From 50f58e8c232350d018e3d411eb50b7f9eaef991c Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Wed, 27 Sep 2023 08:21:47 -0600 Subject: [PATCH 01/27] added pseudo, reversible, and so13 lapse types --- src/metpy/calc/thermo.py | 103 +++++++++++++++++++++++++++++++--- src/metpy/constants/nounit.py | 2 + 2 files changed, 96 insertions(+), 9 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 75fadfe55f5..6d42cf39ef5 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -266,7 +266,7 @@ def dry_lapse(pressure, temperature, reference_pressure=None, vertical_dim=0): }, '[temperature]' ) -def moist_lapse(pressure, temperature, reference_pressure=None): +def moist_lapse(pressure, temperature, reference_pressure=None, lapse_type='standard', params=None): r"""Calculate the temperature at a level assuming liquid saturation processes. This function lifts a parcel starting at `temperature`. The starting pressure can @@ -285,6 +285,26 @@ def moist_lapse(pressure, temperature, reference_pressure=None): Reference pressure; if not given, it defaults to the first element of the pressure array. + lapse_type : `string`, optional + Definition of moist adiabat to use; if not given, it defaults to moist_lapse + Options: + 'standard' for simplified pseudoadiabatic process + 'pseudoadiabatic' for pseudoadiabatic moist process + 'reversible' for reversible moist process + 'so13' for Singh and O'Gorman (2013); https://doi.org/10.1002/grl.50796 + 'r14' for Romps (2014); https://doi.org/10.1175/JCLI-D-14-00255.1 + More info: https://glossary.ametsoc.org/wiki/Adiabatic_lapse_rate + + params : `dict` or None, optional + External parameters used for the some lapse_types + Required parameters: + For 'so13': { + 'h0': scale height [m], + 'p0': reference sea-level pressure [Pa], + 'ep0': entrainment constant [unitless], + 'rh0': ambient relative humidity [unitless], + } + Returns ------- `pint.Quantity` @@ -303,6 +323,9 @@ def moist_lapse(pressure, temperature, reference_pressure=None): -------- dry_lapse : Calculate parcel temperature assuming dry adiabatic processes parcel_profile : Calculate complete parcel profile + moist_lapse_pseudoadiabatic : Calculate parcel temperature assuming irreversible, moist pseudoadiabatic processes + moist_lapse_reversible : Calculate parcel temperature assuming reversible, moist adiabatic processes + moist_lapse_entrain : Calculate parcel temperature assuming reversible, moist adiabatic processes Notes ----- @@ -321,12 +344,41 @@ def moist_lapse(pressure, temperature, reference_pressure=None): Renamed ``ref_pressure`` parameter to ``reference_pressure`` """ - def dt(p, t): + def dt_standard(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) frac = ( (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) / (mpconsts.nounit.Cp_d + ( - mpconsts.nounit.Lv * mpconsts.nounit.Lv * rs * mpconsts.nounit.epsilon + mpconsts.nounit.Lv**2 * rs * mpconsts.nounit.epsilon + / (mpconsts.nounit.Rd * t**2) + )) + ) + return frac / p + + def dt_pseudoadiabatic(p, t, params): + rs = saturation_mixing_ratio._nounit(p, t) + frac = ( (1 + rs)*(mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) + / (mpconsts.nounit.Cp_d + rs*mpconsts.nounit.Cv_d + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) + / (mpconsts.nounit.Rd * t**2)))) + return frac / p + + def dt_reversible(p, t, params): + rs = saturation_mixing_ratio._nounit(p, t) + rl = params['rt'] - rs ## assuming no ice content + frac = ( (1 + params['rt'])*(mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) + / (mpconsts.nounit.Cp_d + rs*mpconsts.nounit.Cv_d + rl*mpconsts.nounit.Cp_l + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) + / (mpconsts.nounit.Rd * t**2)))) + return frac / p + + def dt_so13(p, t, params): + zp = -params['h0']*np.log(p/params['p0']) # pseudoheight + ep = params['ep0']/zp # entrainment rate + rs = saturation_mixing_ratio._nounit(p, t) + qs = specific_humidity_from_mixing_ratio(rs) + frac = ( + (mpconsts.nounit.Rd*t + mpconsts.nounit.Lv*qs + ep*qs*mpconsts.nounit.Lv*(1-params['rh0'])*mpconsts.nounit.Rd*t/mpconsts.nounit.g) + / (mpconsts.nounit.Cp_d + ( + mpconsts.nounit.Lv**2 * qs * mpconsts.nounit.epsilon / (mpconsts.nounit.Rd * t**2) )) ) @@ -337,6 +389,20 @@ def dt(p, t): if reference_pressure is None: reference_pressure = pressure[0] + if lapse_type == 'standard': + dt=dt_standard + elif lapse_type == 'pseudoadiabatic': + dt=dt_pseudoadiabatic + elif lapse_type == 'reversible': + dt=dt_reversible + params={'rt':saturation_mixing_ratio._nounit(reference_pressure,temperature)} # total water at LCL = rs + elif lapse_type == 'so13': + dt=dt_so13 + else: + raise ValueError('Specified lapse_type is not supported. ' + 'Choose from standard, pseudoadiabatic, reversible, ' + 'so13, or r14.') + if np.isnan(reference_pressure) or np.all(np.isnan(temperature)): return np.full((temperature.size, pressure.size), np.nan) @@ -347,7 +413,7 @@ def dt(p, t): # It would be preferable to use a regular solver like RK45, but as of scipy 1.8.0 # anything other than LSODA goes into an infinite loop when given NaNs for y0. - solver_args = {'fun': dt, 'y0': temperature, + solver_args = {'fun':lambda p,t:dt(p,t,params), 'y0': temperature, 'method': 'LSODA', 'atol': 1e-7, 'rtol': 1.5e-8} # Need to handle close points to avoid an error in the solver @@ -911,11 +977,10 @@ def el(pressure, temperature, dewpoint, parcel_temperature_profile=None, which=' return (units.Quantity(np.nan, pressure.units), units.Quantity(np.nan, temperature.units)) - @exporter.export @preprocess_and_wrap(wrap_like='pressure') @check_units('[pressure]', '[temperature]', '[temperature]') -def parcel_profile(pressure, temperature, dewpoint): +def parcel_profile(pressure, temperature, dewpoint, lapse_type=None, params=None): r"""Calculate the profile a parcel takes through the atmosphere. The parcel starts at `temperature`, and `dewpoint`, lifted up @@ -934,6 +999,26 @@ def parcel_profile(pressure, temperature, dewpoint): dewpoint : `pint.Quantity` Starting dewpoint + lapse_type : `string`, optional + Definition of moist adiabat to use; if not given, it defaults to moist_lapse + Options: + 'standard' for simplified pseudoadiabatic process + 'pseudoadiabatic' for pseudoadiabatic moist process + 'reversible' for reversible moist process + 'so13' for Singh and O'Gorman (2013); https://doi.org/10.1002/grl.50796 + 'r14' for Romps (2014); https://doi.org/10.1175/JCLI-D-14-00255.1 + More info: https://glossary.ametsoc.org/wiki/Adiabatic_lapse_rate + + params : `dict` or None, optional + External parameters used for the some lapse_types + Required parameters: + For 'so13': { + 'h0': scale height [m], + 'p0': reference sea-level pressure [Pa], + 'ep0': entrainment constant [unitless], + 'rh0': ambient relative humidity [unitless], + } + Returns ------- `pint.Quantity` @@ -986,7 +1071,7 @@ def parcel_profile(pressure, temperature, dewpoint): Renamed ``dewpt`` parameter to ``dewpoint`` """ - _, _, _, t_l, _, t_u = _parcel_profile_helper(pressure, temperature, dewpoint) + _, _, _, t_l, _, t_u = _parcel_profile_helper(pressure, temperature, dewpoint, lapse_type, params) return concatenate((t_l, t_u)) @@ -1168,7 +1253,7 @@ def _check_pressure_error(pressure): 'your sounding. Using scipy.signal.medfilt may fix this.') -def _parcel_profile_helper(pressure, temperature, dewpoint): +def _parcel_profile_helper(pressure, temperature, dewpoint, lapse_type, params): """Help calculate parcel profiles. Returns the temperature and pressure, above, below, and including the LCL. The @@ -1205,7 +1290,7 @@ def _parcel_profile_helper(pressure, temperature, dewpoint): 'Output profile includes duplicate temperatures as a result.') # Find moist pseudo-adiabatic profile starting at the LCL, reversing above sorting - temp_upper = moist_lapse(unique[::-1], temp_lower[-1]).to(temp_lower.units) + temp_upper = moist_lapse(unique[::-1], temp_lower[-1], lapse_type=lapse_type, params=params).to(temp_lower.units) temp_upper = temp_upper[::-1][indices] # Return profile pieces diff --git a/src/metpy/constants/nounit.py b/src/metpy/constants/nounit.py index 25d9f2cd228..d4f77a7f224 100644 --- a/src/metpy/constants/nounit.py +++ b/src/metpy/constants/nounit.py @@ -9,6 +9,8 @@ Rd = default.Rd.m_as('m**2 / K / s**2') Lv = default.Lv.m_as('m**2 / s**2') Cp_d = default.Cp_d.m_as('m**2 / K / s**2') +Cv_d = default.Cv_d.m_as('m**2 / K / s**2') +Cp_l = default.Cp_l.m_as('m**2 / K / s**2') zero_degc = units.Quantity(0., 'degC').m_as('K') sat_pressure_0c = default.sat_pressure_0c.m_as('Pa') epsilon = default.epsilon.m_as('') From 0600059726ae6a13e529e5aea14de042951f728d Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Fri, 6 Oct 2023 15:06:10 -0600 Subject: [PATCH 02/27] added Romps (2014) lapse rate --- src/metpy/calc/thermo.py | 27 +++++++++++++++++++++++---- 1 file changed, 23 insertions(+), 4 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 6d42cf39ef5..16ef587bcb5 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -299,10 +299,16 @@ def moist_lapse(pressure, temperature, reference_pressure=None, lapse_type='stan External parameters used for the some lapse_types Required parameters: For 'so13': { - 'h0': scale height [m], - 'p0': reference sea-level pressure [Pa], - 'ep0': entrainment constant [unitless], - 'rh0': ambient relative humidity [unitless], + 'h0': scalar, scale height [m], + 'p0': scalar, reference sea-level pressure [Pa], + 'ep0': scalar, entrainment constant [unitless], + 'rh0': scalar, ambient relative humidity [unitless], + } + + For 'r14': { + 'de': scalar or 1-d array, detrainment rate [m**-1], + 'ep': scalar or 1-d array, entrainment rate [m**-1], + 'pa': 1-d array, optional, pressure levels defining detrainment and entrainment profile [Pa] } Returns @@ -384,6 +390,17 @@ def dt_so13(p, t, params): ) return frac / p + def dt_r14(p, t, params): + ep = np.interp(p,params['pa'],params['ep']) if hasattr(params['ep'],'__len__') else params['ep'] # entrainment rate at p + de = np.interp(p,params['pa'],params['de']) if hasattr(params['de'],'__len__') else params['de'] # detrainment rate at p + rs = saturation_mixing_ratio._nounit(p, t) + qs = specific_humidity_from_mixing_ratio(rs) + a1 = mpconsts.nounit.Rv*mpconsts.nounit.Cp_d*t**2/mpconsts.nounit.Lv + qs*mpconsts.nounit.Lv + a2 = mpconsts.nounit.Rv*mpconsts.nounit.Cp_d*t**2/mpconsts.nounit.Lv*(de+mpconsts.nounit.g/(mpconsts.nounit.Rd*t)) + qs*mpconsts.nounit.Lv*(de-ep) - mpconsts.nounit.g + a3 = (mpconsts.nounit.Rv*mpconsts.nounit.Cp_d*t/(mpconsts.nounit.Rd*mpconsts.nounit.Lv) - 1)*mpconsts.nounit.g*de + frac = mpconsts.nounit.Rd*t/(mpconsts.nounit.g) * mpconsts.nounit.Rv*t**2/mpconsts.nounit.Lv * ((-a2+np.sqrt(a2**2-4*a1*a3))/(2*a1) + mpconsts.nounit.g/(mpconsts.nounit.Rd*t)) + return frac / p + temperature = np.atleast_1d(temperature) pressure = np.atleast_1d(pressure) if reference_pressure is None: @@ -398,6 +415,8 @@ def dt_so13(p, t, params): params={'rt':saturation_mixing_ratio._nounit(reference_pressure,temperature)} # total water at LCL = rs elif lapse_type == 'so13': dt=dt_so13 + elif lapse_type == 'r14': + dt=dt_r14 else: raise ValueError('Specified lapse_type is not supported. ' 'Choose from standard, pseudoadiabatic, reversible, ' From 1744d7831217dadc8cccac99c89c3f830b8c9529 Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Fri, 6 Oct 2023 15:11:47 -0600 Subject: [PATCH 03/27] updated documentation for parcel_profile --- src/metpy/calc/thermo.py | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 16ef587bcb5..8006935a0f0 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -304,7 +304,6 @@ def moist_lapse(pressure, temperature, reference_pressure=None, lapse_type='stan 'ep0': scalar, entrainment constant [unitless], 'rh0': scalar, ambient relative humidity [unitless], } - For 'r14': { 'de': scalar or 1-d array, detrainment rate [m**-1], 'ep': scalar or 1-d array, entrainment rate [m**-1], @@ -329,9 +328,6 @@ def moist_lapse(pressure, temperature, reference_pressure=None, lapse_type='stan -------- dry_lapse : Calculate parcel temperature assuming dry adiabatic processes parcel_profile : Calculate complete parcel profile - moist_lapse_pseudoadiabatic : Calculate parcel temperature assuming irreversible, moist pseudoadiabatic processes - moist_lapse_reversible : Calculate parcel temperature assuming reversible, moist adiabatic processes - moist_lapse_entrain : Calculate parcel temperature assuming reversible, moist adiabatic processes Notes ----- @@ -1037,6 +1033,11 @@ def parcel_profile(pressure, temperature, dewpoint, lapse_type=None, params=None 'ep0': entrainment constant [unitless], 'rh0': ambient relative humidity [unitless], } + For 'r14': { + 'de': scalar or 1-d array, detrainment rate [m**-1], + 'ep': scalar or 1-d array, entrainment rate [m**-1], + 'pa': 1-d array, optional, pressure levels defining detrainment and entrainment profile [Pa] + } Returns ------- From 47e009c92e7a069636549bb2470321cd005c5d29 Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Wed, 18 Oct 2023 11:47:54 -0600 Subject: [PATCH 04/27] set default lapse_type='standard' for parcel_profile --- src/metpy/calc/thermo.py | 2 +- src/metpy/constants/nounit.py | 1 + 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 8006935a0f0..81476622e37 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -995,7 +995,7 @@ def el(pressure, temperature, dewpoint, parcel_temperature_profile=None, which=' @exporter.export @preprocess_and_wrap(wrap_like='pressure') @check_units('[pressure]', '[temperature]', '[temperature]') -def parcel_profile(pressure, temperature, dewpoint, lapse_type=None, params=None): +def parcel_profile(pressure, temperature, dewpoint, lapse_type='standard', params=None): r"""Calculate the profile a parcel takes through the atmosphere. The parcel starts at `temperature`, and `dewpoint`, lifted up diff --git a/src/metpy/constants/nounit.py b/src/metpy/constants/nounit.py index d4f77a7f224..c4f78dbf0ec 100644 --- a/src/metpy/constants/nounit.py +++ b/src/metpy/constants/nounit.py @@ -7,6 +7,7 @@ from ..units import units Rd = default.Rd.m_as('m**2 / K / s**2') +Rv = default.Rv.m_as('m**2 / K / s**2') Lv = default.Lv.m_as('m**2 / s**2') Cp_d = default.Cp_d.m_as('m**2 / K / s**2') Cv_d = default.Cv_d.m_as('m**2 / K / s**2') From 26b8809c4f42d1b5886bdf596f67475cea83f542 Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Thu, 19 Oct 2023 14:15:45 -0600 Subject: [PATCH 05/27] simplified so13 input parameters by calculating pseudoheight with parcel T and p --- src/metpy/calc/thermo.py | 5 +---- 1 file changed, 1 insertion(+), 4 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 81476622e37..0857b194de6 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -299,8 +299,6 @@ def moist_lapse(pressure, temperature, reference_pressure=None, lapse_type='stan External parameters used for the some lapse_types Required parameters: For 'so13': { - 'h0': scalar, scale height [m], - 'p0': scalar, reference sea-level pressure [Pa], 'ep0': scalar, entrainment constant [unitless], 'rh0': scalar, ambient relative humidity [unitless], } @@ -411,6 +409,7 @@ def dt_r14(p, t, params): params={'rt':saturation_mixing_ratio._nounit(reference_pressure,temperature)} # total water at LCL = rs elif lapse_type == 'so13': dt=dt_so13 + params.update{{'h0':mpconsts.nounit.Rd*temperature[0]/mpconsts.nounit.g, 'p0':pressure[0]}} elif lapse_type == 'r14': dt=dt_r14 else: @@ -1028,8 +1027,6 @@ def parcel_profile(pressure, temperature, dewpoint, lapse_type='standard', param External parameters used for the some lapse_types Required parameters: For 'so13': { - 'h0': scale height [m], - 'p0': reference sea-level pressure [Pa], 'ep0': entrainment constant [unitless], 'rh0': ambient relative humidity [unitless], } From b052f98bbb770a728f03d8618cd4f865b5087b7f Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Thu, 19 Oct 2023 14:52:23 -0600 Subject: [PATCH 06/27] cap max lapse rate to dry adiabat for so13 --- src/metpy/calc/thermo.py | 26 +++++++++++++++----------- 1 file changed, 15 insertions(+), 11 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 0857b194de6..9af52aa78a9 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -372,16 +372,20 @@ def dt_reversible(p, t, params): def dt_so13(p, t, params): zp = -params['h0']*np.log(p/params['p0']) # pseudoheight - ep = params['ep0']/zp # entrainment rate - rs = saturation_mixing_ratio._nounit(p, t) - qs = specific_humidity_from_mixing_ratio(rs) - frac = ( - (mpconsts.nounit.Rd*t + mpconsts.nounit.Lv*qs + ep*qs*mpconsts.nounit.Lv*(1-params['rh0'])*mpconsts.nounit.Rd*t/mpconsts.nounit.g) - / (mpconsts.nounit.Cp_d + ( - mpconsts.nounit.Lv**2 * qs * mpconsts.nounit.epsilon - / (mpconsts.nounit.Rd * t**2) - )) - ) + if np.abs(zp)==0: # entrainment rate undefined at z=0, assume dry adiabat + frac = mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d + else: + ep = params['ep0']/zp # entrainment rate + rs = saturation_mixing_ratio._nounit(p, t) + qs = specific_humidity_from_mixing_ratio(rs) + frac = ( + (mpconsts.nounit.Rd*t + mpconsts.nounit.Lv*qs + ep*qs*mpconsts.nounit.Lv*(1-params['rh0'])*mpconsts.nounit.Rd*t/mpconsts.nounit.g) + / (mpconsts.nounit.Cp_d + ( + mpconsts.nounit.Lv**2 * qs * mpconsts.nounit.epsilon + / (mpconsts.nounit.Rd * t**2) + )) + ) + frac = np.min([frac, mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d]) # cap lapse rate at dry adiabat return frac / p def dt_r14(p, t, params): @@ -409,7 +413,7 @@ def dt_r14(p, t, params): params={'rt':saturation_mixing_ratio._nounit(reference_pressure,temperature)} # total water at LCL = rs elif lapse_type == 'so13': dt=dt_so13 - params.update{{'h0':mpconsts.nounit.Rd*temperature[0]/mpconsts.nounit.g, 'p0':pressure[0]}} + params.update({'h0':mpconsts.nounit.Rd * temperature[0] / mpconsts.nounit.g, 'p0':pressure[0]}) elif lapse_type == 'r14': dt=dt_r14 else: From 452247321945e0b54465fc59c8be533ea6d61735 Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Thu, 19 Oct 2023 16:56:11 -0600 Subject: [PATCH 07/27] comply with whitespace and linewidth conventions --- src/metpy/calc/thermo.py | 65 +++++++++++++++++++++++++++------------- 1 file changed, 45 insertions(+), 20 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 9af52aa78a9..654329bc631 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -266,7 +266,8 @@ def dry_lapse(pressure, temperature, reference_pressure=None, vertical_dim=0): }, '[temperature]' ) -def moist_lapse(pressure, temperature, reference_pressure=None, lapse_type='standard', params=None): +def moist_lapse(pressure, temperature, reference_pressure=None, + lapse_type='standard', params=None): r"""Calculate the temperature at a level assuming liquid saturation processes. This function lifts a parcel starting at `temperature`. The starting pressure can @@ -305,7 +306,8 @@ def moist_lapse(pressure, temperature, reference_pressure=None, lapse_type='stan For 'r14': { 'de': scalar or 1-d array, detrainment rate [m**-1], 'ep': scalar or 1-d array, entrainment rate [m**-1], - 'pa': 1-d array, optional, pressure levels defining detrainment and entrainment profile [Pa] + 'pa': 1-d array, optional, pressure levels + defining detrainment and entrainment profile [Pa] } Returns @@ -357,46 +359,65 @@ def dt_standard(p, t, params): def dt_pseudoadiabatic(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) - frac = ( (1 + rs)*(mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) - / (mpconsts.nounit.Cp_d + rs*mpconsts.nounit.Cv_d + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) + frac = ( (1 + rs) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) + / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) / (mpconsts.nounit.Rd * t**2)))) return frac / p def dt_reversible(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) rl = params['rt'] - rs ## assuming no ice content - frac = ( (1 + params['rt'])*(mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) - / (mpconsts.nounit.Cp_d + rs*mpconsts.nounit.Cv_d + rl*mpconsts.nounit.Cp_l + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) + frac = ( (1 + params['rt']) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) + / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + + rl * mpconsts.nounit.Cp_l + (mpconsts.nounit.Lv**2 * rs * + (mpconsts.nounit.epsilon + rs) / (mpconsts.nounit.Rd * t**2)))) return frac / p def dt_so13(p, t, params): - zp = -params['h0']*np.log(p/params['p0']) # pseudoheight + zp = -params['h0'] * np.log(p / params['p0']) # pseudoheight if np.abs(zp)==0: # entrainment rate undefined at z=0, assume dry adiabat frac = mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d else: - ep = params['ep0']/zp # entrainment rate + ep = params['ep0'] / zp # entrainment rate rs = saturation_mixing_ratio._nounit(p, t) qs = specific_humidity_from_mixing_ratio(rs) frac = ( - (mpconsts.nounit.Rd*t + mpconsts.nounit.Lv*qs + ep*qs*mpconsts.nounit.Lv*(1-params['rh0'])*mpconsts.nounit.Rd*t/mpconsts.nounit.g) + (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * qs + + ep * qs * mpconsts.nounit.Lv * (1 - params['rh0']) * + mpconsts.nounit.Rd * t / mpconsts.nounit.g) / (mpconsts.nounit.Cp_d + ( mpconsts.nounit.Lv**2 * qs * mpconsts.nounit.epsilon / (mpconsts.nounit.Rd * t**2) )) ) - frac = np.min([frac, mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d]) # cap lapse rate at dry adiabat + # cap lapse rate at dry adiabat (can be steeper with large entrainment rate) + frac = np.min([frac, mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d]) return frac / p def dt_r14(p, t, params): - ep = np.interp(p,params['pa'],params['ep']) if hasattr(params['ep'],'__len__') else params['ep'] # entrainment rate at p - de = np.interp(p,params['pa'],params['de']) if hasattr(params['de'],'__len__') else params['de'] # detrainment rate at p + if hasattr(params['ep'],'__len__'): # evaluate entrainment rate at p if not constant + ep = np.interp(p,params['pa'],params['ep']) + else: + ep = params['ep'] + if hasattr(params['de'],'__len__'): # same as above for detrainment + de = np.interp(p,params['pa'],params['de']) + else: + de = params['de'] rs = saturation_mixing_ratio._nounit(p, t) qs = specific_humidity_from_mixing_ratio(rs) - a1 = mpconsts.nounit.Rv*mpconsts.nounit.Cp_d*t**2/mpconsts.nounit.Lv + qs*mpconsts.nounit.Lv - a2 = mpconsts.nounit.Rv*mpconsts.nounit.Cp_d*t**2/mpconsts.nounit.Lv*(de+mpconsts.nounit.g/(mpconsts.nounit.Rd*t)) + qs*mpconsts.nounit.Lv*(de-ep) - mpconsts.nounit.g - a3 = (mpconsts.nounit.Rv*mpconsts.nounit.Cp_d*t/(mpconsts.nounit.Rd*mpconsts.nounit.Lv) - 1)*mpconsts.nounit.g*de - frac = mpconsts.nounit.Rd*t/(mpconsts.nounit.g) * mpconsts.nounit.Rv*t**2/mpconsts.nounit.Lv * ((-a2+np.sqrt(a2**2-4*a1*a3))/(2*a1) + mpconsts.nounit.g/(mpconsts.nounit.Rd*t)) + a1 = ( mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv + + qs * mpconsts.nounit.Lv ) + a2 = ( mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv * + (de + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) + + qs * mpconsts.nounit.Lv * (de - ep) - mpconsts.nounit.g ) + a3 = ( (mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t / + (mpconsts.nounit.Rd * mpconsts.nounit.Lv) - 1) * mpconsts.nounit.g * de ) + frac = ( mpconsts.nounit.Rd * t / (mpconsts.nounit.g) * + mpconsts.nounit.Rv * t**2 / mpconsts.nounit.Lv * + ((-a2+np.sqrt(a2**2 - 4 * a1 * a3)) / (2 * a1) + + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) ) return frac / p temperature = np.atleast_1d(temperature) @@ -410,10 +431,12 @@ def dt_r14(p, t, params): dt=dt_pseudoadiabatic elif lapse_type == 'reversible': dt=dt_reversible - params={'rt':saturation_mixing_ratio._nounit(reference_pressure,temperature)} # total water at LCL = rs + # total water at LCL = rs + params={'rt':saturation_mixing_ratio._nounit(reference_pressure,temperature)} elif lapse_type == 'so13': dt=dt_so13 - params.update({'h0':mpconsts.nounit.Rd * temperature[0] / mpconsts.nounit.g, 'p0':pressure[0]}) + params.update({'h0':mpconsts.nounit.Rd * temperature[0] / mpconsts.nounit.g, + 'p0':pressure[0]}) elif lapse_type == 'r14': dt=dt_r14 else: @@ -1037,7 +1060,8 @@ def parcel_profile(pressure, temperature, dewpoint, lapse_type='standard', param For 'r14': { 'de': scalar or 1-d array, detrainment rate [m**-1], 'ep': scalar or 1-d array, entrainment rate [m**-1], - 'pa': 1-d array, optional, pressure levels defining detrainment and entrainment profile [Pa] + 'pa': 1-d array, optional, pressure levels + defining detrainment and entrainment profile [Pa] } Returns @@ -1092,7 +1116,8 @@ def parcel_profile(pressure, temperature, dewpoint, lapse_type='standard', param Renamed ``dewpt`` parameter to ``dewpoint`` """ - _, _, _, t_l, _, t_u = _parcel_profile_helper(pressure, temperature, dewpoint, lapse_type, params) + _, _, _, t_l, _, t_u = _parcel_profile_helper(pressure, temperature, dewpoint, + lapse_type, params) return concatenate((t_l, t_u)) From 53b3e22f46aa7e37cb7922e6c59bcd3903ed2b65 Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Thu, 19 Oct 2023 16:58:50 -0600 Subject: [PATCH 08/27] extend support to parcel_profile_with_lcl --- src/metpy/calc/thermo.py | 28 ++++++++++++++++++++++++++-- 1 file changed, 26 insertions(+), 2 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 654329bc631..b9c69fec979 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -1124,7 +1124,7 @@ def parcel_profile(pressure, temperature, dewpoint, lapse_type='standard', param @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]', '[temperature]') -def parcel_profile_with_lcl(pressure, temperature, dewpoint): +def parcel_profile_with_lcl(pressure, temperature, dewpoint, lapse_type='standard', params=None): r"""Calculate the profile a parcel takes through the atmosphere. The parcel starts at `temperature`, and `dewpoint`, lifted up @@ -1146,6 +1146,30 @@ def parcel_profile_with_lcl(pressure, temperature, dewpoint): Atmospheric dewpoint at the levels in `pressure`. The first entry should be at the same level as the first `pressure` data point. + lapse_type : `string`, optional + Definition of moist adiabat to use; if not given, it defaults to moist_lapse + Options: + 'standard' for simplified pseudoadiabatic process + 'pseudoadiabatic' for pseudoadiabatic moist process + 'reversible' for reversible moist process + 'so13' for Singh and O'Gorman (2013); https://doi.org/10.1002/grl.50796 + 'r14' for Romps (2014); https://doi.org/10.1175/JCLI-D-14-00255.1 + More info: https://glossary.ametsoc.org/wiki/Adiabatic_lapse_rate + + params : `dict` or None, optional + External parameters used for the some lapse_types + Required parameters: + For 'so13': { + 'ep0': entrainment constant [unitless], + 'rh0': ambient relative humidity [unitless], + } + For 'r14': { + 'de': scalar or 1-d array, detrainment rate [m**-1], + 'ep': scalar or 1-d array, entrainment