUSwBoEIhlXZQojBZoYWly
cGluc19tZWRpYW5fbGVuZ3RolGhUSwBoEIhlXZQojARuYW1llGhsSwJoEIllZXNoNksBdWhtKGif
SwKGlIwEVGF4YZRdlCiMDUFtYWxnYXZpcmlkYWWUjAxBcmVuYXZpcmlkYWWUjA1DaHJ5c292aXJp
ZGFllIwMQ3lzdG92aXJpZGFllIwMRmxhdml2aXJpZGFllIwLSGVwZXZpcmlkYWWUjA1MZXZpdmly
aWNldGVzlIwNTXltb25hdmlyaWRhZZSMBlJpYm96eZSMC1NlY292aXJpZGFllIwTcC4wMDAyLmJh
c2UtS2l0cmlub5RlhpRopF2UKIwHVW5rbm93bpSMBWRzUk5BlIwIc3NSTkEoKymUjAhzc1JOQSgt
KZRlhpRop0sChpRoqUsChpRoq0sChpRorUsChpRor0sChpRosUsChpRos0sChpRotUsChpRot0sC
hpRouUsChpRou0sChpRovUsChpR0lGiPjARuYW1llEsDhpSFlGiTKWiUXZR1Ymg7KYGUfZQoaD59
lCiMCXZhcmlhYmxlc5RdlIwNZG9tYWluX2VkaXRvcpR9lGjpXZQoXZQojAlGZWF0dXJlIDGUaFRL
A2gQiGVdlCiMBFRheGGUaEhLAoybQW1hbGdhdmlyaWRhZSwgQXJlbmF2aXJpZGFlLCBDaHJ5c292
aXJpZGFlLCBDeXN0b3ZpcmlkYWUsIEZsYXZpdmlyaWRhZSwgSGVwZXZpcmlkYWUsIExldml2aXJp
Y2V0ZXMsIE15bW9uYXZpcmlkYWUsIFJpYm96eSwgU2Vjb3ZpcmlkYWUsIHAuMDAwMi5iYXNlLUtp
dHJpbm+UiWVdlCiMCFBvbGFyaXR5lGhISwGMGWRzUk5BLCBzc1JOQSgrKSwgc3NSTkEoLSmUiWVd
lCiMCVNlZ21lbnRlZJRoVEsCaBCIZV2UKIwKVW5uYW1lZDogMJRoVEsDaBCIZV2UKIwGbGVuZ3Ro
lGhUSwBoEIhlXZQojAtmcmVlX2VuZXJneZRoVEsAaBCIZV2UKIwOdW5wYWlyZWRfcmF0aW+UaFRL
AGgQiGVdlCiMBXN0ZW1zlGhUSwBoEIhlXZQojAptdWx0aWxvb3BzlGhUSwBoEIhlXZQojAhoYWly
cGluc5RoVEsAaBCIZV2UKIwOaW50ZXJpb3JfbG9vcHOUaFRLAGgQiGVdlCiME3N0ZW1zX21lZGlh
bl9sZW5ndGiUaFRLAGgQiGVdlCiMHGludGVyaW9yX2xvb3BzX21lZGlhbl9sZW5ndGiUaFRLAGgQ
iGVdlCiMFmhhaXJwaW5zX21lZGlhbl9sZW5ndGiUaFRLAGgQiGVdlCiMBG5hbWWUaGxLAmgQiWVl
c2g2SwF1aG0oaO9LAoaUaPFdlCiMDUFtYWxnYXZpcmlkYWWUjAxBcmVuYXZpcmlkYWWUjA1DaHJ5
c292aXJpZGFllIwMQ3lzdG92aXJpZGFllIwMRmxhdml2aXJpZGFllIwLSGVwZXZpcmlkYWWUjA1M
ZXZpdmlyaWNldGVzlIwNTXltb25hdmlyaWRhZZSMBlJpYm96eZSMC1NlY292aXJpZGFllIwTcC4w
MDAyLmJhc2UtS2l0cmlub5RlhpRo9F2UKIwFZHNSTkGUjAhzc1JOQSgrKZSMCHNzUk5BKC0plGWG
lGj3SwKGlGj5SwKGlGj7SwKGlGj9SwKGlGj/SwKGlGoBAQAASwKGlGoDAQAASwKGlGoFAQAASwKG
lGoHAQAASwKGlGoJAQAASwKGlGoLAQAASwKGlGoNAQAASwKGlHSUaI+MBG5hbWWUSwOGlIWUaJMp
aJRdlHViaDspgZR9lChoPn2UKIwJdmFyaWFibGVzlF2UjA1kb21haW5fZWRpdG9ylH2UajcBAABd
lChdlCiMDHNlcGFsIGxlbmd0aJRoVEsAaBCIZV2UKIwLc2VwYWwgd2lkdGiUaFRLAGgQiGVdlCiM
DHBldGFsIGxlbmd0aJRoVEsAaBCIZV2UKIwLcGV0YWwgd2lkdGiUaFRLAGgQiGVdlCiMBGlyaXOU
aEhLAYwsSXJpcy1zZXRvc2EsIElyaXMtdmVyc2ljb2xvciwgSXJpcy12aXJnaW5pY2GUiWVlc2g2
SwF1aG0oaj0BAABLAoaUaj8BAABLAoaUakEBAABLAoaUakMBAABLAoaUdJRojylok2pFAQAAXZQo
jAtJcmlzLXNldG9zYZSMD0lyaXMtdmVyc2ljb2xvcpSMDklyaXMtdmlyZ2luaWNhlGWGlIWUaJRd
lHViZXUu
</properties>
<properties node_id="2" format="literal">{'compatibility_mode': False, 'controlAreaVisible': True, 'number_of_folds': 10, 'replacement': False, 'sampleSizeNumber': 1, 'sampleSizePercentage': 90, 'sampleSizeSqlPercentage': 0.1, 'sampleSizeSqlTime': 1, 'sampling_type': 0, 'savedWidgetGeometry': b'\x01\xd9\xd0\xcb\x00\x03\x00\x00\x00\x00\x02U\x00\x00\x00a\x00\x00\x03L\x00\x00\x02H\x00\x00\x02U\x00\x00\x00\x7f\x00\x00\x03L\x00\x00\x02H\x00\x00\x00\x00\x00\x00\x00\x00\x05\xb7\x00\x00\x02U\x00\x00\x00\x7f\x00\x00\x03L\x00\x00\x02H', 'selectedFold': 3, 'sql_dl': False, 'stratify': False, 'use_seed': True, '__version__': 2}</properties>