rate [m**-1], + 'pa': 1-d array, optional, pressure levels + defining detrainment and entrainment profile [Pa] + } + Returns ------- pressure : `pint.Quantity` @@ -1204,7 +1228,7 @@ def parcel_profile_with_lcl(pressure, temperature, dewpoint): """ p_l, p_lcl, p_u, t_l, t_lcl, t_u = _parcel_profile_helper(pressure, temperature[0], - dewpoint[0]) + dewpoint[0], lapse_type, params) new_press = concatenate((p_l, p_lcl, p_u)) prof_temp = concatenate((t_l, t_lcl, t_u)) new_temp = _insert_lcl_level(pressure, temperature, p_lcl) From 90f29b11b1ed5cb1938d9d3dbb33116dcfd0a34f Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Thu, 19 Oct 2023 17:02:02 -0600 Subject: [PATCH 09/27] remove trailing whitespace --- src/metpy/calc/thermo.py | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index b9c69fec979..bf8737c7f97 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -360,7 +360,7 @@ def dt_standard(p, t, params): def dt_pseudoadiabatic(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) frac = ( (1 + rs) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) - / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + + / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) / (mpconsts.nounit.Rd * t**2)))) return frac / p @@ -369,8 +369,8 @@ def dt_reversible(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) rl = params['rt'] - rs ## assuming no ice content frac = ( (1 + params['rt']) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) - / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + - rl * mpconsts.nounit.Cp_l + (mpconsts.nounit.Lv**2 * rs * + / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + + rl * mpconsts.nounit.Cp_l + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) / (mpconsts.nounit.Rd * t**2)))) return frac / p @@ -384,7 +384,7 @@ def dt_so13(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) qs = specific_humidity_from_mixing_ratio(rs) frac = ( - (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * qs + + (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * qs + ep * qs * mpconsts.nounit.Lv * (1 - params['rh0']) * mpconsts.nounit.Rd * t / mpconsts.nounit.g) / (mpconsts.nounit.Cp_d + ( @@ -393,7 +393,7 @@ def dt_so13(p, t, params): )) ) # cap lapse rate at dry adiabat (can be steeper with large entrainment rate) - frac = np.min([frac, mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d]) + frac = np.min([frac, mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d]) return frac / p def dt_r14(p, t, params): @@ -407,15 +407,15 @@ def dt_r14(p, t, params): de = params['de'] rs = saturation_mixing_ratio._nounit(p, t) qs = specific_humidity_from_mixing_ratio(rs) - a1 = ( mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv + + a1 = ( mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv + qs * mpconsts.nounit.Lv ) a2 = ( mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv * - (de + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) + + (de + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) + qs * mpconsts.nounit.Lv * (de - ep) - mpconsts.nounit.g ) a3 = ( (mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t / (mpconsts.nounit.Rd * mpconsts.nounit.Lv) - 1) * mpconsts.nounit.g * de ) - frac = ( mpconsts.nounit.Rd * t / (mpconsts.nounit.g) * - mpconsts.nounit.Rv * t**2 / mpconsts.nounit.Lv * + frac = ( mpconsts.nounit.Rd * t / (mpconsts.nounit.g) * + mpconsts.nounit.Rv * t**2 / mpconsts.nounit.Lv * ((-a2+np.sqrt(a2**2 - 4 * a1 * a3)) / (2 * a1) + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) ) return frac / p From f89bc6f82f053a0985aa0d4f7e62fa9ee736b04b Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Thu, 19 Oct 2023 17:05:11 -0600 Subject: [PATCH 10/27] fix whitespace and linewidth --- src/metpy/calc/thermo.py | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index bf8737c7f97..30dbcf0fe58 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -416,7 +416,7 @@ def dt_r14(p, t, params): (mpconsts.nounit.Rd * mpconsts.nounit.Lv) - 1) * mpconsts.nounit.g * de ) frac = ( mpconsts.nounit.Rd * t / (mpconsts.nounit.g) * mpconsts.nounit.Rv * t**2 / mpconsts.nounit.Lv * - ((-a2+np.sqrt(a2**2 - 4 * a1 * a3)) / (2 * a1) + + ((-a2 + np.sqrt(a2**2 - 4 * a1 * a3)) / (2 * a1) + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) ) return frac / p @@ -435,7 +435,7 @@ def dt_r14(p, t, params): params={'rt':saturation_mixing_ratio._nounit(reference_pressure,temperature)} elif lapse_type == 'so13': dt=dt_so13 - params.update({'h0':mpconsts.nounit.Rd * temperature[0] / mpconsts.nounit.g, + params.update({'h0':mpconsts.nounit.Rd * temperature[0] / mpconsts.nounit.g, 'p0':pressure[0]}) elif lapse_type == 'r14': dt=dt_r14 @@ -1124,7 +1124,8 @@ def parcel_profile(pressure, temperature, dewpoint, lapse_type='standard', param @exporter.export @preprocess_and_wrap() @check_units('[pressure]', '[temperature]', '[temperature]') -def parcel_profile_with_lcl(pressure, temperature, dewpoint, lapse_type='standard', params=None): +def parcel_profile_with_lcl(pressure, temperature, dewpoint, + lapse_type='standard', params=None): r"""Calculate the profile a parcel takes through the atmosphere. The parcel starts at `temperature`, and `dewpoint`, lifted up @@ -1360,7 +1361,8 @@ def _parcel_profile_helper(pressure, temperature, dewpoint, lapse_type, params): 'Output profile includes duplicate temperatures as a result.') # Find moist pseudo-adiabatic profile starting at the LCL, reversing above sorting - temp_upper = moist_lapse(unique[::-1], temp_lower[-1], lapse_type=lapse_type, params=params).to(temp_lower.units) + temp_upper = moist_lapse(unique[::-1], temp_lower[-1], + lapse_type=lapse_type, params=params).to(temp_lower.units) temp_upper = temp_upper[::-1][indices] # Return profile pieces From 85bd432a4971280db88f564bcb62addeeae52b9b Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Thu, 19 Oct 2023 17:06:42 -0600 Subject: [PATCH 11/27] fix whitespace --- src/metpy/calc/thermo.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 30dbcf0fe58..6f22e441ccf 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -416,7 +416,7 @@ def dt_r14(p, t, params): (mpconsts.nounit.Rd * mpconsts.nounit.Lv) - 1) * mpconsts.nounit.g * de ) frac = ( mpconsts.nounit.Rd * t / (mpconsts.nounit.g) * mpconsts.nounit.Rv * t**2 / mpconsts.nounit.Lv * - ((-a2 + np.sqrt(a2**2 - 4 * a1 * a3)) / (2 * a1) + + ((-a2 + np.sqrt(a2**2 - 4 * a1 * a3)) / (2 * a1) + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) ) return frac / p From baf065df04ea01f85eece26fa7f672944c01ca41 Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Thu, 19 Oct 2023 17:11:16 -0600 Subject: [PATCH 12/27] fix indents --- src/metpy/calc/thermo.py | 91 ++++++++++++++++++++-------------------- 1 file changed, 46 insertions(+), 45 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 6f22e441ccf..218e0011839 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -289,26 +289,26 @@ def moist_lapse(pressure, temperature, reference_pressure=None, lapse_type : `string`, optional Definition of moist adiabat to use; if not given, it defaults to moist_lapse Options: - 'standard' for simplified pseudoadiabatic process - 'pseudoadiabatic' for pseudoadiabatic moist process - 'reversible' for reversible moist process - 'so13' for Singh and O'Gorman (2013); https://doi.org/10.1002/grl.50796 - 'r14' for Romps (2014); https://doi.org/10.1175/JCLI-D-14-00255.1 + 'standard' for simplified pseudoadiabatic process + 'pseudoadiabatic' for pseudoadiabatic moist process + 'reversible' for reversible moist process + 'so13' for Singh and O'Gorman (2013); https://doi.org/10.1002/grl.50796 + 'r14' for Romps (2014); https://doi.org/10.1175/JCLI-D-14-00255.1 More info: https://glossary.ametsoc.org/wiki/Adiabatic_lapse_rate params : `dict` or None, optional External parameters used for the some lapse_types Required parameters: - For 'so13': { - 'ep0': scalar, entrainment constant [unitless], - 'rh0': scalar, ambient relative humidity [unitless], - } - For 'r14': { - 'de': scalar or 1-d array, detrainment rate [m**-1], - 'ep': scalar or 1-d array, entrainment rate [m**-1], - 'pa': 1-d array, optional, pressure levels - defining detrainment and entrainment profile [Pa] - } + For 'so13': { + 'ep0': scalar, entrainment constant [unitless], + 'rh0': scalar, ambient relative humidity [unitless],} + } + For 'r14': { + 'de': scalar or 1-d array, detrainment rate [m**-1], + 'ep': scalar or 1-d array, entrainment rate [m**-1], + 'pa': 1-d array, optional, pressure levels + defining detrainment and entrainment profile [Pa] + } Returns ------- @@ -1018,6 +1018,7 @@ def el(pressure, temperature, dewpoint, parcel_temperature_profile=None, which=' return (units.Quantity(np.nan, pressure.units), units.Quantity(np.nan, temperature.units)) + @exporter.export @preprocess_and_wrap(wrap_like='pressure') @check_units('[pressure]', '[temperature]', '[temperature]') @@ -1043,26 +1044,26 @@ def parcel_profile(pressure, temperature, dewpoint, lapse_type='standard', param lapse_type : `string`, optional Definition of moist adiabat to use; if not given, it defaults to moist_lapse Options: - 'standard' for simplified pseudoadiabatic process - 'pseudoadiabatic' for pseudoadiabatic moist process - 'reversible' for reversible moist process - 'so13' for Singh and O'Gorman (2013); https://doi.org/10.1002/grl.50796 - 'r14' for Romps (2014); https://doi.org/10.1175/JCLI-D-14-00255.1 + 'standard' for simplified pseudoadiabatic process + 'pseudoadiabatic' for pseudoadiabatic moist process + 'reversible' for reversible moist process + 'so13' for Singh and O'Gorman (2013); https://doi.org/10.1002/grl.50796 + 'r14' for Romps (2014); https://doi.org/10.1175/JCLI-D-14-00255.1 More info: https://glossary.ametsoc.org/wiki/Adiabatic_lapse_rate params : `dict` or None, optional External parameters used for the some lapse_types Required parameters: - For 'so13': { - 'ep0': entrainment constant [unitless], - 'rh0': ambient relative humidity [unitless], - } - For 'r14': { - 'de': scalar or 1-d array, detrainment rate [m**-1], - 'ep': scalar or 1-d array, entrainment rate [m**-1], - 'pa': 1-d array, optional, pressure levels - defining detrainment and entrainment profile [Pa] - } + For 'so13': { + 'ep0': entrainment constant [unitless], + 'rh0': ambient relative humidity [unitless], + } + For 'r14': { + 'de': scalar or 1-d array, detrainment rate [m**-1], + 'ep': scalar or 1-d array, entrainment rate [m**-1], + 'pa': 1-d array, optional, pressure levels + defining detrainment and entrainment profile [Pa] + } Returns ------- @@ -1150,26 +1151,26 @@ def parcel_profile_with_lcl(pressure, temperature, dewpoint, lapse_type : `string`, optional Definition of moist adiabat to use; if not given, it defaults to moist_lapse Options: - 'standard' for simplified pseudoadiabatic process - 'pseudoadiabatic' for pseudoadiabatic moist process - 'reversible' for reversible moist process - 'so13' for Singh and O'Gorman (2013); https://doi.org/10.1002/grl.50796 - 'r14' for Romps (2014); https://doi.org/10.1175/JCLI-D-14-00255.1 + 'standard' for simplified pseudoadiabatic process + 'pseudoadiabatic' for pseudoadiabatic moist process + 'reversible' for reversible moist process + 'so13' for Singh and O'Gorman (2013); https://doi.org/10.1002/grl.50796 + 'r14' for Romps (2014); https://doi.org/10.1175/JCLI-D-14-00255.1 More info: https://glossary.ametsoc.org/wiki/Adiabatic_lapse_rate params : `dict` or None, optional External parameters used for the some lapse_types Required parameters: - For 'so13': { - 'ep0': entrainment constant [unitless], - 'rh0': ambient relative humidity [unitless], - } - For 'r14': { - 'de': scalar or 1-d array, detrainment rate [m**-1], - 'ep': scalar or 1-d array, entrainment rate [m**-1], - 'pa': 1-d array, optional, pressure levels - defining detrainment and entrainment profile [Pa] - } + For 'so13': { + 'ep0': entrainment constant [unitless], + 'rh0': ambient relative humidity [unitless], + } + For 'r14': { + 'de': scalar or 1-d array, detrainment rate [m**-1], + 'ep': scalar or 1-d array, entrainment rate [m**-1], + 'pa': 1-d array, optional, pressure levels + defining detrainment and entrainment profile [Pa] + } Returns ------- From a5a42ba1bdff133c60848a34389d33c7b3bb7f43 Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Tue, 7 Nov 2023 09:45:01 -0700 Subject: [PATCH 13/27] fix indents --- src/metpy/calc/thermo.py | 24 +++++++++--------------- 1 file changed, 9 insertions(+), 15 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 218e0011839..293515020b0 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -299,16 +299,14 @@ def moist_lapse(pressure, temperature, reference_pressure=None, params : `dict` or None, optional External parameters used for the some lapse_types Required parameters: - For 'so13': { + For 'so13': 'ep0': scalar, entrainment constant [unitless], 'rh0': scalar, ambient relative humidity [unitless],} - } - For 'r14': { + For 'r14': 'de': scalar or 1-d array, detrainment rate [m**-1], 'ep': scalar or 1-d array, entrainment rate [m**-1], 'pa': 1-d array, optional, pressure levels - defining detrainment and entrainment profile [Pa] - } + defining detrainment and entrainment profile [Pa] Returns ------- @@ -1054,16 +1052,14 @@ def parcel_profile(pressure, temperature, dewpoint, lapse_type='standard', param params : `dict` or None, optional External parameters used for the some lapse_types Required parameters: - For 'so13': { + For 'so13': 'ep0': entrainment constant [unitless], 'rh0': ambient relative humidity [unitless], - } - For 'r14': { + For 'r14': 'de': scalar or 1-d array, detrainment rate [m**-1], 'ep': scalar or 1-d array, entrainment rate [m**-1], 'pa': 1-d array, optional, pressure levels - defining detrainment and entrainment profile [Pa] - } + defining detrainment and entrainment profile [Pa] Returns ------- @@ -1161,16 +1157,14 @@ def parcel_profile_with_lcl(pressure, temperature, dewpoint, params : `dict` or None, optional External parameters used for the some lapse_types Required parameters: - For 'so13': { + For 'so13': 'ep0': entrainment constant [unitless], 'rh0': ambient relative humidity [unitless], - } - For 'r14': { + For 'r14': 'de': scalar or 1-d array, detrainment rate [m**-1], 'ep': scalar or 1-d array, entrainment rate [m**-1], 'pa': 1-d array, optional, pressure levels - defining detrainment and entrainment profile [Pa] - } + defining detrainment and entrainment profile [Pa] Returns ------- From c2c844853fca5918beb02be5be01f4e858a8cae8 Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Tue, 7 Nov 2023 10:06:16 -0700 Subject: [PATCH 14/27] fix indents --- src/metpy/calc/thermo.