<properties node_id="3" format="pickle">gASVYwYAAAAAAAB9lCiMC2F1dG9fY29tbWl0lIiMEmNvbnRyb2xBcmVhVmlzaWJsZZSIjBNzYXZl
ZFdpZGdldEdlb21ldHJ5lENCAdnQywADAAAAAADqAAAATAAABLgAAAJbAAAA6gAAAGoAAAS4AAAC
WwAAAAAAAAAABbcAAADqAAAAagAABLgAAAJblIwHc29ydGluZ5RLAIwDc2lwlIwOX3VucGlja2xl
X2VudW2Uk5SMDFB5UXQ1LlF0Q29yZZSMCVNvcnRPcmRlcpRLAIeUUpSGlIwLX192ZXJzaW9uX1+U
SwKMEGNvbnRleHRfc2V0dGluZ3OUXZQojBVvcmFuZ2V3aWRnZXQuc2V0dGluZ3OUjAdDb250ZXh0
lJOUKYGUfZQojAZ2YWx1ZXOUfZQojAljb2xvcl92YXKUjARUYXhhlEtlhpSMDXNlbGVjdGVkX3Zh
cnOUXZSMFmhhaXJwaW5zX21lZGlhbl9sZW5ndGiUS2aGlGFK/f///4aUaA5LAnWMCmF0dHJpYnV0
ZXOUfZQojAtmcmVlX2VuZXJneZRLAowOdW5wYWlyZWRfcmF0aW+USwKMBXN0ZW1zlEsCjAptdWx0
aWxvb3BzlEsCjAhoYWlycGluc5RLAowOaW50ZXJpb3JfbG9vcHOUSwKME3N0ZW1zX21lZGlhbl9s
ZW5ndGiUSwKMHGludGVyaW9yX2xvb3BzX21lZGlhbl9sZW5ndGiUSwJoHUsCjBNUb3RhbF9FbGVt
ZW50X0NvdW50lEsCaBlLAXWMBW1ldGFzlH2UjARuYW1llEsDc3ViaBMpgZR9lChoFn2UKGgYaBlL
ZYaUaBtdlGgdS2aGlGFK/f///4aUaA5LAnVoIH2UKGgiSwJoI0sCaCRLAmglSwJoJksCaCdLAmgo
SwJoKUsCaB1LAmgqSwJoGUsBdWgrfZR1YmgTKYGUfZQoaBZ9lChoGIwIUG9sYXJpdHmUS2WGlGgb
XZRoDksCdWggfZQojAlGZWF0dXJlIDGUSwJoGUsBaDpLAYwJU2VnbWVudGVklEsCjAZsZW5ndGiU
SwJoIksCaCNLAmgkSwJoJUsCaCZLAmgnSwJoKEsCaClLAmgdSwJoKksCdWgrfZRoLUsDc3ViaBMp
gZR9lChoFn2UKIwJY29sb3JfdmFylIwIUG9sYXJpdHmUS2WGlIwNc2VsZWN0ZWRfdmFyc5RdlGgO
SwJ1aCB9lCiMBmxlbmd0aJRLAowLZnJlZV9lbmVyZ3mUSwKMDnVucGFpcmVkX3JhdGlvlEsCjAVz
dGVtc5RLAowKbXVsdGlsb29wc5RLAowIaGFpcnBpbnOUSwKMDmludGVyaW9yX2xvb3BzlEsCjBNz
dGVtc19tZWRpYW5fbGVuZ3RolEsCjBxpbnRlcmlvcl9sb29wc19tZWRpYW5fbGVuZ3RolEsCjBZo
YWlycGluc19tZWRpYW5fbGVuZ3RolEsCjAhQb2xhcml0eZRLAXVoK32UKIwEVGF4YZRLAYwJU2Vn
bWVudGVklEsCjARuYW1llEsDdXViaBMpgZR9lChoFn2UKGhFaEZLZYaUaEhdlIwKVW5uYW1lZDog
MJRLZoaUYUr9////hpRoDksCdWggfZQojApVbm5hbWVkOiAwlEsCjAZsZW5ndGiUSwKMC2ZyZWVf
ZW5lcmd5lEsCjA51bnBhaXJlZF9yYXRpb5RLAowFc3RlbXOUSwKMCm11bHRpbG9vcHOUSwKMCGhh
aXJwaW5zlEsCjA5pbnRlcmlvcl9sb29wc5RLAowTc3RlbXNfbWVkaWFuX2xlbmd0aJRLAowcaW50
ZXJpb3JfbG9vcHNfbWVkaWFuX2xlbmd0aJRLAowWaGFpcnBpbnNfbWVkaWFuX2xlbmd0aJRLAowI
UG9sYXJpdHmUSwF1aCt9lCiMBFRheGGUSwGMCVNlZ21lbnRlZJRLAowEbmFtZZRLA3V1YmgTKYGU
fZQoaBZ9lCiMCWNvbG9yX3ZhcpRoVUtlhpSMDXNlbGVjdGVkX3ZhcnOUXZSMClVubmFtZWQ6IDCU
S2aGlGFK/f///4aUaA5LAnVoIH2UKIwJRmVhdHVyZSAxlEsCaFdLAWhVSwFoWEsCaHpLAmhLSwJo
TEsCaE1LAmhOSwJoT0sCaFBLAmhRSwJoUksCaFNLAmhUSwJ1aCt9lGhZSwNzdWJldS4=
</properties>
<properties node_id="4" format="literal">{'auto_apply': True, 'controlAreaVisible': True, 'learner_name': 'kNN', 'metric_index': 0, 'n_neighbors': 10, 'savedWidgetGeometry': b'\x01\xd9\xd0\xcb\x00\x03\x00\x00\x00\x00\x02[\x00\x00\x00\xc5\x00\x00\x03G\x00\x00\x01\xe4\x00\x00\x02[\x00\x00\x00\xe3\x00\x00\x03G\x00\x00\x01\xe4\x00\x00\x00\x00\x00\x00\x00\x00\x05\xb7\x00\x00\x02[\x00\x00\x00\xe3\x00\x00\x03G\x00\x00\x01\xe4', 'weight_index': 0, '__version__': 1}</properties>
<properties node_id="5" format="literal">{'auto_apply': True, 'controlAreaVisible': True, 'learner_name': '', 'method_index': 0, 'savedWidgetGeometry': None, 'catgb_editor': {'colsample_bylevel': 1, 'lambda_index': 55, 'learning_rate': 0.3, 'max_depth': 6, 'n_estimators': 100, 'random_state': True}, 'gb_editor': {'learning_rate': 0.1, 'max_depth': 3, 'min_samples_split': 2, 'n_estimators': 100, 'random_state': True, 'subsample': 1}, 'xgb_editor': {'colsample_bylevel': 1, 'colsample_bynode': 1, 'colsample_bytree': 1, 'lambda_index': 53, 'learning_rate': 0.3, 'max_depth': 6, 'n_estimators': 100, 'random_state': True, 'subsample': 1}, 'xgbrf_editor': {'colsample_bylevel': 1, 'colsample_bynode': 1, 'colsample_bytree': 1, 'lambda_index': 53, 'learning_rate': 0.3, 'max_depth': 6, 'n_estimators': 100, 'random_state': True, 'subsample': 1}, '__version__': 1}</properties>
<properties node_id="6" format="literal">{'C': 1.0, 'auto_apply': True, 'coef0': 1.0, 'controlAreaVisible': True, 'degree': 3, 'epsilon': 0.1, 'gamma': 0.0, 'kernel_type': 2, 'learner_name': '', 'limit_iter': True, 'max_iter': 100, 'nu': 0.5, 'nu_C': 1.0, 'savedWidgetGeometry': None, 'svm_type': 0, 'tol': 0.001, '__version__': 1}</properties>
<properties node_id="7" format="literal">{'activation_index': 0, 'alpha_index': 23, 'auto_apply': True, 'controlAreaVisible': True, 'hidden_layers_input': '100,', 'learner_name': 'Neural Network', 'max_iterations': 400, 'replicable': True, 'savedWidgetGeometry': b'\x01\xd9\xd0\xcb\x00\x03\x00\x00\x00\x00\x026\x00\x00\x00\xa4\x00\x00\x03l\x00\x00\x02\x06\x00\x00\x026\x00\x00\x00\xc2\x00\x00\x03l\x00\x00\x02\x06\x00\x00\x00\x00\x00\x00\x00\x00\x05\xb7\x00\x00\x026\x00\x00\x00\xc2\x00\x00\x03l\x00\x00\x02\x06', 'solver_index': 1, '__version__': 2}</properties>
<properties node_id="8" format="literal">{'auto_apply': True, 'class_weight': False, 'controlAreaVisible': True, 'index_output': 0, 'learner_name': 'asd', 'max_depth': 3, 'max_features': 5, 'min_samples_split': 5, 'n_estimators': 10, 'savedWidgetGeometry': b'\x01\xd9\xd0\xcb\x00\x03\x00\x00\x00\x00\x02\n\x00\x00\x00\x86\x00\x00\x03\x98\x00\x00\x02(\x00\x00\x02\n\x00\x00\x00\xa4\x00\x00\x03\x98\x00\x00\x02(\x00\x00\x00\x00\x00\x00\x00\x00\x05\xb7\x00\x00\x02\n\x00\x00\x00\xa4\x00\x00\x03\x98\x00\x00\x02(', 'use_max_depth': False, 'use_max_features': False, 'use_min_samples_split': True, 'use_random_state': False, '__version__': 1}</properties>
<properties node_id="9" format="pickle">gASVHAwAAAAAAAB9lCiMFGNvbXBhcmlzb25fY3JpdGVyaW9ulEsAjBJjb250cm9sQXJlYVZpc2li
bGWUiIwNY3Zfc3RyYXRpZmllZJSIjAduX2ZvbGRzlEsDjAluX3JlcGVhdHOUSwOMCnJlc2FtcGxp
bmeUSwCMBHJvcGWURz+5mZmZmZmajAtzYW1wbGVfc2l6ZZRLDYwTc2F2ZWRXaWRnZXRHZW9tZXRy
eZRDQgHZ0MsAAwAAAAABEAAAAIIAAATeAAACkQAAARAAAACgAAAE3gAAApEAAAAAAAAAAAW3AAAB
EAAAAKAAAATeAAACkZSMEnNodWZmbGVfc3RyYXRpZmllZJSIjAh1c2Vfcm9wZZSJjAtzY29yZV90
YWJsZZR9lIwQc2hvd19zY29yZV9oaW50c5R9lCiMBk1vZGVsX5SIjAZUcmFpbl+UiYwFVGVzdF+U