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 293515020b0..58f8dcd7d74 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -267,7 +267,7 @@ def dry_lapse(pressure, temperature, reference_pressure=None, vertical_dim=0): '[temperature]' ) def moist_lapse(pressure, temperature, reference_pressure=None, - lapse_type='standard', params=None): + lapse_type='standard', params=None): r"""Calculate the temperature at a level assuming liquid saturation processes. This function lifts a parcel starting at `temperature`. The starting pressure can From 4e00271793adb7511f3750919ab32105809f33ec Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Tue, 7 Nov 2023 10:59:40 -0700 Subject: [PATCH 15/27] fix url issue --- src/metpy/calc/thermo.py | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 58f8dcd7d74..70342d5d17c 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -292,9 +292,9 @@ def moist_lapse(pressure, temperature, reference_pressure=None, 'standard' for simplified pseudoadiabatic process 'pseudoadiabatic' for pseudoadiabatic moist process 'reversible' for reversible moist process - 'so13' for Singh and O'Gorman (2013); https://doi.org/10.1002/grl.50796 - 'r14' for Romps (2014); https://doi.org/10.1175/JCLI-D-14-00255.1 - More info: https://glossary.ametsoc.org/wiki/Adiabatic_lapse_rate + 'so13' for Singh and O'Gorman (2013); doi.org/10.1002/grl.50796 + 'r14' for Romps (2014); doi.org/10.1175/JCLI-D-14-00255.1 + More info: glossary.ametsoc.org/wiki/Adiabatic_lapse_rate params : `dict` or None, optional External parameters used for the some lapse_types @@ -1045,9 +1045,9 @@ def parcel_profile(pressure, temperature, dewpoint, lapse_type='standard', param 'standard' for simplified pseudoadiabatic process 'pseudoadiabatic' for pseudoadiabatic moist process 'reversible' for reversible moist process - 'so13' for Singh and O'Gorman (2013); https://doi.org/10.1002/grl.50796 - 'r14' for Romps (2014); https://doi.org/10.1175/JCLI-D-14-00255.1 - More info: https://glossary.ametsoc.org/wiki/Adiabatic_lapse_rate + 'so13' for Singh and O'Gorman (2013); doi.org/10.1002/grl.50796 + 'r14' for Romps (2014); doi.org/10.1175/JCLI-D-14-00255.1 + More info: glossary.ametsoc.org/wiki/Adiabatic_lapse_rate params : `dict` or None, optional External parameters used for the some lapse_types @@ -1150,9 +1150,9 @@ def parcel_profile_with_lcl(pressure, temperature, dewpoint, 'standard' for simplified pseudoadiabatic process 'pseudoadiabatic' for pseudoadiabatic moist process 'reversible' for reversible moist process - 'so13' for Singh and O'Gorman (2013); https://doi.org/10.1002/grl.50796 - 'r14' for Romps (2014); https://doi.org/10.1175/JCLI-D-14-00255.1 - More info: https://glossary.ametsoc.org/wiki/Adiabatic_lapse_rate + 'so13' for Singh and O'Gorman (2013); doi.org/10.1002/grl.50796 + 'r14' for Romps (2014); doi.org/10.1175/JCLI-D-14-00255.1 + More info: glossary.ametsoc.org/wiki/Adiabatic_lapse_rate params : `dict` or None, optional External parameters used for the some lapse_types From 5f1cc4d1dcd33216b34ca70be5feef25069a3613 Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Tue, 7 Nov 2023 11:08:14 -0700 Subject: [PATCH 16/27] conform code style --- src/metpy/calc/thermo.py | 67 +++++++++++++++++++--------------------- 1 file changed, 32 insertions(+), 35 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 70342d5d17c..5852357ac67 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -357,65 +357,62 @@ def dt_standard(p, t, params): def dt_pseudoadiabatic(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) - frac = ( (1 + rs) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) - / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + - (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) - / (mpconsts.nounit.Rd * t**2)))) + frac = ((1 + rs) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) + / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) + / (mpconsts.nounit.Rd * t**2)))) return frac / p def dt_reversible(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) - rl = params['rt'] - rs ## assuming no ice content - frac = ( (1 + params['rt']) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) - / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + - rl * mpconsts.nounit.Cp_l + (mpconsts.nounit.Lv**2 * rs * - (mpconsts.nounit.epsilon + rs) - / (mpconsts.nounit.Rd * t**2)))) + rl = params['rt'] - rs # assuming no ice content + frac = ((1 + params['rt']) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) + / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + + rl * mpconsts.nounit.Cp_l + (mpconsts.nounit.Lv**2 * rs + * (mpconsts.nounit.epsilon + rs) + / (mpconsts.nounit.Rd * t**2)))) return frac / p def dt_so13(p, t, params): - zp = -params['h0'] * np.log(p / params['p0']) # pseudoheight - if np.abs(zp)==0: # entrainment rate undefined at z=0, assume dry adiabat + zp = -params['h0'] * np.log(p / params['p0']) # pseudoheight + if np.abs(zp)==0: # entrainment rate undefined at z=0, assume dry adiabat frac = mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d else: - ep = params['ep0'] / zp # entrainment rate + ep = params['ep0'] / zp # entrainment rate rs = saturation_mixing_ratio._nounit(p, t) qs = specific_humidity_from_mixing_ratio(rs) - frac = ( - (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * qs + - ep * qs * mpconsts.nounit.Lv * (1 - params['rh0']) * - mpconsts.nounit.Rd * t / mpconsts.nounit.g) - / (mpconsts.nounit.Cp_d + ( - mpconsts.nounit.Lv**2 * qs * mpconsts.nounit.epsilon - / (mpconsts.nounit.Rd * t**2) - )) - ) + frac = ((mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * qs + + ep * qs * mpconsts.nounit.Lv * (1 - params['rh0']) + * mpconsts.nounit.Rd * t / mpconsts.nounit.g) + / (mpconsts.nounit.Cp_d + + (mpconsts.nounit.Lv**2 * qs * mpconsts.nounit.epsilon + / (mpconsts.nounit.Rd * t**2)))) # cap lapse rate at dry adiabat (can be steeper with large entrainment rate) frac = np.min([frac, mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d]) return frac / p def dt_r14(p, t, params): - if hasattr(params['ep'],'__len__'): # evaluate entrainment rate at p if not constant + if hasattr(params['ep'],'__len__'): # evaluate entrainment rate at p if not constant ep = np.interp(p,params['pa'],params['ep']) else: ep = params['ep'] - if hasattr(params['de'],'__len__'): # same as above for detrainment + if hasattr(params['de'],'__len__'): # same as above for detrainment de = np.interp(p,params['pa'],params['de']) else: de = params['de'] rs = saturation_mixing_ratio._nounit(p, t) qs = specific_humidity_from_mixing_ratio(rs) - a1 = ( mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv + - qs * mpconsts.nounit.Lv ) - a2 = ( mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv * - (de + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) + - qs * mpconsts.nounit.Lv * (de - ep) - mpconsts.nounit.g ) - a3 = ( (mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t / - (mpconsts.nounit.Rd * mpconsts.nounit.Lv) - 1) * mpconsts.nounit.g * de ) - frac = ( mpconsts.nounit.Rd * t / (mpconsts.nounit.g) * - mpconsts.nounit.Rv * t**2 / mpconsts.nounit.Lv * - ((-a2 + np.sqrt(a2**2 - 4 * a1 * a3)) / (2 * a1) + - mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) ) + a1 = (mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv + + qs * mpconsts.nounit.Lv ) + a2 = (mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv + * (de + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) + + qs * mpconsts.nounit.Lv * (de - ep) - mpconsts.nounit.g ) + a3 = ((mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t + / (mpconsts.nounit.Rd * mpconsts.nounit.Lv) - 1) * mpconsts.nounit.g * de ) + frac = (mpconsts.nounit.Rd * t / (mpconsts.nounit.g) + * mpconsts.nounit.Rv * t**2 / mpconsts.nounit.Lv + * ((-a2 + np.sqrt(a2**2 - 4 * a1 * a3)) / (2 * a1) + + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) ) return frac / p temperature = np.atleast_1d(temperature) From e857cc0f3c1773f900c18d200515b85b34c9bc9f Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Tue, 7 Nov 2023 11:12:41 -0700 Subject: [PATCH 17/27] conform code style --- src/metpy/calc/thermo.py | 66 ++++++++++++++++++++-------------------- 1 file changed, 33 insertions(+), 33 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 5852357ac67..a9a27d65a39 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -358,61 +358,61 @@ def dt_standard(p, t, params): def dt_pseudoadiabatic(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) frac = ((1 + rs) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) - / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d - + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) - / (mpconsts.nounit.Rd * t**2)))) + / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) + / (mpconsts.nounit.Rd * t**2)))) return frac / p def dt_reversible(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) rl = params['rt'] - rs # assuming no ice content frac = ((1 + params['rt']) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) - / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d - + rl * mpconsts.nounit.Cp_l + (mpconsts.nounit.Lv**2 * rs - * (mpconsts.nounit.epsilon + rs) - / (mpconsts.nounit.Rd * t**2)))) + / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + + rl * mpconsts.nounit.Cp_l + (mpconsts.nounit.Lv**2 * rs + * (mpconsts.nounit.epsilon + rs) + / (mpconsts.nounit.Rd * t**2)))) return frac / p def dt_so13(p, t, params): zp = -params['h0'] * np.log(p / params['p0']) # pseudoheight - if np.abs(zp)==0: # entrainment rate undefined at z=0, assume dry adiabat + if np.abs(zp) == 0: # entrainment rate undefined at z=0, assume dry adiabat frac = mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d else: ep = params['ep0'] / zp # entrainment rate rs = saturation_mixing_ratio._nounit(p, t) qs = specific_humidity_from_mixing_ratio(rs) frac = ((mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * qs - + ep * qs * mpconsts.nounit.Lv * (1 - params['rh0']) - * mpconsts.nounit.Rd * t / mpconsts.nounit.g) - / (mpconsts.nounit.Cp_d - + (mpconsts.nounit.Lv**2 * qs * mpconsts.nounit.epsilon - / (mpconsts.nounit.Rd * t**2)))) + + ep * qs * mpconsts.nounit.Lv * (1 - params['rh0']) + * mpconsts.nounit.Rd * t / mpconsts.nounit.g) + / (mpconsts.nounit.Cp_d + + (mpconsts.nounit.Lv**2 * qs * mpconsts.nounit.epsilon + / (mpconsts.nounit.Rd * t**2)))) # cap lapse rate at dry adiabat (can be steeper with large entrainment rate) frac = np.min([frac, mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d]) return frac / p def dt_r14(p, t, params): - if hasattr(params['ep'],'__len__'): # evaluate entrainment rate at p if not constant - ep = np.interp(p,params['pa'],params['ep']) + if hasattr(params['ep'], '__len__'): # evaluate entrainment rate at p if not constant + ep = np.interp(p, params['pa'], params['ep']) else: ep = params['ep'] - if hasattr(params['de'],'__len__'): # same as above for detrainment - de = np.interp(p,params['pa'],params['de']) + if hasattr(params['de'], '__len__'): # same as above for detrainment + de = np.interp(p, params['pa'], params['de']) else: de = params['de'] rs = saturation_mixing_ratio._nounit(p, t) qs = specific_humidity_from_mixing_ratio(rs) a1 = (mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv - + qs * mpconsts.nounit.Lv ) + + qs * mpconsts.nounit.Lv ) a2 = (mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv - * (de + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) - + qs * mpconsts.nounit.Lv * (de - ep) - mpconsts.nounit.g ) + * (de + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) + + qs * mpconsts.nounit.Lv * (de - ep) - mpconsts.nounit.g) a3 = ((mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t - / (mpconsts.nounit.Rd * mpconsts.nounit.Lv) - 1) * mpconsts.nounit.g * de ) + / (mpconsts.nounit.Rd * mpconsts.nounit.Lv) - 1) * mpconsts.nounit.g * de) frac = (mpconsts.nounit.Rd * t / (mpconsts.nounit.g) - * mpconsts.nounit.Rv * t**2 / mpconsts.nounit.Lv - * ((-a2 + np.sqrt(a2**2 - 4 * a1 * a3)) / (2 * a1) - + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) ) + * mpconsts.nounit.Rv * t**2 / mpconsts.nounit.Lv + * ((-a2 + np.sqrt(a2**2 - 4 * a1 * a3)) / (2 * a1) + + mpconsts.nounit.g / (mpconsts.nounit.Rd * t))) return frac / p temperature = np.atleast_1d(temperature) @@ -421,19 +421,19 @@ def dt_r14(p, t, params): reference_pressure = pressure[0] if lapse_type == 'standard': - dt=dt_standard + dt = dt_standard elif lapse_type == 'pseudoadiabatic': - dt=dt_pseudoadiabatic + dt = dt_pseudoadiabatic elif lapse_type == 'reversible': - dt=dt_reversible + dt = dt_reversible # total water at LCL = rs - params={'rt':saturation_mixing_ratio._nounit(reference_pressure,temperature)} + params = {'rt':saturation_mixing_ratio._nounit(reference_pressure, temperature)} elif lapse_type == 'so13': - dt=dt_so13 + dt = dt_so13 params.update({'h0':mpconsts.nounit.Rd * temperature[0] / mpconsts.nounit.g, 'p0':pressure[0]}) elif lapse_type == 'r14': - dt=dt_r14 + dt = dt_r14 else: raise ValueError('Specified lapse_type is not supported. ' 'Choose from standard, pseudoadiabatic, reversible, ' @@ -1111,7 +1111,7 @@ def parcel_profile(pressure, temperature, dewpoint, lapse_type='standard', param """ _, _, _, t_l, _, t_u = _parcel_profile_helper(pressure, temperature, dewpoint, - lapse_type, params) + lapse_type, params) return concatenate((t_l, t_u)) @@ -1119,7 +1119,7 @@ def parcel_profile(pressure, temperature, dewpoint, lapse_type='standard', param @preprocess_and_wrap() @check_units('[pressure]', '[temperature]', '[temperature]') def parcel_profile_with_lcl(pressure, temperature, dewpoint, - lapse_type='standard', params=None): + lapse_type='standard', params=None): r"""Calculate the profile a parcel takes through the atmosphere. The parcel starts at `temperature`, and `dewpoint`, lifted up @@ -1354,7 +1354,7 @@ def _parcel_profile_helper(pressure, temperature, dewpoint, lapse_type, params): # Find moist pseudo-adiabatic profile starting at the LCL, reversing above sorting temp_upper = moist_lapse(unique[::-1], temp_lower[-1], - lapse_type=lapse_type, params=params).to(temp_lower.units) + lapse_type=lapse_type, params=params).to(temp_lower.units) temp_upper = temp_upper[::-1][indices] # Return profile pieces From cefd5e57d614edf57171276f96235c2ba0d6a979 Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Tue, 7 Nov 2023 11:19:27 -0700 Subject: [PATCH 18/27] conform code style --- src/metpy/calc/thermo.py | 36 ++++++++++++++++++------------------ 1 file changed, 18 insertions(+), 18 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index a9a27d65a39..cb9be50b5c5 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -358,19 +358,19 @@ def dt_standard(p, t, params): def dt_pseudoadiabatic(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) frac = ((1 + rs) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) - / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d - + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) - / (mpconsts.nounit.Rd * t**2)))) + / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) + / (mpconsts.nounit.Rd * t**2)))) return frac / p def dt_reversible(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) rl = params['rt'] - rs # assuming no ice content frac = ((1 + params['rt']) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) - / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + rl * mpconsts.nounit.Cp_l + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) - / (mpconsts.nounit.Rd * t**2)))) + / (mpconsts.nounit.Rd * t**2)))) return frac / p def dt_so13(p, t, params): @@ -382,11 +382,11 @@ def dt_so13(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) qs = specific_humidity_from_mixing_ratio(rs) frac = ((mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * qs - + ep * qs * mpconsts.nounit.Lv * (1 - params['rh0']) - * mpconsts.nounit.Rd * t / mpconsts.nounit.g) - / (mpconsts.nounit.Cp_d - + (mpconsts.nounit.Lv**2 * qs * mpconsts.nounit.epsilon - / (mpconsts.nounit.Rd * t**2)))) + + ep * qs * mpconsts.nounit.Lv * (1 - params['rh0']) + * mpconsts.nounit.Rd * t / mpconsts.nounit.g) + / (mpconsts.nounit.Cp_d + + (mpconsts.nounit.Lv**2 * qs * mpconsts.nounit.epsilon + / (mpconsts.nounit.Rd * t**2)))) # cap lapse rate at dry adiabat (can be steeper with large entrainment rate) frac = np.min([frac, mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d]) return frac / p @@ -403,12 +403,12 @@ def dt_r14(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) qs = specific_humidity_from_mixing_ratio(rs) a1 = (mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv - + qs * mpconsts.nounit.Lv ) + + qs * mpconsts.nounit.Lv) a2 = (mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv - * (de + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) - + qs * mpconsts.nounit.Lv * (de - ep) - mpconsts.nounit.g) + * (de + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) + + qs * mpconsts.nounit.Lv * (de - ep) - mpconsts.nounit.g) a3 = ((mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t - / (mpconsts.nounit.Rd * mpconsts.nounit.Lv) - 1) * mpconsts.nounit.g * de) + / (mpconsts.nounit.Rd * mpconsts.nounit.Lv) - 1) * mpconsts.nounit.g * de) frac = (mpconsts.nounit.Rd * t / (mpconsts.nounit.g) * mpconsts.nounit.Rv * t**2 / mpconsts.nounit.Lv * ((-a2 + np.sqrt(a2**2 - 4 * a1 * a3)) / (2 * a1) @@ -427,11 +427,11 @@ def dt_r14(p, t, params): elif lapse_type == 'reversible': dt = dt_reversible # total water at LCL = rs - params = {'rt':saturation_mixing_ratio._nounit(reference_pressure, temperature)} + params = {'rt': saturation_mixing_ratio._nounit(reference_pressure, temperature)} elif lapse_type == 'so13': dt = dt_so13 - params.update({'h0':mpconsts.nounit.Rd * temperature[0] / mpconsts.nounit.g, - 'p0':pressure[0]}) + params.update({'h0': mpconsts.nounit.Rd * temperature[0] / mpconsts.nounit.g, + 'p0': pressure[0]}) elif lapse_type == 'r14': dt = dt_r14 else: @@ -449,7 +449,7 @@ def dt_r14(p, t, params): # It would be preferable to use a regular solver like RK45, but as of scipy 1.8.0 # anything other than LSODA goes into an infinite loop when given NaNs for y0. - solver_args = {'fun':lambda p,t:dt(p,t,params), 'y0': temperature, + solver_args = {'fun': lambda p, t: dt(p, t, params), 'y0': temperature, 'method': 'LSODA', 'atol': 1e-7, 'rtol': 1.5e-8} # Need to handle close points to avoid an error in the solver From d5fff716cf8d4614c9d1a31a47f456b94bd4020a Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Tue, 7 Nov 2023 11:22:50 -0700 Subject: [PATCH 19/27] conform code style --- src/metpy/calc/thermo.py | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index cb9be50b5c5..f83ab7495c3 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -358,19 +358,19 @@ def dt_standard(p, t, params): def dt_pseudoadiabatic(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) frac = ((1 + rs) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) - / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) - / (mpconsts.nounit.Rd * t**2)))) + / (mpconsts.nounit.Rd * t**2)))) return frac / p def dt_reversible(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) rl = params['rt'] - rs # assuming no ice content frac = ((1 + params['rt']) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) - / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d - + rl * mpconsts.nounit.Cp_l + (mpconsts.nounit.Lv**2 * rs - * (mpconsts.nounit.epsilon + rs) - / (mpconsts.nounit.Rd * t**2)))) + / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + + rl * mpconsts.nounit.Cp_l + (mpconsts.nounit.Lv**2 * rs + * (mpconsts.nounit.epsilon + rs) + / (mpconsts.nounit.Rd * t**2)))) return frac / p def dt_so13(p, t, params): @@ -382,11 +382,11 @@ def dt_so13(p, t, params): rs = saturation_mixing_ratio._nounit(p, t) qs = specific_humidity_from_mixing_ratio(rs) frac = ((mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * qs - + ep * qs * mpconsts.nounit.Lv * (1 - params['rh0']) - * mpconsts.nounit.Rd * t / mpconsts.nounit.g) + + ep * qs * mpconsts.nounit.Lv * (1 - params['rh0']) + * mpconsts.nounit.Rd * t / mpconsts.nounit.g) / (mpconsts.nounit.Cp_d - + (mpconsts.nounit.Lv**2 * qs * mpconsts.nounit.epsilon - / (mpconsts.nounit.Rd * t**2)))) + + (mpconsts.nounit.Lv**2 * qs * mpconsts.nounit.epsilon + / (mpconsts.nounit.Rd * t**2)))) # cap lapse rate at dry adiabat (can be steeper with large entrainment rate) frac = np.min([frac, mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d]) return frac / p @@ -412,7 +412,7 @@ def dt_r14(p, t, params): frac = (mpconsts.nounit.Rd * t / (mpconsts.nounit.g) * mpconsts.nounit.Rv * t**2 / mpconsts.nounit.Lv * ((-a2 + np.sqrt(a2**2 - 4 * a1 * a3)) / (2 * a1) - + mpconsts.nounit.g / (mpconsts.nounit.Rd * t))) + + mpconsts.nounit.g / (mpconsts.nounit.Rd * t))) return frac / p temperature = np.atleast_1d(temperature) From d833572a5b09bfb4ea8fb6777fa9c8c4764a86e6 Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Tue, 7 Nov 2023 11:31:40 -0700 Subject: [PATCH 20/27] move dt defs out of moist_lapse --- src/metpy/calc/thermo.py | 147 ++++++++++++++++++++------------------- 1 file changed, 76 insertions(+), 71 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index f83ab7495c3..5731bbcbb1a 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -253,6 +253,82 @@ def dry_lapse(pressure, temperature, reference_pressure=None, vertical_dim=0): return temperature * (pressure / reference_pressure)**mpconsts.kappa +def dt_standard(p, t, params): + rs = saturation_mixing_ratio._nounit(p, t) + frac = ( + (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) + / (mpconsts.nounit.Cp_d + ( + mpconsts.nounit.Lv**2 * rs * mpconsts.nounit.epsilon + / (mpconsts.nounit.Rd * t**2) + )) + ) + return frac / p + + +def dt_pseudoadiabatic(p, t, params): + rs = saturation_mixing_ratio._nounit(p, t) + frac = ((1 + rs) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) + / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) + / (mpconsts.nounit.Rd * t**2)))) + return frac / p + + +def dt_reversible(p, t, params): + rs = saturation_mixing_ratio._nounit(p, t) + rl = params['rt'] - rs # assuming no ice content + frac = ((1 + params['rt']) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) + / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d + + rl * mpconsts.nounit.Cp_l + (mpconsts.nounit.Lv**2 * rs + * (mpconsts.nounit.epsilon + rs) + / (mpconsts.nounit.Rd * t**2)))) + return frac / p + + +def dt_so13(p, t, params): + zp = -params['h0'] * np.log(p / params['p0']) # pseudoheight + if np.abs(zp) == 0: # entrainment rate undefined at z=0, assume dry adiabat + frac = mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d + else: + ep = params['ep0'] / zp # entrainment rate + rs = saturation_mixing_ratio._nounit(p, t) + qs = specific_humidity_from_mixing_ratio(rs) + frac = ((mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * qs + + ep * qs * mpconsts.nounit.Lv * (1 - params['rh0']) + * mpconsts.nounit.Rd * t / mpconsts.nounit.g) + / (mpconsts.nounit.Cp_d + + (mpconsts.nounit.Lv**2 * qs * mpconsts.nounit.epsilon + / (mpconsts.nounit.Rd * t**2)))) + # cap lapse rate at dry adiabat (can be steeper with large entrainment rate) + frac = np.min([frac, mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d]) + return frac / p + + +def dt_r14(p, t, params): + if hasattr(params['ep'], '__len__'): # evaluate entrainment rate at p if not constant + ep = np.interp(p, params['pa'], params['ep']) + else: + ep = params['ep'] + if hasattr(params['de'], '__len__'): # same as above for detrainment + de = np.interp(p, params['pa'], params['de']) + else: + de = params['de'] + rs = saturation_mixing_ratio._nounit(p, t) + qs = specific_humidity_from_mixing_ratio(rs) + a1 = (mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv + + qs * mpconsts.nounit.Lv) + a2 = (mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv + * (de + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) + + qs * mpconsts.nounit.Lv * (de - ep) - mpconsts.nounit.g) + a3 = ((mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t + / (mpconsts.nounit.Rd * mpconsts.nounit.Lv) - 1) * mpconsts.nounit.g * de) + frac = (mpconsts.nounit.Rd * t / (mpconsts.nounit.g) + * mpconsts.nounit.Rv * t**2 / mpconsts.nounit.Lv + * ((-a2 + np.sqrt(a2**2 - 4 * a1 * a3)) / (2 * a1) + + mpconsts.nounit.g / (mpconsts.nounit.Rd * t))) + return frac / p + + @exporter.export @preprocess_and_wrap( wrap_like='temperature', @@ -344,77 +420,6 @@ def moist_lapse(pressure, temperature, reference_pressure=None, Renamed ``ref_pressure`` parameter to ``reference_pressure`` """ - def dt_standard(p, t, params): - rs = saturation_mixing_ratio._nounit(p, t) - frac = ( - (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) - / (mpconsts.nounit.Cp_d + ( - mpconsts.nounit.Lv**2 * rs * mpconsts.nounit.epsilon - / (mpconsts.nounit.Rd * t**2) - )) - ) - return frac / p - - def dt_pseudoadiabatic(p, t, params): - rs = saturation_mixing_ratio._nounit(p, t) - frac = ((1 + rs) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) - / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d - + (mpconsts.nounit.Lv**2 * rs * (mpconsts.nounit.epsilon + rs) - / (mpconsts.nounit.Rd * t**2)))) - return frac / p - - def dt_reversible(p, t, params): - rs = saturation_mixing_ratio._nounit(p, t) - rl = params['rt'] - rs # assuming no ice content - frac = ((1 + params['rt']) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) - / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d - + rl * mpconsts.nounit.Cp_l + (mpconsts.nounit.Lv**2 * rs - * (mpconsts.nounit.epsilon + rs) - / (mpconsts.nounit.Rd * t**2)))) - return frac / p - - def dt_so13(p, t, params): - zp = -params['h0'] * np.log(p / params['p0']) # pseudoheight - if np.abs(zp) == 0: # entrainment rate undefined at z=0, assume dry adiabat - frac = mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d - else: - ep = params['ep0'] / zp # entrainment rate - rs = saturation_mixing_ratio._nounit(p, t) - qs = specific_humidity_from_mixing_ratio(rs) - frac = ((mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * qs - + ep * qs * mpconsts.nounit.Lv * (1 - params['rh0']) - * mpconsts.nounit.Rd * t / mpconsts.nounit.g) - / (mpconsts.nounit.Cp_d - + (mpconsts.nounit.Lv**2 * qs * mpconsts.nounit.epsilon - / (mpconsts.nounit.Rd * t**2)))) - # cap lapse rate at dry adiabat (can be steeper with large entrainment rate) - frac = np.min([frac, mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d]) - return frac / p - - def dt_r14(p, t, params): - if hasattr(params['ep'], '__len__'): # evaluate entrainment rate at p if not constant - ep = np.interp(p, params['pa'], params['ep']) - else: - ep = params['ep'] - if hasattr(params['de'], '__len__'): # same as above for detrainment - de = np.interp(p, params['pa'], params['de']) - else: - de = params['de'] - rs = saturation_mixing_ratio._nounit(p, t) - qs = specific_humidity_from_mixing_ratio(rs) - a1 = (mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv - + qs * mpconsts.nounit.Lv) - a2 = (mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t**2 / mpconsts.nounit.Lv - * (de + mpconsts.nounit.g / (mpconsts.nounit.Rd * t)) - + qs * mpconsts.nounit.Lv * (de - ep) - mpconsts.nounit.g) - a3 = ((mpconsts.nounit.Rv * mpconsts.nounit.Cp_d * t - / (mpconsts.nounit.Rd * mpconsts.nounit.Lv) - 1) * mpconsts.nounit.g * de) - frac = (mpconsts.nounit.Rd * t / (mpconsts.nounit.g) - * mpconsts.nounit.Rv * t**2 / mpconsts.nounit.Lv - * ((-a2 + np.sqrt(a2**2 - 4 * a1 * a3)) / (2 * a1) - + mpconsts.nounit.g / (mpconsts.nounit.Rd * t))) - return frac / p - temperature = np.atleast_1d(temperature) pressure = np.atleast_1d(pressure) if reference_pressure is None: From 7683cb2da270ac6245077e8de6d2329d04e55c19 Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Tue, 7 Nov 2023 11:42:55 -0700 Subject: [PATCH 21/27] move dt defs out of moist_lapse --- src/metpy/calc/thermo.py | 52 ++++++++++++++++++++++++++++++---------- 1 file changed, 39 insertions(+), 13 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 5731bbcbb1a..e5a6f53fa44 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -254,6 +254,23 @@ def dry_lapse(pressure, temperature, reference_pressure=None, vertical_dim=0): def dt_standard(p, t, params): + r""" + Computes the AMS moist adiabatic lapse rate in pressure coordinates. + + Parameters + ---------- + p : `float` + pressure [Pa] + + t : `float` + temperature [K] + + Returns + ------- + dT/dp : `float` + lapse rate in pressure coordinates + + """ rs = saturation_mixing_ratio._nounit(p, t) frac = ( (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) @@ -329,6 +346,24 @@ def dt_r14(p, t, params): return frac / p +def select_dt(lapse_type): + if lapse_type == 'standard': + dt = dt_standard + elif lapse_type == 'pseudoadiabatic': + dt = dt_pseudoadiabatic + elif lapse_type == 'reversible': + dt = dt_reversible + elif lapse_type == 'so13': + dt = dt_so13 + elif lapse_type == 'r14': + dt = dt_r14 + else: + raise ValueError('Specified lapse_type is not supported. ' + 'Choose from standard, pseudoadiabatic, reversible, ' + 'so13, or r14.') + return dt + + @exporter.export @preprocess_and_wrap( wrap_like='temperature', @@ -425,24 +460,15 @@ def moist_lapse(pressure, temperature, reference_pressure=None, if reference_pressure is None: reference_pressure = pressure[0] - if lapse_type == 'standard': - dt = dt_standard - elif lapse_type == 'pseudoadiabatic': - dt = dt_pseudoadiabatic - elif lapse_type == 'reversible': - dt = dt_reversible + dt = select_dt(lapse_type) # Define dt based on lapse_type + + # Define or update params where needed + if lapse_type == 'reversible': # total water at LCL = rs params = {'rt': saturation_mixing_ratio._nounit(reference_pressure, temperature)} elif lapse_type == 'so13': - dt = dt_so13 params.update({'h0': mpconsts.nounit.Rd * temperature[0] / mpconsts.nounit.g, 'p0': pressure[0]}) - elif lapse_type == 'r14': - dt = dt_r14 - else: - raise ValueError('Specified lapse_type is not supported. ' - 'Choose from standard, pseudoadiabatic, reversible, ' - 'so13, or r14.') if np.isnan(reference_pressure) or np.all(np.isnan(temperature)): return np.full((temperature.size, pressure.size), np.nan) From e54881f0e7a1fff79725f4a3f0c2bd15a29a25ba Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Tue, 7 Nov 2023 11:49:04 -0700 Subject: [PATCH 22/27] reduce complexity of moist_lapse --- src/metpy/calc/thermo.py | 19 ++++++++++++------- 1 file changed, 12 insertions(+), 7 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index e5a6f53fa44..60aef47689e 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -255,7 +255,7 @@ def dry_lapse(pressure, temperature, reference_pressure=None, vertical_dim=0): def dt_standard(p, t, params): r""" - Computes the AMS moist adiabatic lapse rate in pressure coordinates. + Compute the AMS moist adiabatic lapse rate in pressure coordinates. Parameters ---------- @@ -364,6 +364,16 @@ def select_dt(lapse_type): return dt +def update_params(params, lapse_type, reference_pressure, pressure, temperature): + if lapse_type == 'reversible': + # total water at LCL = rs + params = {'rt': saturation_mixing_ratio._nounit(reference_pressure, temperature)} + elif lapse_type == 'so13': + params.update({'h0': mpconsts.nounit.Rd * temperature[0] / mpconsts.nounit.g, + 'p0': pressure[0]}) + return params + + @exporter.export @preprocess_and_wrap( wrap_like='temperature', @@ -463,12 +473,7 @@ def moist_lapse(pressure, temperature, reference_pressure=None, dt = select_dt(lapse_type) # Define dt based on lapse_type # Define or update params where needed - if lapse_type == 'reversible': - # total water at LCL = rs - params = {'rt': saturation_mixing_ratio._nounit(reference_pressure, temperature)} - elif lapse_type == 'so13': - params.update({'h0': mpconsts.nounit.Rd * temperature[0] / mpconsts.nounit.g, - 'p0': pressure[0]}) + params = update_params(params, lapse_type, reference_pressure, pressure, temperature) if np.isnan(reference_pressure) or np.all(np.isnan(temperature)): return np.full((temperature.size, pressure.size), np.nan) From 2232cc302d66d136cd7f37fae4ffd0a87933ad2b Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Tue, 7 Nov 2023 13:01:25 -0700 Subject: [PATCH 23/27] add docstrings --- src/metpy/calc/thermo.py | 136 +++++++++++++++++++++++++++++++++++++-- 1 file changed, 130 insertions(+), 6 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 60aef47689e..f6167c2034c 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -265,6 +265,9 @@ def dt_standard(p, t, params): t : `float` temperature [K] + params : None + Placeholder for params used by other lapse_types + Returns ------- dT/dp : `float` @@ -283,6 +286,26 @@ def dt_standard(p, t, params): def dt_pseudoadiabatic(p, t, params): + r""" + Compute the AMS pseudoadiabatic lapse rate in pressure coordinates. + + Parameters + ---------- + p : `float` + pressure [Pa] + + t : `float` + temperature [K] + + params : None + Placeholder for params used by other lapse_types + + Returns + ------- + dT/dp : `float` + lapse rate in pressure coordinates + + """ rs = saturation_mixing_ratio._nounit(p, t) frac = ((1 + rs) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) / (mpconsts.nounit.Cp_d + rs * mpconsts.nounit.Cv_d @@ -292,6 +315,26 @@ def dt_pseudoadiabatic(p, t, params): def dt_reversible(p, t, params): + r""" + Compute the AMS reversible lapse rate in pressure coordinates. + + Parameters + ---------- + p : `float` + pressure [Pa] + + t : `float` + temperature [K] + + params : `dict` + 'rt': Total water mixing ratio [dimensionless] + + Returns + ------- + dT/dp : `float` + lapse rate in pressure coordinates + + """ rs = saturation_mixing_ratio._nounit(p, t) rl = params['rt'] - rs # assuming no ice content frac = ((1 + params['rt']) * (mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * rs) @@ -303,6 +346,27 @@ def dt_reversible(p, t, params): def dt_so13(p, t, params): + r""" + Compute the Singh & O'Gorman (2013) entraining lapse rate in pressure coordinates. + + Parameters + ---------- + p : `float` + pressure [Pa] + + t : `float` + temperature [K] + + params : `dict` + 'ep0': scalar, entrainment constant [unitless] + 'rh0': scalar, ambient relative humidity [unitless] + + Returns + ------- + dT/dp : `float` + lapse rate in pressure coordinates + + """ zp = -params['h0'] * np.log(p / params['p0']) # pseudoheight if np.abs(zp) == 0: # entrainment rate undefined at z=0, assume dry adiabat frac = mpconsts.nounit.Rd * t / mpconsts.nounit.Cp_d @@ -322,6 +386,29 @@ def dt_so13(p, t, params): def dt_r14(p, t, params): + r""" + Compute the Romps (2014) entraining lapse rate in pressure coordinates. + + Parameters + ---------- + p : `float` + pressure [Pa] + + t : `float` + temperature [K] + + params : `dict` + 'de': scalar or 1-d array, detrainment rate [m**-1], + 'ep': scalar or 1-d array, entrainment rate [m**-1], + 'pa': 1-d array, optional, pressure levels + defining detrainment and entrainment profile [Pa] + + Returns + ------- + dT/dp : `float` + lapse rate in pressure coordinates + + """ if hasattr(params['ep'], '__len__'): # evaluate entrainment rate at p if not constant ep = np.interp(p, params['pa'], params['ep']) else: @@ -347,6 +434,20 @@ def dt_r14(p, t, params): def select_dt(lapse_type): + r""" + Pass dt according to the chosen lapse_type + + Parameters + ---------- + lapse_type : `string` + Definition of moist adiabat to use + + Returns + ------- + dt : `function` + function that calculates lapse rate for the chosen lapse_type + + """ if lapse_type == 'standard': dt = dt_standard elif lapse_type == 'pseudoadiabatic': @@ -364,13 +465,36 @@ def select_dt(lapse_type): return dt -def update_params(params, lapse_type, reference_pressure, pressure, temperature): +def update_params(params, lapse_type, p0, t0): + r""" + Pass dt according to the chosen lapse_type + + Parameters + ---------- + params : `dict` or None + External parameters used for the some lapse_types + + lapse_type : `string` + Definition of moist adiabat to use + + p0 : `float` + Pressure at lifting condensation level [Pa] + + t0 : `float` + Temperature at lifting condensation level [K] + + Returns + ------- + params : `dict` or None + External parameters used for the some lapse_types + + """ if lapse_type == 'reversible': # total water at LCL = rs - params = {'rt': saturation_mixing_ratio._nounit(reference_pressure, temperature)} + params = {'rt': saturation_mixing_ratio._nounit(p0, t0)} elif lapse_type == 'so13': - params.update({'h0': mpconsts.nounit.Rd * temperature[0] / mpconsts.nounit.g, - 'p0': pressure[0]}) + params.update({'h0': mpconsts.nounit.Rd * t0 / mpconsts.nounit.g, + 'p0': p0}) return params @@ -408,7 +532,7 @@ def moist_lapse(pressure, temperature, reference_pressure=None, pressure array. lapse_type : `string`, optional - Definition of moist adiabat to use; if not given, it defaults to moist_lapse + Definition of moist adiabat to use; if not given, it defaults to standard Options: 'standard' for simplified pseudoadiabatic process 'pseudoadiabatic' for pseudoadiabatic moist process @@ -473,7 +597,7 @@ def moist_lapse(pressure, temperature, reference_pressure=None, dt = select_dt(lapse_type) # Define dt based on lapse_type # Define or update params where needed - params = update_params(params, lapse_type, reference_pressure, pressure, temperature) + params = update_params(params, lapse_type, pressure[0], temperature[0]) if np.isnan(reference_pressure) or np.all(np.isnan(temperature)): return np.full((temperature.size, pressure.size), np.nan) From 373e4b28f728b1c151e7ba6fd15c5fa34a81d895 Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Tue, 7 Nov 2023 13:03:11 -0700 Subject: [PATCH 24/27] add period to docstring --- src/metpy/calc/thermo.