iYwCQ0GUiIwXUHJlY2lzaW9uUmVjYWxsRlN1cHBvcnSUiIwLVGFyZ2V0U2NvcmWUiIwJUHJlY2lz
aW9ulIiMBlJlY2FsbJSIjAJGMZSIjANBVUOUiIwHTG9nTG9zc5SJjAtTcGVjaWZpY2l0eZSJjBdN
YXR0aGV3c0NvcnJDb2VmZmljaWVudJSIjANNU0WUiIwEUk1TRZSIjANNQUWUiIwCUjKUiIwGQ1ZS
TVNFlImMD0NsdXN0ZXJpbmdTY29yZZSIjApTaWxob3VldHRllIiMF0FkanVzdGVkTXV0dWFsSW5m
b1Njb3JllIiMEENvbmNvcmRhbmNlSW5kZXiUiHVzjAtfX3ZlcnNpb25fX5RLBIwQY29udGV4dF9z
ZXR0aW5nc5RdlCiMFW9yYW5nZXdpZGdldC5zZXR0aW5nc5SMB0NvbnRleHSUk5QpgZR9lCiMBnZh
bHVlc5R9lCiMD2NsYXNzX3NlbGVjdGlvbpSMIShOb25lLCBzaG93IGF2ZXJhZ2Ugb3ZlciBjbGFz
c2VzKZRK/////4aUjAxmb2xkX2ZlYXR1cmWUjAlTb3VyY2UgSUSUS2WGlIwVZm9sZF9mZWF0dXJl
X3NlbGVjdGVklIlK/v///4aUaA19lGgnSwR1jAphdHRyaWJ1dGVzlCiMC2ZyZWVfZW5lcmd5lEsC
hpSMDnVucGFpcmVkX3JhdGlvlEsChpSMBXN0ZW1zlEsChpSMCm11bHRpbG9vcHOUSwKGlIwIaGFp
cnBpbnOUSwKGlIwOaW50ZXJpb3JfbG9vcHOUSwKGlIwTc3RlbXNfbWVkaWFuX2xlbmd0aJRLAoaU
jBxpbnRlcmlvcl9sb29wc19tZWRpYW5fbGVuZ3RolEsChpSMFmhhaXJwaW5zX21lZGlhbl9sZW5n
dGiUSwKGlIwTVG90YWxfRWxlbWVudF9Db3VudJRLAoaUdJSMBW1ldGFzlIwEbmFtZZRLA4aUaDVL
AYaUhpSMCmNsYXNzX3ZhcnOUjARUYXhhlEsBhpSFlHViaCwpgZR9lChoL32UKIwPY2xhc3Nfc2Vs
ZWN0aW9ulIwhKE5vbmUsIHNob3cgYXZlcmFnZSBvdmVyIGNsYXNzZXMplEr/////hpSMDGZvbGRf
ZmVhdHVyZZSMBFRheGGUS2WGlIwVZm9sZF9mZWF0dXJlX3NlbGVjdGVklIlK/v///4aUjAtzY29y
ZV90YWJsZZR9lGgnSwR1aDoojAZsZW5ndGiUSwKGlIwLZnJlZV9lbmVyZ3mUSwKGlIwOdW5wYWly
ZWRfcmF0aW+USwKGlIwFc3RlbXOUSwKGlIwKbXVsdGlsb29wc5RLAoaUjAhoYWlycGluc5RLAoaU
jA5pbnRlcmlvcl9sb29wc5RLAoaUjBNzdGVtc19tZWRpYW5fbGVuZ3RolEsChpSMHGludGVyaW9y
X2xvb3BzX21lZGlhbl9sZW5ndGiUSwKGlIwWaGFpcnBpbnNfbWVkaWFuX2xlbmd0aJRLAoaUdJRo
UIwEVGF4YZRLAYaUjAlTZWdtZW50ZWSUSwKGlIwEbmFtZZRLA4aUh5RoVYwIUG9sYXJpdHmUSwGG
lIWUdWJoLCmBlH2UKGgvfZQojA9jbGFzc19zZWxlY3Rpb26UjCEoTm9uZSwgc2hvdyBhdmVyYWdl
IG92ZXIgY2xhc3NlcymUSv////+GlIwMZm9sZF9mZWF0dXJllIwEVGF4YZRLZYaUjBVmb2xkX2Zl
YXR1cmVfc2VsZWN0ZWSUiUr+////hpSMC3Njb3JlX3RhYmxllH2UaCdLBHVoOowCQzCUSwKGlIwC
QzGUSwKGlIwCQzKUSwKGlIeUaFBojEsBhpSMCVNlZ21lbnRlZJRLAoaUjARuYW1llEsDhpSHlGhV
jAhQb2xhcml0eZRLAYaUhZR1YmgsKYGUfZQoaC99lChoiGiJSv////+GlGiLaIxLZYaUaI6JSv7/
//+GlGiQfZRoJ0sEdWg6KIwCQzCUSwKGlIwCQzGUSwKGlIwCQzKUSwKGlIwCQzOUSwKGlHSUaFBo
jEsBhpRomksChpRonEsDhpSHlGhVaJ9LAYaUhZR1YmgsKYGUfZQoaC99lChoiGiJSv////+GlGiL
aIxLZYaUaI6JSv7///+GlGiQfZRoJ0sEdWg6jAJDMJRLAoaUjAJDMZRLAoaUhpRoUGiMSwGGlGia
SwKGlGicSwOGlIeUaFVon0sBhpSFlHViaCwpgZR9lChoL32UKGiIaIlK/////4aUaItojEtlhpRo
jolK/v///4aUaJB9lGgnSwR1aDqMB3QtU05FLXiUSwKGlIwHdC1TTkUteZRLAoaUhpRoUGiMSwGG
lGiaSwKGlGicSwOGlIeUaFVon0sBhpSFlHViaCwpgZR9lChoL32UKGiIaIlK/////4aUaItojEtl
hpRojolK/v///4aUaJB9lGgnSwR1aDoojApVbm5hbWVkOiAwlEsChpSMBmxlbmd0aJRLAoaUjAtm
cmVlX2VuZXJneZRLAoaUjA51bnBhaXJlZF9yYXRpb5RLAoaUjAVzdGVtc5RLAoaUjAptdWx0aWxv
b3BzlEsChpSMCGhhaXJwaW5zlEsChpSMDmludGVyaW9yX2xvb3BzlEsChpSME3N0ZW1zX21lZGlh
bl9sZW5ndGiUSwKGlIwcaW50ZXJpb3JfbG9vcHNfbWVkaWFuX2xlbmd0aJRLAoaUjBZoYWlycGlu
c19tZWRpYW5fbGVuZ3RolEsChpR0lGhQaIxLAYaUaJpLAoaUaJxLA4aUh5RoVWifSwGGlIWUdWJo
LCmBlH2UKGgvfZQojA9jbGFzc19zZWxlY3Rpb26UjCEoTm9uZSwgc2hvdyBhdmVyYWdlIG92ZXIg
Y2xhc3NlcymUSv////+GlIwMZm9sZF9mZWF0dXJllGh7S2WGlIwVZm9sZF9mZWF0dXJlX3NlbGVj
dGVklIlK/v///4aUjAtzY29yZV90YWJsZZR9lGgnSwR1aDooaGZLAoaUaGhLAoaUaGpLAoaUaGxL
AoaUaG5LAoaUaHBLAoaUaHJLAoaUaHRLAoaUaHZLAoaUaHhLAoaUdJRoUChoe0sBhpRofUsChpRo
f0sDhpSMCFNlbGVjdGVklEsBhpR0lGhVaIJLAYaUhZR1YmgsKYGUfZQoaC99lChqAwEAAGoEAQAA
Sv////+GlGoGAQAAahoBAABLZYaUaggBAACJSv7///+GlGoKAQAAfZRoJ0sEdWg6KIwJRmVhdHVy
ZSAxlEsChpRoe0sBhpRofUsChpSMClVubmFtZWQ6IDCUSwKGlGhmSwKGlGhoSwKGlGhqSwKGlGhs
SwKGlGhuSwKGlGhwSwKGlGhySwKGlGh0SwKGlGh2SwKGlGh4SwKGlHSUaFBof0sDhpRqGgEAAEsB
hpSGlGhVaIJLAYaUhZR1YmgsKYGUfZQoaC99lChqAwEAAGoEAQAASv////+GlGoGAQAATkr+////
hpRqCAEAAIlK/v///4aUagoBAAB9lGgnSwR1aDooaiYBAABLAoaUaHtLAYaUaH1LAoaUaioBAABL
AoaUaGZLAoaUaGhLAoaUaGpLAoaUaGxLAoaUaG5LAoaUaHBLAoaUaHJLAoaUaHRLAoaUaHZLAoaU
aHhLAoaUdJRoUGh/SwOGlIWUaFVogksBhpSFlHViZXUu
</properties>
<properties node_id="10" format="pickle">gASVYQUAAAAAAAB9lCiMEmNvbnRyb2xBcmVhVmlzaWJsZZSIjBNzYXZlZFdpZGdldEdlb21ldHJ5
lENCAdnQywADAAAAAAFbAAAASQAABSgAAAJXAAABWwAAAGcAAAUoAAACVwAAAAAAAAAABbcAAAFb
AAAAZwAABSgAAAJXlIwJc2VsZWN0aW9ulF2UjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAZzY2Fs
YXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0
lGJDCLcDAAAAAAAAlIaUUpRhjAtzaG93X3Njb3Jlc5SIjAtzY29yZV90YWJsZZR9lIwQc2hvd19z
Y29yZV9oaW50c5R9lCiMBk1vZGVsX5SIjAZUcmFpbl+UiYwFVGVzdF+UiYwCQ0GUiIwXUHJlY2lz
aW9uUmVjYWxsRlN1cHBvcnSUiIwLVGFyZ2V0U2NvcmWUiIwJUHJlY2lzaW9ulIiMBlJlY2FsbJSI
jAJGMZSIjANBVUOUiIwHTG9nTG9zc5SJjAtTcGVjaWZpY2l0eZSJjBdNYXR0aGV3c0NvcnJDb2Vm
ZmljaWVudJSIjANNU0WUiIwEUk1TRZSIjANNQUWUiIwCUjKUiIwGQ1ZSTVNFlImMD0NsdXN0ZXJp
bmdTY29yZZSIjApTaWxob3VldHRllIiMF0FkanVzdGVkTXV0dWFsSW5mb1Njb3JllIiMEENvbmNv
cmRhbmNlSW5kZXiUiHVzjAtfX3ZlcnNpb25fX5RLAowQY29udGV4dF9zZXR0aW5nc5RdlCiMFW9y
YW5nZXdpZGdldC5zZXR0aW5nc5SMB0NvbnRleHSUk5QpgZR9lCiMBnZhbHVlc5R9lCiMF3Nob3df
cHJvYmFiaWxpdHlfZXJyb3JzlIiMD3Nob3dfcmVnX2Vycm9yc5RLAYwLc2hvd25fcHJvYnOUSwGM
DHRhcmdldF9jbGFzc5SMFihBdmVyYWdlIG92ZXIgY2xhc3NlcymUaBV9lGgvSwJ1jAdjbGFzc2Vz
lCiMDUFtYWxnYXZpcmlkYWWUjAxBcmVuYXZpcmlkYWWUjA1DaHJ5c292aXJpZGFllIwMQ3lzdG92
aXJpZGFllIwMRmxhdml2aXJpZGFllIwLSGVwZXZpcmlkYWWUjA1MZXZpdmlyaWNldGVzlIwNTXlt
b25hdmlyaWRhZZSMC1NlY292aXJpZGFllIwTcC4wMDAyLmJhc2UtS2l0cmlub5R0lHViaDQpgZR9
lChoN32UKGg5iGg6SwFoO0sAaDyMFihBdmVyYWdlIG92ZXIgY2xhc3NlcymUaBV9lGgvSwJ1aD8p
dWJoNCmBlH2UKGg3fZQojBdzaG93X3Byb2JhYmlsaXR5X2Vycm9yc5SIjA9zaG93X3JlZ19lcnJv
cnOUSwGMC3Nob3duX3Byb2JzlEsBjAx0YXJnZXRfY2xhc3OUjBYoQXZlcmFnZSBvdmVyIGNsYXNz
ZXMplIwLc2NvcmVfdGFibGWUfZRoL0sCdWg/jAVkc1JOQZSMCHNzUk5BKCsplIwIc3NSTkEoLSmU
h5R1Ymg0KYGUfZQoaDd9lCiMF3Nob3dfcHJvYmFiaWxpdHlfZXJyb3JzlIiMD3Nob3dfcmVnX2Vy
cm9yc5RLAYwLc2hvd25fcHJvYnOUSwGMDHRhcmdldF9jbGFzc5SMFihBdmVyYWdlIG92ZXIgY2xh
c3NlcymUjAtzY29yZV90YWJsZZR9lGgvSwJ1aD8ojAdVbmtub3dulIwFZHNSTkGUjAhzc1JOQSgr
KZSMCHNzUk5BKC0plHSUdWJldS4=
</properties>
<properties node_id="11" format="pickle">gASVxwIAAAAAAAB9lCiMEmFwcGVuZF9wcmVkaWN0aW9uc5SJjBRhcHBlbmRfcHJvYmFiaWxpdGll
c5SJjAphdXRvY29tbWl0lImMEmNvbnRyb2xBcmVhVmlzaWJsZZSIjBNzYXZlZFdpZGdldEdlb21l
dHJ5lENCAdnQywADAAAAAAAAAAAAHgAABbYAAAMXAAAAAAAAAB4AAAW2AAADFwAAAAACAAAABbcA
AAAAAAAAHgAABbYAAAMXlIwQc2VsZWN0ZWRfbGVhcm5lcpSMB2NvcHlyZWeUjA5fcmVjb25zdHJ1
Y3RvcpSTlIwIYnVpbHRpbnOUjARsaXN0lJOUaA0ph5RSlEsBYYwRc2VsZWN0ZWRfcXVhbnRpdHmU
SwKMC19fdmVyc2lvbl9flEsBjBBjb250ZXh0X3NldHRpbmdzlF2UKIwVb3Jhbmdld2lkZ2V0LnNl
dHRpbmdzlIwHQ29udGV4dJSTlCmBlH2UKIwGdmFsdWVzlH2UKIwJc2VsZWN0aW9ulI+UaBFLAXWM
B2NsYXNzZXOUKIwNQW1hbGdhdmlyaWRhZZSMDEFyZW5hdmlyaWRhZZSMDUNocnlzb3ZpcmlkYWWU
jAxDeXN0b3ZpcmlkYWWUjAxGbGF2aXZpcmlkYWWUjAtIZXBldmlyaWRhZZSMDUxldml2aXJpY2V0
ZXOUjA1NeW1vbmF2aXJpZGFllIwLU2Vjb3ZpcmlkYWWUjBNwLjAwMDIuYmFzZS1LaXRyaW5vlHSU
dWJoFimBlH2UKGgZfZQojAlzZWxlY3Rpb26Uj5RoEUsBdWgdjAVkc1JOQZSMCHNzUk5BKCsplIwI
c3NSTkEoLSmUh5R1YmgWKYGUfZQoaBl9lCiMCXNlbGVjdGlvbpSPlGgRSwF1aB0ojAdVbmtub3du
lIwFZHNSTkGUjAhzc1JOQSgrKZSMCHNzUk5BKC0plHSUdWJldS4=
</properties>
<properties node_id="12" format="pickle">gASVjgYAAAAAAAB9lCiMC2F1dG9fY29tbWl0lIiMEmNvbnRyb2xBcmVhVmlzaWJsZZSIjBBwdXJn
ZV9hdHRyaWJ1dGVzlImMDXB1cmdlX2NsYXNzZXOUiYwTc2F2ZWRXaWRnZXRHZW9tZXRyeZRDQgHZ
0MsAAwAAAAABpQAAAH4AAAP8AAACKwAAAaUAAACcAAAD/AAAAisAAAAAAAAAAAW3AAABpQAAAJwA
AAP8AAACK5SMEHVwZGF0ZV9vbl9jaGFuZ2WUiIwLX192ZXJzaW9uX1+USwKMEGNvbnRleHRfc2V0
dGluZ3OUXZQojBVvcmFuZ2V3aWRnZXQuc2V0dGluZ3OUjAdDb250ZXh0lJOUKYGUfZQojAZ2YWx1
ZXOUfZQojApjb25kaXRpb25zlF2UKIwEVGF4YZRLAUsAXZSMDUxldml2aXJpY2V0ZXOUYXSUYWgI
SwJ1jAphdHRyaWJ1dGVzlH2UKIwLZnJlZV9lbmVyZ3mUSwKMDnVucGFpcmVkX3JhdGlvlEsCjAVz
dGVtc5RLAowKbXVsdGlsb29wc5RLAowIaGFpcnBpbnOUSwKMDmludGVyaW9yX2xvb3BzlEsCjBNz
dGVtc19tZWRpYW5fbGVuZ3RolEsCjBxpbnRlcmlvcl9sb29wc19tZWRpYW5fbGVuZ3RolEsCjBZo
YWlycGluc19tZWRpYW5fbGVuZ3RolEsCjBNUb3RhbF9FbGVtZW50X0NvdW50lEsCaBRLAXWMBW1l
dGFzlH2UKIwEbmFtZZRLA4wIU2VsZWN0ZWSUSwF1dWJoDSmBlH2UKGgQfZQoaBJdlChoFEsBSwBd
lGgWYXSUYWgISwJ1aBh9lChoGksCaBtLAmgcSwJoHUsCaB5LAmgfSwJoIEsCaCFLAmgiSwJoI0sC
aBRLAXVoJH2UaCdLAXN1YmgNKYGUfZQoaBB9lChoEl2UKGgUSwFLAF2UaBZhdJRhaAhLAnVoGH2U
KGgaSwJoG0sCaBxLAmgdSwJoHksCaB9LAmggSwJoIUsCaCJLAmgjSwJoFEsBdWgkfZR1YmgNKYGU
fZQoaBB9lChoEl2UKGgUSwFLAF2UaBZhdJRhaAhLAnVoGH2UKIwJRmVhdHVyZSAxlEsCaBRLAYwI
UG9sYXJpdHmUSwGMCVNlZ21lbnRlZJRLAowGbGVuZ3RolEsCaBpLAmgbSwJoHEsCaB1LAmgeSwJo
H0sCaCBLAmghSwJoIksCaCNLAnVoJH2UaCZLA3N1YmgNKYGUfZQoaBB9lCiMCmNvbmRpdGlvbnOU
XZQojARUYXhhlEsBSwBdlIwNTGV2aXZpcmljZXRlc5RhdJRhaAhLAnVoGH2UKIwGbGVuZ3RolEsC
jAtmcmVlX2VuZXJneZRLAowOdW5wYWlyZWRfcmF0aW+USwKMBXN0ZW1zlEsCjAptdWx0aWxvb3Bz
lEsCjAhoYWlycGluc5RLAowOaW50ZXJpb3JfbG9vcHOUSwKME3N0ZW1zX21lZGlhbl9sZW5ndGiU
SwKMHGludGVyaW9yX2xvb3BzX21lZGlhbl9sZW5ndGiUSwKMFmhhaXJwaW5zX21lZGlhbl9sZW5n
dGiUSwKMCFBvbGFyaXR5lEsBdWgkfZQojARUYXhhlEsBjAlTZWdtZW50ZWSUSwKMBG5hbWWUSwN1
dWJoDSmBlH2UKGgQfZQoaEddlChoSUsBSwBdlGhLYXSUYWgISwJ1aBh9lCiMClVubmFtZWQ6IDCU
SwKMBmxlbmd0aJRLAowLZnJlZV9lbmVyZ3mUSwKMDnVucGFpcmVkX3JhdGlvlEsCjAVzdGVtc5RL
AowKbXVsdGlsb29wc5RLAowIaGFpcnBpbnOUSwKMDmludGVyaW9yX2xvb3BzlEsCjBNzdGVtc19t
ZWRpYW5fbGVuZ3RolEsCjBxpbnRlcmlvcl9sb29wc19tZWRpYW5fbGVuZ3RolEsCjBZoYWlycGlu
c19tZWRpYW5fbGVuZ3RolEsCjAhQb2xhcml0eZRLAXVoJH2UKGhJSwGMCVNlZ21lbnRlZJRLAowE
bmFtZZRLA3V1YmgNKYGUfZQoaBB9lCiMCmNvbmRpdGlvbnOUXZQoaFhLAUsBXZSMBWRzUk5BlGF0
lGFoCEsCdWgYfZQoaE5LAmhPSwJoUEsCaFFLAmhSSwJoU0sCaFRLAmhVSwJoVksCaFdLAmhYSwF1
aCR9lChoWksBaFtLAmhcSwOMCFNlbGVjdGVklEsBdXViZXUu
</properties>
<properties node_id="13" format="pickle">gASVFQgAAAAAAAB9lCiMC2F1dG9fY29tbWl0lIiMEmNvbnRyb2xBcmVhVmlzaWJsZZSIjBBwdXJn
ZV9hdHRyaWJ1dGVzlIiMDXB1cmdlX2NsYXNzZXOUiIwTc2F2ZWRXaWRnZXRHZW9tZXRyeZRDQgHZ
0MsAAwAAAAABEgAAAQIAAANpAAACkQAAARIAAAECAAADaQAAApEAAAAAAAAAAAW3AAABEgAAAQIA
AANpAAACkZSMEHVwZGF0ZV9vbl9jaGFuZ2WUiIwLX192ZXJzaW9uX1+USwKMEGNvbnRleHRfc2V0
dGluZ3OUXZQojBVvcmFuZ2V3aWRnZXQuc2V0dGluZ3OUjAdDb250ZXh0lJOUKYGUfZQojAZ2YWx1
ZXOUfZQojApjb25kaXRpb25zlF2UKCiMBFRheGGUSwFLAF2UjACUYXSUKGgUSwFLAF2UjAZSaWJv
enmUYXSUZWgISwJ1jAphdHRyaWJ1dGVzlH2UKIwLZnJlZV9lbmVyZ3mUSwKMDnVucGFpcmVkX3Jh
dGlvlEsCjAVzdGVtc5RLAowKbXVsdGlsb29wc5RLAowIaGFpcnBpbnOUSwKMDmludGVyaW9yX2xv
b3BzlEsCjBNzdGVtc19tZWRpYW5fbGVuZ3RolEsCjBxpbnRlcmlvcl9sb29wc19tZWRpYW5fbGVu
Z3RolEsCjBZoYWlycGluc19tZWRpYW5fbGVuZ3RolEsCjBNUb3RhbF9FbGVtZW50X0NvdW50lEsC
aBRLAXWMBW1ldGFzlH2UKIwEbmFtZZRLA4wIU2VsZWN0ZWSUSwGMCVNvdXJjZSBJRJRLAXV1YmgN
KYGUfZQoaBB9lChoEl2UKChoFEsBSwFdlGgWYXSUKGgUSwFLAV2UaBlhdJRlaAhLAnVoG32UKGgd
SwJoHksCaB9LAmggSwJoIUsCaCJLAmgjSwJoJEsCaCVLAmgmSwJoFEsBaCtLAXVoJ32UKGgpSwNo
KksBdXViaA0pgZR9lChoEH2UKGgSXZQoKGgUSwFLAV2UaBZhdJQoaBRLAUsBXZRoGWF0lGVoCEsC
dWgbfZQoaB1LAmgeSwJoH0sCaCBLAmghSwJoIksCaCNLAmgkSwJoJUsCaCZLAmgUSwF1aCd9lCho
KUsDaCpLAXV1YmgNKYGUfZQoaBB9lChoEl2UKChoFEsBSwFdlGgWYXSUKGgUSwFLAV2UaBlhdJRl
aAhLAnVoG32UKGgdSwJoHksCaB9LAmggSwJoIUsCaCJLAmgjSwJoJEsCaCVLAmgmSwJoFEsBdWgn
fZRoKksBc3ViaA0pgZR9lChoEH2UKGgSXZQoaBRLAUsBXZRoGWF0lGFoCEsCdWgbfZQoaB1LAmge
SwJoH0sCaCBLAmghSwJoIksCaCNLAmgkSwJoJUsCaCZLAmgUSwFoK0sBdWgnfZRoKksBc3ViaA0p
gZR9lChoEH2UKGgSXZQoaBRLAUsBXZRoGWF0lGFoCEsCdWgbfZQoaB1LAmgeSwJoH0sCaCBLAmgh
SwJoIksCaCNLAmgkSwJoJUsCaCZLAmgUSwF1aCd9lHViaA0pgZR9lChoEH2UKGgSXZQojAhQb2xh
cml0eZRLAUsAXZSMB1Vua25vd26UYXSUYWgISwJ1aBt9lCiMCUZlYXR1cmUgMZRLAmgUSwFoXksB
jAlTZWdtZW50ZWSUSwKMBmxlbmd0aJRLAmgdSwJoHksCaB9LAmggSwJoIUsCaCJLAmgjSwJoJEsC
aCVLAmgmSwJ1aCd9lGgpSwNzdWJoDSmBlH2UKGgQfZQojApjb25kaXRpb25zlF2UKIwIUG9sYXJp
dHmUSwFLAF2UjAdVbmtub3dulGF0lGFoCEsCdWgbfZQojAZsZW5ndGiUSwKMC2ZyZWVfZW5lcmd5
lEsCjA51bnBhaXJlZF9yYXRpb5RLAowFc3RlbXOUSwKMCm11bHRpbG9vcHOUSwKMCGhhaXJwaW5z
lEsCjA5pbnRlcmlvcl9sb29wc5RLAowTc3RlbXNfbWVkaWFuX2xlbmd0aJRLAowcaW50ZXJpb3Jf
bG9vcHNfbWVkaWFuX2xlbmd0aJRLAowWaGFpcnBpbnNfbWVkaWFuX2xlbmd0aJRLAowIUG9sYXJp
dHmUSwF1aCd9lCiMBFRheGGUSwGMCVNlZ21lbnRlZJRLAowEbmFtZZRLA3V1YmgNKYGUfZQoaBB9
lChoal2UKGhsSwFLAV2UaG5hdJRhaAhLAnVoG32UKIwKVW5uYW1lZDogMJRLAowGbGVuZ3RolEsC
jAtmcmVlX2VuZXJneZRLAowOdW5wYWlyZWRfcmF0aW+USwKMBXN0ZW1zlEsCjAptdWx0aWxvb3Bz
lEsCjAhoYWlycGluc5RLAowOaW50ZXJpb3JfbG9vcHOUSwKME3N0ZW1zX21lZGlhbl9sZW5ndGiU
SwKMHGludGVyaW9yX2xvb3BzX21lZGlhbl9sZW5ndGiUSwKMFmhhaXJwaW5zX21lZGlhbl9sZW5n
dGiUSwKMCFBvbGFyaXR5lEsBdWgnfZQojARUYXhhlEsBjAlTZWdtZW50ZWSUSwKMBG5hbWWUSwN1
dWJoDSmBlH2UKGgQfZQojApjb25kaXRpb25zlF2UKGh7SwFLAV2UjAVkc1JOQZRhdJRhaAhLAnVo
G32UKGhxSwJocksCaHNLAmh0SwJodUsCaHZLAmh3SwJoeEsCaHlLAmh6SwJoe0sBdWgnfZQoaH1L
AWh+SwJof0sDjAhTZWxlY3RlZJRLAXV1YmV1Lg==
</properties>
<properties node_id="14" format="literal">{'compatibility_mode': False, 'controlAreaVisible': True, 'number_of_folds': 10, 'replacement': False, 'sampleSizeNumber': 1, 'sampleSizePercentage': 4, 'sampleSizeSqlPercentage': 0.1, 'sampleSizeSqlTime': 1, 'sampling_type': 0, 'savedWidgetGeometry': b'\x01\xd9\xd0\xcb\x00\x03\x00\x00\x00\x00\x02U\x00\x00\x00a\x00\x00\x03L\x00\x00\x02H\x00\x00\x02U\x00\x00\x00\x7f\x00\x00\x03L\x00\x00\x02H\x00\x00\x00\x00\x00\x00\x00\x00\x05\xb7\x00\x00\x02U\x00\x00\x00\x7f\x00\x00\x03L\x00\x00\x02H', 'selectedFold': 5, 'sql_dl': False, 'stratify': False, 'use_seed': True, '__version__': 2}</properties>
<properties node_id="15" format="literal">{'append_source_column': True, 'auto_commit': True, 'controlAreaVisible': True, 'ignore_compute_value': False, 'merge_type': 0, 'savedWidgetGeometry': b'\x01\xd9\xd0\xcb\x00\x03\x00\x00\x00\x00\x02\x17\x00\x00\x00\x95\x00\x00\x03\x8b\x00\x00\x023\x00\x00\x02\x17\x00\x00\x00\x95\x00\x00\x03\x8b\x00\x00\x023\x00\x00\x00\x00\x00\x00\x00\x00\x05\xb7\x00\x00\x02\x17\x00\x00\x00\x95\x00\x00\x03\x8b\x00\x00\x023', 'source_attr_name': 'Source ID', 'source_column_role': 2, '__version__': 1}</properties>
<properties node_id="16" format="literal">{'auto_apply': True, 'controlAreaVisible': True, 'learner_name': '', 'savedWidgetGeometry': b'\x01\xd9\xd0\xcb\x00\x03\x00\x00\x00\x00\x02s\x00\x00\x01\x05\x00\x00\x03/\x00\x00\x01\xa4\x00\x00\x02s\x00\x00\x01#\x00\x00\x03/\x00\x00\x01\xa4\x00\x00\x00\x00\x00\x00\x00\x00\x05\xb7\x00\x00\x02s\x00\x00\x01#\x00\x00\x03/\x00\x00\x01\xa4', '__version__': 1}</properties>
<properties node_id="17" format="literal">{'algorithm_index': 1, 'auto_apply': True, 'controlAreaVisible': True, 'learner_name': '', 'learning_rate': 1.0, 'loss_index': 0, 'n_estimators': 50, 'random_seed': 0, 'savedWidgetGeometry': b'\x01\xd9\xd0\xcb\x00\x03\x00\x00\x00\x00\x02.\x00\x00\x00\x88\x00\x00\x03t\x00\x00\x02 \x00\x00\x02.\x00\x00\x00\xa6\x00\x00\x03t\x00\x00\x02 \x00\x00\x00\x00\x00\x00\x00\x00\x05\xb7\x00\x00\x02.\x00\x00\x00\xa6\x00\x00\x03t\x00\x00\x02 ', 'use_random_seed': False, '__version__': 1}</properties>
<properties node_id="18" format="literal">{'auto_apply': True, 'beam_width': 5, 'checked_default_alpha': False, 'checked_parent_alpha': False, 'controlAreaVisible': True, 'covering_algorithm': 0, 'default_alpha': 1.0, 'evaluation_measure': 0, 'gamma': 0.7, 'learner_name': 'CN2 rule inducer', 'max_rule_length': 5, 'min_covered_examples': 1, 'parent_alpha': 1.0, 'rule_ordering': 0, 'savedWidgetGeometry': None, '__version__': 1}</properties>
</node_properties>
<session_state>
<window_groups />
</session_state>
</scheme>