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index f6167c2034c..e882a4bb3c0 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -435,7 +435,7 @@ def dt_r14(p, t, params): def select_dt(lapse_type): r""" - Pass dt according to the chosen lapse_type + Pass dt according to the chosen lapse_type. Parameters ---------- @@ -467,7 +467,7 @@ def select_dt(lapse_type): def update_params(params, lapse_type, p0, t0): r""" - Pass dt according to the chosen lapse_type + Pass dt according to the chosen lapse_type. Parameters ---------- From 85afef03b57e70978a5f09cce8bf233cd548f8bd Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Mon, 13 Nov 2023 18:49:48 -0700 Subject: [PATCH 25/27] rename lfunctions that calculate lapse rate from dt_ to lapse_ --- src/metpy/calc/thermo.py | 69 +++++++++++++++++++++++++++++++++------- 1 file changed, 58 insertions(+), 11 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index e882a4bb3c0..9395c9ce427 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -253,7 +253,7 @@ def dry_lapse(pressure, temperature, reference_pressure=None, vertical_dim=0): return temperature * (pressure / reference_pressure)**mpconsts.kappa -def dt_standard(p, t, params): +def lapse_standard(p, t, params): r""" Compute the AMS moist adiabatic lapse rate in pressure coordinates. @@ -285,7 +285,7 @@ def dt_standard(p, t, params): return frac / p -def dt_pseudoadiabatic(p, t, params): +def lapse_pseudoadiabatic(p, t, params): r""" Compute the AMS pseudoadiabatic lapse rate in pressure coordinates. @@ -314,7 +314,7 @@ def dt_pseudoadiabatic(p, t, params): return frac / p -def dt_reversible(p, t, params): +def lapse_reversible(p, t, params): r""" Compute the AMS reversible lapse rate in pressure coordinates. @@ -345,7 +345,40 @@ def dt_reversible(p, t, params): return frac / p -def dt_so13(p, t, params): +def lapse_r24(p, t, params): + r""" + Compute the Risi et al. (2024) entraining lapse rate in pressure coordinates. + + Parameters + ---------- + p : `float` + pressure [Pa] + + t : `float` + temperature [K] + + params : `dict` + 'ep0': scalar, entrainment rate [m**-1] + 'rh0': scalar, ambient relative humidity [unitless] + + Returns + ------- + dT/dp : `float` + lapse rate in pressure coordinates + + """ + rs = saturation_mixing_ratio._nounit(p, t) + qs = specific_humidity_from_mixing_ratio(rs) + frac = ((mpconsts.nounit.Rd * t + mpconsts.nounit.Lv * qs + + params['ep0'] * qs * mpconsts.nounit.Lv * (1 - params['rh0']) + * mpconsts.nounit.Rd * t / mpconsts.nounit.g) + / (mpconsts.nounit.Cp_d + + (mpconsts.nounit.Lv**2 * qs * mpconsts.nounit.epsilon + / (mpconsts.nounit.Rd * t**2)))) + return frac / p + + +def lapse_so13(p, t, params): r""" Compute the Singh & O'Gorman (2013) entraining lapse rate in pressure coordinates. @@ -385,7 +418,7 @@ def dt_so13(p, t, params): return frac / p -def dt_r14(p, t, params): +def lapse_r14(p, t, params): r""" Compute the Romps (2014) entraining lapse rate in pressure coordinates. @@ -449,19 +482,21 @@ def select_dt(lapse_type): """ if lapse_type == 'standard': - dt = dt_standard + dt = lapse_standard elif lapse_type == 'pseudoadiabatic': - dt = dt_pseudoadiabatic + dt = lapse_pseudoadiabatic elif lapse_type == 'reversible': - dt = dt_reversible + dt = lapse_reversible + elif lapse_type == 'r24': + dt = lapse_r24 elif lapse_type == 'so13': - dt = dt_so13 + dt = lapse_so13 elif lapse_type == 'r14': - dt = dt_r14 + dt = lapse_r14 else: raise ValueError('Specified lapse_type is not supported. ' 'Choose from standard, pseudoadiabatic, reversible, ' - 'so13, or r14.') + 'r24, so13, or r14.') return dt @@ -537,6 +572,7 @@ def moist_lapse(pressure, temperature, reference_pressure=None, 'standard' for simplified pseudoadiabatic process 'pseudoadiabatic' for pseudoadiabatic moist process 'reversible' for reversible moist process + 'r24' for Risi et al. (2024); 'so13' for Singh and O'Gorman (2013); doi.org/10.1002/grl.50796 'r14' for Romps (2014); doi.org/10.1175/JCLI-D-14-00255.1 More info: glossary.ametsoc.org/wiki/Adiabatic_lapse_rate @@ -544,6 +580,9 @@ def moist_lapse(pressure, temperature, reference_pressure=None, params : `dict` or None, optional External parameters used for the some lapse_types Required parameters: + For 'r24': + 'ep0': scalar, entrainment rate [m**-1], + 'rh0': scalar, ambient relative humidity [unitless],} For 'so13': 'ep0': scalar, entrainment constant [unitless], 'rh0': scalar, ambient relative humidity [unitless],} @@ -1202,6 +1241,7 @@ def parcel_profile(pressure, temperature, dewpoint, lapse_type='standard', param 'standard' for simplified pseudoadiabatic process 'pseudoadiabatic' for pseudoadiabatic moist process 'reversible' for reversible moist process + 'r24' for Risi et al. (2024); 'so13' for Singh and O'Gorman (2013); doi.org/10.1002/grl.50796 'r14' for Romps (2014); doi.org/10.1175/JCLI-D-14-00255.1 More info: glossary.ametsoc.org/wiki/Adiabatic_lapse_rate @@ -1209,6 +1249,9 @@ def parcel_profile(pressure, temperature, dewpoint, lapse_type='standard', param params : `dict` or None, optional External parameters used for the some lapse_types Required parameters: + For 'r24': + 'ep0': entrainment rate [m**-1], + 'rh0': ambient relative humidity [unitless], For 'so13': 'ep0': entrainment constant [unitless], 'rh0': ambient relative humidity [unitless], @@ -1307,6 +1350,7 @@ def parcel_profile_with_lcl(pressure, temperature, dewpoint, 'standard' for simplified pseudoadiabatic process 'pseudoadiabatic' for pseudoadiabatic moist process 'reversible' for reversible moist process + 'r24' for Risi et al. (2024); 'so13' for Singh and O'Gorman (2013); doi.org/10.1002/grl.50796 'r14' for Romps (2014); doi.org/10.1175/JCLI-D-14-00255.1 More info: glossary.ametsoc.org/wiki/Adiabatic_lapse_rate @@ -1314,6 +1358,9 @@ def parcel_profile_with_lcl(pressure, temperature, dewpoint, params : `dict` or None, optional External parameters used for the some lapse_types Required parameters: + For 'r24': + 'ep0': entrainment rate [m**-1], + 'rh0': ambient relative humidity [unitless], For 'so13': 'ep0': entrainment constant [unitless], 'rh0': ambient relative humidity [unitless], From 521f766dac50694e9d09e384221f1f3a26db5d80 Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Mon, 13 Nov 2023 18:54:16 -0700 Subject: [PATCH 26/27] make lapse_* functions importable --- src/metpy/calc/thermo.py | 18 ++++++++++++------ 1 file changed, 12 insertions(+), 6 deletions(-) diff --git a/src/metpy/calc/thermo.py b/src/metpy/calc/thermo.py index 9395c9ce427..d2be104645b 100644 --- a/src/metpy/calc/thermo.py +++ b/src/metpy/calc/thermo.py @@ -253,7 +253,8 @@ def dry_lapse(pressure, temperature, reference_pressure=None, vertical_dim=0): return temperature * (pressure / reference_pressure)**mpconsts.kappa -def lapse_standard(p, t, params): +@exporter.export +def lapse_standard(p, t, params=None): r""" Compute the AMS moist adiabatic lapse rate in pressure coordinates. @@ -285,7 +286,8 @@ def lapse_standard(p, t, params): return frac / p -def lapse_pseudoadiabatic(p, t, params): +@exporter.export +def lapse_pseudoadiabatic(p, t, params=None): r""" Compute the AMS pseudoadiabatic lapse rate in pressure coordinates. @@ -314,7 +316,8 @@ def lapse_pseudoadiabatic(p, t, params): return frac / p -def lapse_reversible(p, t, params): +@exporter.export +def lapse_reversible(p, t, params=None): r""" Compute the AMS reversible lapse rate in pressure coordinates. @@ -345,7 +348,8 @@ def lapse_reversible(p, t, params): return frac / p -def lapse_r24(p, t, params): +@exporter.export +def lapse_r24(p, t, params=None): r""" Compute the Risi et al. (2024) entraining lapse rate in pressure coordinates. @@ -378,7 +382,8 @@ def lapse_r24(p, t, params): return frac / p -def lapse_so13(p, t, params): +@exporter.export +def lapse_so13(p, t, params=None): r""" Compute the Singh & O'Gorman (2013) entraining lapse rate in pressure coordinates. @@ -418,7 +423,8 @@ def lapse_so13(p, t, params): return frac / p -def lapse_r14(p, t, params): +@exporter.export +def lapse_r14(p, t, params=None): r""" Compute the Romps (2014) entraining lapse rate in pressure coordinates. From edd4aa55e898d8135d4fe59d71752f05af5b74f2 Mon Sep 17 00:00:00 2001 From: Osamu Miyawaki Date: Wed, 29 May 2024 10:41:06 -0600 Subject: [PATCH 27/27] add Python notebook example of new lapse rate functionality --- examples/entraining_plume_lapse_rates.ipynb | 565 ++++++++++++++++++++ 1 file changed, 565 insertions(+) create mode 100644 examples/entraining_plume_lapse_rates.ipynb diff --git a/examples/entraining_plume_lapse_rates.ipynb b/examples/entraining_plume_lapse_rates.ipynb new file mode 100644 index 00000000000..70ee9ceda04 --- /dev/null +++ b/examples/entraining_plume_lapse_rates.ipynb @@ -0,0 +1,565 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "317657dc-41e3-4d7e-a78b-635bbb143774", + "metadata": {}, + "source": [ + "# Calculating moist adiabats and dilute (entraining plume) adiabats with MetPy\n", + "This demo shows how to use the newly added functionality in MetPy that offers a convenient way to calculate moist adiabats." + ] + }, + { + "cell_type": "markdown", + "id": "023675cb-0e62-46f1-ae1c-4fc1d1920ccd", + "metadata": {}, + "source": [ + "## Acquiring the modified version of MetPy\n", + "The new functionality is not yet incorporated into the main branch of MetPy. Thus the first step is to download the modified version of MetPy. Run the following command in the directory where you want to store the modified MetPy:\n", + "\n", + "```bash\n", + "git clone -b entrainment https://github.com/omiyawaki/MetPy\n", + "```\n", + "\n", + "Next, we need to specify Python to load this version of MetPy over existing versions:" + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "id": "1a7a9886-6378-4574-9767-28d48b7b183a", + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "metpy_path='/glade/u/home/miyawaki/software/MetPy' # Change this directory to where you cloned the modified version of MetPy\n", + "sys.path.insert(1,'%s/src'%(metpy_path))" + ] + }, + { + "cell_type": "markdown", + "id": "e471afbd-7fc7-4a5b-8bc4-d414b7aa0f00", + "metadata": {}, + "source": [ + "Now we are ready to load the modules as usual. Here we will use the following functions:" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "id": "fab9a3c2-2ed1-43dd-b53c-60c9a01b9dad", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from metpy.units import units\n", + "from metpy.calc import moist_lapse,parcel_profile\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "cf97c867-742f-458f-9f1e-0092dd8c3fb9", + "metadata": {}, + "source": [ + "## Moist adiabats\n", + "To compute moist adiabats we need to define the initial parcel temperature." + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "id": "94b6801b-3966-41b6-84d2-d7f93905f018", + "metadata": {}, + "outputs": [], + "source": [ + "t1=300*units.K # surface temperature" + ] + }, + { + "cell_type": "markdown", + "id": "ce0bdcdd-9b88-4d60-8e15-577779caa3ef", + "metadata": {}, + "source": [ + "Below we define the pressure levels that we want to evaluate the moist adiabat. Here, I've set it to be the standard CMIP pressure levels between 1000 and 300 hPa." + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "id": "0454f3f1-d87a-4312-83c5-84af3bbd5625", + "metadata": {}, + "outputs": [], + "source": [ + "pa=(1e2*np.array([1000,925,850,700,600,500,400,300]))*units.Pa" + ] + }, + { + "cell_type": "markdown", + "id": "c6fdcc0b-cd7e-4c43-8ae6-12d265647b82", + "metadata": {}, + "source": [ + "These are all we need for the moist adiabats.\n", + "\n", + "### AMS moist adiabat\n", + "The [AMS moist adiabat](https://glossary.ametsoc.org/wiki/Adiabatic_lapse_rate) is a simplification of the pseudoadiabat, which assumes that all condensed water precipitates out of the parcel. Specifically, the AMS moist adiabat additionally assumes $r_v\\ll1$ where $r_v$ is the saturation vapor mixing ratio. We can calculate the AMS moist adiabat as follows." + ] + }, + { + "cell_type": "code", + "execution_count": 148, + "id": "e2c36802-a169-4f55-9e40-e0bf8c70a2ea", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[300.0 297.47253353996354 294.6994380217984 288.1690727485031 282.7665790653971 276.0265466445446 267.04795865348086 253.75487192357863] kelvin\n" + ] + } + ], + "source": [ + "ams_moist_adiabat=moist_lapse(pa,t1,lapse_type='standard')\n", + "print(ams_moist_adiabat)" + ] + }, + { + "cell_type": "markdown", + "id": "448832a5-f786-4afb-8ffe-1bc8ba1f35db", + "metadata": {}, + "source": [ + "We can plot this temperature profile:" + ] + }, + { + "cell_type": "code", + "execution_count": 149, + "id": "2dbbe558-d8b8-4a3c-9e74-210e83c06cbb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1035.0, 265.0)" + ] + }, + "execution_count": 149, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGyCAYAAAAf/ztNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSu0lEQVR4nO3deVxVdf7H8ddluyzCTQS5IribG7jhkmaj5V5mi6Vli6aVZVqUS9n0m6wmTZ10Ksts1azGmtSyUtOsUNNJxBXNfUVAUuECys75/eF0J1ATlevhwvv5eJzHYzjne4+fw3fyvj3L51gMwzAQEREREScPswsQERERqWgUkERERERKUUASERERKUUBSURERKQUBSQRERGRUhSQREREREpRQBIREREpxcvsAtxVcXExycnJBAYGYrFYzC5HREREysAwDLKysggPD8fD4/zniRSQLlFycjKRkZFmlyEiIiKX4MiRI0RERJx3uwLSJQoMDATO/IKDgoJMrkZERETKIjMzk8jISOf3+PkoIF2i3y+rBQUFKSCJiIi4mQvdHqObtEVERERKUUASERERKUUBSURERKQUBSQRERGRUhSQREREREpRQBIREREpRQFJREREpBQFJBEREZFSFJBERERESlFAEhERESnFrQLSrFmzaNmypfP1Hp06dWLp0qXO7YZhMHHiRMLDw/Hz86Nbt25s3769xD7y8vIYPXo0ISEhBAQE0L9/f5KSkq70oYiIiEgF5lYBKSIigldeeYUNGzawYcMGbrjhBm655RZnCJo6dSrTp09n5syZxMfHY7fb6dmzJ1lZWc59xMbGsmjRIubPn8+aNWvIzs6mX79+FBUVmXVYIiIiUsFYDMMwzC7icgQHBzNt2jSGDRtGeHg4sbGxPP3008CZs0VhYWFMmTKFESNG4HA4CA0NZd68eQwaNAiA5ORkIiMjWbJkCb179y7zn5uZmYnNZsPhcJTry2oPHj+Fh8VCnRr+5bZPEREROaOs399udQbpj4qKipg/fz6nTp2iU6dOHDhwgNTUVHr16uUcY7Va6dq1K2vXrgUgISGBgoKCEmPCw8OJiopyjjmfvLw8MjMzSyyu8NrKPfxl2o8MfHsdn8UfJiu3wCV/joiIiJyf2wWkbdu2Ua1aNaxWK4888giLFi2iefPmpKamAhAWFlZifFhYmHNbamoqPj4+VK9e/bxjzmfy5MnYbDbnEhkZWY5HdYZhGGTnFWKxwPqDJ3l6wTbav/w9T8zfRNzu3ygqduuTfSIiIm7Dy+wCLlaTJk3YvHkzGRkZLFiwgCFDhhAXF+fcbrFYSow3DOOsdaWVZcyECRN46qmnnD9nZmaWe0iyWCy8e387kjNyWLTpKAs2JrH/t1N8tTmZrzYnExZk5dY2tbmjbQSNwwLL9c8WERGR/3G7gOTj40OjRo0AaNeuHfHx8bz22mvO+45SU1OpVauWc3xaWprzrJLdbic/P5/09PQSZ5HS0tLo3Lnzn/65VqsVq9Va3odzTuFX+fHY9Y0Y2a0hW5IcLEhIYvGWZI5l5jE7bj+z4/bTMsLGgLYR3NwqnOAAnytSl4iISFXhdpfYSjMMg7y8POrXr4/dbmfFihXObfn5+cTFxTnDT0xMDN7e3iXGpKSkkJiYeMGAZAaLxULryKt46dYo1v+1O7PuaUuPZmF4eVjYmuTg+cXb6Tjpex7+aAPfbU8lv7DY7JJFREQqBbc6g/Tss8/St29fIiMjycrKYv78+fz0008sW7YMi8VCbGwskyZNonHjxjRu3JhJkybh7+/P4MGDAbDZbAwfPpwxY8ZQo0YNgoODGTt2LNHR0fTo0cPko/tzVi9P+kbXom90LY5n57F4czILNiaxPTmT5TuOsXzHMar7e9O/VTgDYiKIrm274GVDEREROTe3CkjHjh3jvvvuIyUlBZvNRsuWLVm2bBk9e/YEYPz48eTk5DBy5EjS09Pp2LEjy5cvJzDwf/frzJgxAy8vLwYOHEhOTg7du3dnzpw5eHp6mnVYFy2kmpVhXeozrEt9dqZmsnDjURZtOspvWXnMXXeIuesO0bhmNQbERHBbm9qEBfmaXbKIiIhbcfs+SGZxVR+kS1VYVMzqvcdZkJDE8h3HnJfbPCzQpXEoA9rWpldzO34+7hMERUREyltZv78VkC5RRQtIf+TIKWDJthQWJCSx4VC6c32g1Ysbo2sxICaC9vWq6xKciIhUOQpILlaRA9IfHTx+ioUbk1iw8ShHM3Kc6yOD/bi9TQQD2kaoa7eIiFQZCkgu5i4B6XfFxQbrD55kQUISS7alcCr/f++e61AvmAExtbkxuhaBvt4mVikiIuJaCkgu5m4B6Y9O5xfy3fZUFiQc5ed9x/n9/wG+3h70bmHn9rYRdGkUgqeHLsGJiEjlooDkYu4ckP4oxfHfrt0JSez77ZRzvbp2i4hIZaSA5GKVJSD9zjAMtiQ5WLjxTNfujNP/e0ludG0bA9rWpn/r2uraLSIibk0BycUqW0D6o7zCIn7cmcYXCUf5aVcahf99Sa63p4Xrm9RkQEwE1zepiY+X2zdiFxGRKkYBycUqc0D6o+PZeXy95UzX7sSjmc716totIiLuSAHJxapKQPqjXalZLNiY5Oza/Tt17RYREXehgORiVTEg/e73rt0LNx5l+fZU8v7QtfvaRiHcEROhrt0iIlIhKSC5WFUOSH90vq7d1axe3KSu3SIiUsEoILmYAtLZDp04xYKNR1m4MYmkdHXtFhGRikcBycUUkM6vLF27+0bXIkhdu0VE5ApTQHIxBaSyOZ1fyPLtx1iwMYk1e//XtdvqdaZr94AYde0WEZErRwHJxRSQLp66douIiNkUkFxMAenSGYbB1iQHC9S1W0RErjAFJBdTQCofv3ftXrDxKD/uVNduERFxLQUkF1NAKn8nsvNYrK7dIiLiQgpILqaA5Fq7UrNY+N+u3Wnn6Np9a+va2G3q2i0iIhdHAcnFFJCujMKiYtbsPc4Cde0WEZFyoIDkYgpIV15mbgFLtqawYGMS8QfP7tp9e9vadKgfrEtwIiJyXgpILqaAZC517RYRkUuhgORiCkgVw+9duxduTGLJtlSy8wqd29S1W0RESlNAcjEFpIonJ7+I77anqmu3iIiclwKSiykgVWypjtwzXbs3JrE3Ldu5/veu3QPaRnC1unaLiFQ5CkgupoDkHtS1W0RE/kgBycUUkNzPma7dv7FgY9I5u3bf3jaCG5qqa7eISGWmgORiCkju7feu3Qs3HmXbUYdzvbp2i4hUbgpILqaAVHmoa7eISNWhgORiCkiVz+9duxduPMp36totIlIpKSC5mAJS5fZnXbtvjLYzoG2EunaLiLghBSQXU0CqOg6dOMXCjUdZuCmJIyfVtVtExJ0pILmYAlLVU1xsEH/wJAvO07X79ra1ubGlunaLiFRkCkgupoBUteXkF7F8RypfJKhrt4iIO1FAcjEFJPnd+bp21wy0club2gyIUdduEZGKQgHJxRSQpDTDMNh21MGChDNdu9PVtVtEpMJRQHIxBST5M/mFxfywM01du0VEKpiyfn+79d/OkydPxmKxEBsb61xnGAYTJ04kPDwcPz8/unXrxvbt20t8Li8vj9GjRxMSEkJAQAD9+/cnKSnpClcvlZmPlwd9ouy8e3871v+1BxNvbk50bRsFRQbLdxzjkY8T6Djpe57/KpGtSRno3ykiIhWL2wak+Ph43nnnHVq2bFli/dSpU5k+fTozZ84kPj4eu91Oz549ycrKco6JjY1l0aJFzJ8/nzVr1pCdnU2/fv0oKiq60ochVUBwgA9Dr63P16O7sPzJvzCiawPCgqykny5g7rpD9J/5M71mrGLWT/tIdeSaXa6IiOCml9iys7Np27Ytb731Fn//+99p3bo1//znPzEMg/DwcGJjY3n66aeBM2eLwsLCmDJlCiNGjMDhcBAaGsq8efMYNGgQAMnJyURGRrJkyRJ69+5dphp0iU0uR1GxwZq9x1mQkKSu3SIiV1ClvsT22GOPcdNNN9GjR48S6w8cOEBqaiq9evVyrrNarXTt2pW1a9cCkJCQQEFBQYkx4eHhREVFOcecS15eHpmZmSUWkUvl6WGh69WhvH53G+Kf68Ert0fToV4wxQas3nOcJ+Zv5rqpPzBv3UEKiorNLldEpMrxMruAizV//nw2btxIfHz8WdtSU1MBCAsLK7E+LCyMQ4cOOcf4+PhQvXr1s8b8/vlzmTx5Mi+88MLlli9yliBfb+7qUIe7OtRxdu3+IiGJoxk5/N9X2/nw54OM79OU3i3C9GoTEZErxK3OIB05coQnnniCjz/+GF/f879dvfSXiGEYF/xiudCYCRMm4HA4nMuRI0curniRMqhbI4Ane17NT+O68eItLagR4MP+46d45OME7nx7HQmH0i+8ExERuWxuFZASEhJIS0sjJiYGLy8vvLy8iIuL4/XXX8fLy8t55qj0maC0tDTnNrvdTn5+Punp6ecdcy5Wq5WgoKASi4ireHt6cH+nevw0rhujrm+Er7cHGw6lM2DWWh79OIEDx0+ZXaKISKXmVgGpe/fubNu2jc2bNzuXdu3acc8997B582YaNGiA3W5nxYoVzs/k5+cTFxdH586dAYiJicHb27vEmJSUFBITE51jRCqKQF9vxvZuwk9jr2dQu0g8LLA0MZWe0+OYuHg7J7LzzC5RRKRScqt7kAIDA4mKiiqxLiAggBo1ajjXx8bGMmnSJBo3bkzjxo2ZNGkS/v7+DB48GACbzcbw4cMZM2YMNWrUIDg4mLFjxxIdHX3WTd8iFYXd5suUO1ryQJd6TFm6kx93/cactQf5IiGJR7s1ZNi19fXEm4hIOXKrgFQW48ePJycnh5EjR5Kenk7Hjh1Zvnw5gYH/exfWjBkz8PLyYuDAgeTk5NC9e3fmzJmDp6e+YKRia2oP4sMHOrB273EmLf2VxKOZTPtuF/PWHeKpXlczoG2EXpArIlIO3LIPUkWgPkhituJig6+3JjN12S6OZuQA0NQeyDN9m9L16lA98SYicg56F5uLKSBJRZFbUMS8dYd444c9ZOYWAnBtoxpM6NuMqNo2k6sTEalYFJBcTAFJKpqM0/m89dM+5vx8kPz/Npe8rU1txvS6mojq/iZXJyJSMSgguZgCklRUR06e5tXlu/hyczIAPp4eDL22Ho91a4TN39vk6kREzKWA5GIKSFLRbUtyMGnJr6zbfwIAm583o29oxH2d6mL10gMJIlI1KSC5mAKSuAPDMPhp129MXvoru49lAxBR3Y9xvZtwc8twPPTEm4hUMQpILqaAJO6kqNhgQUISr67YxbHMM80lW0bYmNC3GZ0a1jC5OhGRK0cBycUUkMQdnc4v5IM1B3g7bj/ZeWeeeLuhaU2e6duUq8MCL/BpERH3p4DkYgpI4s6OZ+fx+so9fPrLYQqLDTwsMLBdJE/2vJqwoPO/CFpExN0pILmYApJUBvt/y2bad7tYmnjmBc++3h48dF0DRnRtSDVrpWu0LyKigORqCkhSmSQcOsmkJTtJOJQOQI0AH2J7NOauDnXw9nSrd1qLiPwpBSQXU0CSysYwDL7bfowpy3Zy4PgpABqEBDC+T1N6twjTq0tEpFJQQHIxBSSprAqKipm//jD//H4PJ07lAxBTtzrP3tiUmLrBJlcnInJ5FJBcTAFJKrus3ALeWbWfd1fvJ7fgzKtL+kbZGd+nKfVDAkyuTkTk0igguZgCklQVqY5cZqzYzb8TjlBsgJeHhcEd6/B498aEVLOaXZ6IyEVRQHIxBSSpanalZvHK0l/5cddvAFSzevFI1wYM79IAPx+9ukRE3IMCkospIElVtXbvcSYt/ZXEo5kAhAVZGdOzCQNiIvDUq0tEpIJTQHIxBSSpyoqLDb7emszUZbs4mpEDQJOwQJ65sSndrg7VE28iUmEpILmYApII5BUWMW/dId74YS+OnAIAOjeswbM3NiOqts3k6kREzqaA5GIKSCL/4zhdwJs/7WXOzwfJLzrzxNutrcMZ06sJkcH+JlcnIvI/CkgupoAkcrYjJ0/z6vJdfLk5GQAfTw+GXluPx7o1wubvbXJ1IiIKSC6ngCRyftuSHExe+itr950AwObnzajrG3F/57pYvfTEm4iYRwHJxRSQRP6cYRj8tPs3Xlmyk13HsgCIqO7HuN5NuLllOB564k1ETKCA5GIKSCJlU1RssCAhiVdX7OJYZh4A0bVtTLixKZ0bhphcnYhUNQpILqaAJHJxcvKL+ODnA8z6aR/ZeYUAXN8klGf6NqOJPdDk6kSkqlBAcjEFJJFLczw7jzdW7uGTXw5TWGzgYYE7YyJ5sufV2G2+ZpcnIpWcApKLKSCJXJ4Dx08xddlOliamAuDr7cFD1zXg4b80INBXT7yJiGsoILmYApJI+Ug4lM6kJb+ScCgdgBoBPsT2aMxdHerg7elhcnUiUtkoILmYApJI+TEMg++2H2PKsp0cOH4KgPohATzdpwm9W9j16hIRKTcKSC6mgCRS/gqKipm//jD//H4PJ07lAxBTtzrP3tiUmLrBJlcnIpWBApKLKSCJuE5WbgHvrNrPu6v3k1tw5tUlfVrYGd+nCQ1Cq5lcnYi4MwUkF1NAEnG9Y5m5zFixm883HKHYAC8PC4M71uHx7o0JqWY1uzwRcUMKSC6mgCRy5exKzWLKsp38sDMNgGpWLx7p2oDhXRrg56NXl4hI2SkguZgCksiVt3bfcSYv2cm2ow4AwoKsPNXzau6IicRTry4RkTJQQHIxBSQRcxQXG3y9NZlp3+0iKT0HgKvDqjGhbzO6NQnVE28i8qcUkFxMAUnEXHmFRcxbd4g3ftiLI6cAgM4NazChbzOiI2wmVyciFZUCkospIIlUDI7TBbz5017m/HyQ/KIzT7zd0jqcsb2aEBnsb3J1IlLRKCC5mAKSSMVy5ORpXl2+iy83JwPg4+nBkM51eez6Rlzl72NydSJSUZT1+9ut+vhPnDgRi8VSYrHb7c7thmEwceJEwsPD8fPzo1u3bmzfvr3EPvLy8hg9ejQhISEEBATQv39/kpKSrvShiEg5iwz25593teGb0V3o3LAG+UXFvLv6AF2n/cS7q/aTW1Bkdoki4kbcKiABtGjRgpSUFOeybds257apU6cyffp0Zs6cSXx8PHa7nZ49e5KVleUcExsby6JFi5g/fz5r1qwhOzubfv36UVSkvzxFKoOo2jY+ebAjHz7QniZhgThyCnh5ya90fzWOLzcdpbhYJ81F5MLc6hLbxIkT+fLLL9m8efNZ2wzDIDw8nNjYWJ5++mngzNmisLAwpkyZwogRI3A4HISGhjJv3jwGDRoEQHJyMpGRkSxZsoTevXuXuRZdYhOp+IqKDRZsTOLV5bs4lpkHQFTtIJ7t24zOjUJMrk5EzFApL7EB7Nmzh/DwcOrXr89dd93F/v37AThw4ACpqan06tXLOdZqtdK1a1fWrl0LQEJCAgUFBSXGhIeHExUV5RxzPnl5eWRmZpZYRKRi8/SwMLBdJD+NvZ5xvZtQzepF4tFMBr/3C2M+38KpvEKzSxSRCsqtAlLHjh356KOP+O6773j33XdJTU2lc+fOnDhxgtTUVADCwsJKfCYsLMy5LTU1FR8fH6pXr37eMeczefJkbDabc4mMjCzHIxMRV/Lz8eSx6xsRN64bQzrVxcMCCzYmcfMba0j8b9NJEZE/cquA1LdvXwYMGEB0dDQ9evTg22+/BWDu3LnOMaWbxBmGccHGcWUZM2HCBBwOh3M5cuTIJR6FiJilRjUrL9wSxb8eugZ7kC/7j5/i9rfW8sGaA7jR3QYicgW4VUAqLSAggOjoaPbs2eN8mq30maC0tDTnWSW73U5+fj7p6ennHXM+VquVoKCgEouIuKeODWqw9Inr6Nk8jPyiYl78ZgcPzt3AyVP5ZpcmIhWEWwekvLw8fv31V2rVqkX9+vWx2+2sWLHCuT0/P5+4uDg6d+4MQExMDN7e3iXGpKSkkJiY6BwjIlVD9QAf3rkvhhdvaYGPlwcrd6bR97VVrNt3wuzSRKQCcKuANHbsWOLi4jhw4AC//PILd9xxB5mZmQwZMgSLxUJsbCyTJk1i0aJFJCYmMnToUPz9/Rk8eDAANpuN4cOHM2bMGFauXMmmTZu49957nZfsRKRqsVgs3N+pHl+OvJaGoQEcy8xj8Hv/4dXluyj8b1duEamavMwu4GIkJSVx9913c/z4cUJDQ7nmmmv4z3/+Q926dQEYP348OTk5jBw5kvT0dDp27Mjy5csJDAx07mPGjBl4eXkxcOBAcnJy6N69O3PmzMHT09OswxIRkzUPD+Lr0V14YfEOPttwhDd+2Mu6fSd47e421L7Kz+zyRMQEbtUHqSJRHySRymnxlmT+unAbWXmFBPl6MfWOlvSJqmV2WSJSTiptHyQREVfq3yqcbx+/jlaRV5GZW8gjH2/kr4u26VUlIlWMApKISCl1avjzxSOdeKRrQwA++eUwt8z8md3Hsi7wSRGpLBSQRETOwdvTg2f6NmXe8A6EVLOy61gW/Weu4dNfDqtnkkgVoIAkIvInrmscytInruMvV4eSW1DMs4u2MerTTThyCswuTURcSAFJROQCQgOtzBnanmdvbIqXh4Vvt6Vw42urSTiUfuEPi4hbUkASESkDDw8LD/+lIQse7UydYH+OZuQwcPY63vxxL0XFuuQmUtkoIImIXIRWkVfx7eNduKV1OEXFBtO+28V97//Cscxcs0sTkXKkgCQicpECfb3556DWTLujJX7enqzdd4K+r63mx51pZpcmIuVEAUlE5BJYLBbubBfJN493oXmtIE6eyueBOfG89M0O8grVM0nE3SkgiYhchoah1Vg4sjNDO9cD4P01Bxgway0Hjp8ytzARuSwKSCIil8nX25OJ/Vvw3v3tqO7vTeLRTPq9vpqFG5PMLk1ELpECkohIOenRPIylT/yFjvWDOZVfxFOfb+GpzzaTnVdodmkicpEUkEREypHd5sunD13DUz2vxsMCCzcdpd/rq9mW5DC7NBG5CApIIiLlzNPDwuPdG/PZiE6E23w5eOI0t8/6mfdW79drSkTchAKSiIiLtK8XzJInrqN3izAKigz+/u2vDJsTz4nsPLNLE5ELUEASEXGhq/x9ePveGF66NQofLw9+3PUbfV9bzdq9x80uTUT+hAKSiIiLWSwW7rumLotHXUujmtVIy8rjnvd/Ydp3OykoKja7PBE5BwUkEZErpKk9iK9HdeHuDpEYBrz54z4GzV7HkZOnzS5NREpRQBIRuYL8fDyZfHtL3hzclkBfLzYezuDG11fz7dYUs0sTkT9QQBIRMcFNLWux5PHraFPnKrJyC3ns041MWLiNnHy9pkSkIlBAEhExSWSwP5+P6MTIbg2xWOBf6w/Tf+YadqVmmV2aSJWngCQiYiJvTw/G92nKx8M7EhpoZU9aNv1nruHj/xxSzyQREykgiYhUANc2CmHpE9fRrUkoeYXFPPdlIo9+vBHH6QKzSxOpkhSQREQqiJBqVj4Y0p7nbmqGt6eFZdtT6fvaKuIPnjS7NJEqRwFJRKQC8fCw8OB1DVj46LXUq+FPsiOXQbPX8cbKPRQV65KbyJWigCQiUgFFR9j45vHruK1NbYoNeHXFbu557z+kOnLNLk2kSlBAEhGpoKpZvZgxqDWv3tkKfx9P/rP/JH1fW8XKX4+ZXZpIpaeAJCJSwQ2IieCb0V1oER5E+ukChs/dwMTF28krVM8kEVdRQBIRcQMNQquxcGRnhl1bH4A5aw9y25tr2fdbtsmViVROCkgiIm7C6uXJ325uzgdD2xEc4MOOlExufmMN/95wRD2TRMqZApKIiJu5oWkYS5+4jk4NanA6v4hxX2wl9rPNZOWqZ5JIeVFAEhFxQ2FBvnz8YEfG9W6Cp4eFrzYn0++NNWw5kmF2aSKVggKSiIib8vSw8Nj1jfh8xDXUvsqPQydOM2DWWt5ZtY9i9UwSuSwKSCIibi6mbjBLHr+OvlF2CosNJi3ZyQNz4vktK8/s0kTclgKSiEglYPP35q172jLptmisXh7E7f6Nvq+tZvWe38wuTcQtKSCJiFQSFouFwR3r8PXoLlwdVo3j2Xnc/8F6Xlm6k4KiYrPLE3ErCkgiIpXM1WGBLB7VhXs61sEw4O24fdz59jqOnDxtdmkibsPtAtLRo0e59957qVGjBv7+/rRu3ZqEhATndsMwmDhxIuHh4fj5+dGtWze2b99eYh95eXmMHj2akJAQAgIC6N+/P0lJSVf6UEREXMbX25OXb4tm1j1tCfL1YvORDG58bTVfb0k2uzQRt+BWASk9PZ1rr70Wb29vli5dyo4dO3j11Ve56qqrnGOmTp3K9OnTmTlzJvHx8djtdnr27ElWVpZzTGxsLIsWLWL+/PmsWbOG7Oxs+vXrR1GR2vaLSOXSN7oWS564jpi61cnKK2T0vzbx9BdbOZ1faHZpIhWaxXCj9qvPPPMMP//8M6tXrz7ndsMwCA8PJzY2lqeffho4c7YoLCyMKVOmMGLECBwOB6GhocybN49BgwYBkJycTGRkJEuWLKF3795lqiUzMxObzYbD4SAoKKh8DlBExEUKi4p5beUeZv64F8OAhqEBzBzclma19PeXVC1l/f52qzNIixcvpl27dtx5553UrFmTNm3a8O677zq3HzhwgNTUVHr16uVcZ7Va6dq1K2vXrgUgISGBgoKCEmPCw8OJiopyjjmXvLw8MjMzSywiIu7Cy9ODMb2a8MmDHQkLsrLvt1Pc8ubPLEtMMbs0kQrJrQLS/v37mTVrFo0bN+a7777jkUce4fHHH+ejjz4CIDU1FYCwsLASnwsLC3NuS01NxcfHh+rVq593zLlMnjwZm83mXCIjI8vz0ERErojODUNY+sRf6NYklPzCYkZ+spF/rT9sdlkiFc5lBaSCggKOHDnCrl27OHnyZHnVdF7FxcW0bduWSZMm0aZNG0aMGMFDDz3ErFmzSoyzWCwlfjYM46x1pV1ozIQJE3A4HM7lyJEjl34gIiImCg7w4b372zGoXSTFBkxYuI03Vu7RC29F/uCiA1J2djazZ8+mW7du2Gw26tWrR/PmzQkNDaVu3bo89NBDxMfHu6JWatWqRfPmzUusa9asGYcPn/nXj91uBzjrTFBaWprzrJLdbic/P5/09PTzjjkXq9VKUFBQiUVExF15eXrwyoBoHru+IQCvrtjNC1/v0CtKRP7rogLSjBkzqFevHu+++y433HADCxcuZPPmzezatYt169bx/PPPU1hYSM+ePenTpw979uwp12KvvfZadu3aVWLd7t27qVu3LgD169fHbrezYsUK5/b8/Hzi4uLo3LkzADExMXh7e5cYk5KSQmJionOMiEhVYLFYGNe7Kc/ffOYfnnPWHuSJzzaTX6imkiJeFzN47dq1/Pjjj0RHR59ze4cOHRg2bBhvv/0277//PnFxcTRu3LhcCgV48skn6dy5M5MmTWLgwIGsX7+ed955h3feeQc48x97bGwskyZNonHjxjRu3JhJkybh7+/P4MGDAbDZbAwfPpwxY8ZQo0YNgoODGTt2LNHR0fTo0aPcahURcRcPXFuf4AAfxny+ha+3JJNxOp+3740hwHpRXxEilYpbPeYP8M033zBhwgT27NlD/fr1eeqpp3jooYec2w3D4IUXXmD27Nmkp6fTsWNH3nzzTaKiopxjcnNzGTduHJ9++ik5OTl0796dt95666JuvNZj/iJS2cTt/o1HP07gdH4RrSJsfDC0PTWqWc0uS6RclfX72+0CUkWhgCQildHmIxk88OF60k8X0CAkgI+GdyCiur/ZZYmUmysWkHbs2MHhw4fJz88vsb5///6Xs9sKTwFJRCqrvWnZDPlgPUczcggLsvLRsI40sQeaXZZIuXB5QNq/fz+33XYb27Ztw2KxOB8P/f1R+cr+2g4FJBGpzFIcOQz5YD27j2UT5OvFB0Pb065esNlliVw2l3fSfuKJJ6hfvz7Hjh3D39+f7du3s2rVKtq1a8dPP/10qbsVEZEKoJbNj89HdCKmbnUycwu5571fWPnrMbPLErliLjkgrVu3jhdffJHQ0FA8PDzw8PCgS5cuTJ48mccff7w8axQRERNc5e/Dx8M7ckPTmuQVFvPwvAT+vUFNcqVquOSAVFRURLVq1QAICQkhOTkZgLp1657Vq0hERNyTn48ns++L4fa2tSkqNhj3xVZmx+0zuywRl7vkJhdRUVFs3bqVBg0a0LFjR6ZOnYqPjw/vvPMODRo0KM8aRUTERN6eHvzjjlaEVLPyzqr9TF66k+PZeUzo2wwPjz9/jZOIu7rkM0jPPfccxcVnuq3+/e9/59ChQ1x33XUsWbKE119/vdwKFBER83l4WHj2xmZM6NsUgHdXH2Dsv7dQUKSu21I5lWsfpJMnT1K9evULvhi2MtBTbCJSVX2RkMTTC7ZSVGxwfZNQ3rynLf4+6rot7sFlT7GdPn2axx57jNq1a1OzZk0GDx7M8ePHAQgODq4S4UhEpCq7IyaCd+6Lwdfbgx93/cY97/1Cxun8C39QxI1cdEB6/vnnmTNnDjfddBN33XUXK1as4NFHH3VFbSIiUkF1bxbGJw92JMjXi02HM7jz7XWkOHLMLkuk3Fz0JbaGDRvy8ssvc9dddwGwfv16rr32WnJzc/H09HRJkRWRLrGJiMCu1Czu/+AXjmXmEW7z5aPhHWhUU123peJy2SW2I0eOcN111zl/7tChA15eXs7H/EVEpOpoYg9kwaOdaRAaQLIjlzveXsemw+lmlyVy2S46IBUVFeHj41NinZeXF4WFheVWlIiIuI+I6v588UhnWkXYyDhdwOB3fyFu929mlyVyWS76EpuHhwd9+/bFarU613399dfccMMNBAQEONctXLiw/KqsgHSJTUSkpFN5hTzycQKr9xzHy8PCqwNbcUvr2maXJVJCWb+/L/q5zCFDhpy17t57773Y3YiISCUTYPXi/SHtGfvvLSzekswT8zdzIjufYV3qm12ayEUr1z5IVYnOIImInFtxscGL3+xgztqDAIzs1pBxvZuoDYxUCC67SVtEROTPeHhYeP7m5ozr3QSAt37axzMLtlGortviRi6r9enKlStZuXIlaWlpzteO/O6DDz64rMJERMR9WSwWHru+ETUCfHh20TY+23CEk6fzeePuNvh6V52WMOK+LvkM0gsvvECvXr1YuXIlx48fJz09vcQiIiJyV4c6zLo3Bh8vD1bsOMb976/HkVNgdlkiF3TJ9yDVqlWLqVOnct9995V3TW5B9yCJiJTdf/af4KG5G8jKK6SpPZCPhnWgZpCv2WVJFeTye5Dy8/Pp3LnzpX5cRESqkGsa1OCzEZ0IqWZlZ2oWt89ay4Hjp8wuS+S8LjkgPfjgg3z66aflWYuIiFRizcODWPhoZ+rW8CcpPYc7Zq1lW5LD7LJEzumiLrE99dRTzv9dXFzM3LlzadmyJS1btsTb27vE2OnTp5dflRWQLrGJiFya37LyGPrherYnZxLg48k797fj2kYhZpclVURZv78vKiBdf/31ZRpnsVj44Ycfyrpbt6SAJCJy6bJyC3j4owTW7T+Bj6cHMwa15qaWtcwuS6oAlwQk+R8FJBGRy5NbUMSTn21maWIqFgu82L8F93WqZ3ZZUsm55Cbtw4cPX1QRR48evajxIiJSdfh6ezJzcFvu6VgHw4D/+2o7M1bsRv9ul4rgogJS+/bteeihh1i/fv15xzgcDt59912ioqIq/QtrRUTk8nh6WPj7rVE80b0xAK+t3MNzXyZSVKyQJOa6qE7av/76K5MmTaJPnz54e3vTrl07wsPD8fX1JT09nR07drB9+3batWvHtGnT6Nu3r6vqFhGRSsJisfBkz6sJqebD3xZv55NfDpN+Op8Zg1pj9VLXbTHHJd2DlJuby5IlS1i9ejUHDx4kJyeHkJAQ2rRpQ+/evYmKinJFrRWK7kESESl/32xN5snPNlNQZNC5YQ1m3xdDoK/3hT8oUka6SdvFFJBERFzj573HefijDZzKLyKqdhAfDu1AaKDV7LKkknB5J20RERFXuLZRCPMf7kSNAB8Sj2Zy59trOXLytNllSRWjgCQiIhVOdISNLx7tTER1Pw6eOM3ts9ayIznT7LKkClFAEhGRCql+SAALHu1MU3sgv2XlMWj2On7Zf8LssqSKUEASEZEKKyzIl89GdKJDvWCy8gq574P1fLc91eyypAq47IB09OhRNYQUERGXsfl589HwDvRsHkZ+YTGPfpzA/PUX17hY5GJdckD6+eefqV+/PnXq1KFOnTqEhYXx9NNPk5mpa8QiIlK+fL09mXVPWwa2i6DYgGcWbuPNH/eq67a4zCUHpBEjRtCiRQvi4+PZunUr06ZNY+XKlcTExHD8+PHyrFFERAQvTw+mDGjJo90aAjDtu1288PUOitV1W1zgkgPSvn37mDFjBm3btqVFixbcf//9xMfH07p1ax5//PHyrLGEevXqYbFYzloee+wxAAzDYOLEiYSHh+Pn50e3bt3Yvn17iX3k5eUxevRoQkJCCAgIoH///iQlJbmsZhERKR8Wi4Wn+zTl//o1B2DO2oPEfraZ/MJikyuTyuaSA1KzZs1ITS15o5zFYuHFF1/k66+/vuzCzic+Pp6UlBTnsmLFCgDuvPNOAKZOncr06dOZOXMm8fHx2O12evbsSVZWlnMfsbGxLFq0iPnz57NmzRqys7Pp168fRUVFLqtbRETKz/Au9fnnoNZ4eVhYvCWZ4XPjOZVXaHZZUolcckAaOnQoDz/8MIcPl7xRzuFwYLPZLruw8wkNDcVutzuXb775hoYNG9K1a1cMw+Cf//wnf/3rX7n99tuJiopi7ty5nD59mk8//dRZ3/vvv8+rr75Kjx49aNOmDR9//DHbtm3j+++/d1ndIiJSvm5tU5v3hrTDz9uT1XuOM/i9Xzh5Kt/ssqSSuOSAFBsby65du7j66qsZPHgwU6dOZfLkyQwfPpxp06aVZ43nlZ+fz8cff8ywYcOwWCwcOHCA1NRUevXq5RxjtVrp2rUra9euBSAhIYGCgoISY8LDw4mKinKOOZe8vDwyMzNLLCIiYq5uTWry6UMducrfmy1HMrjrnXU4TheYXZZUAl6X+sHU1FQ2bdrEli1b2Lx5M3PmzGHPnj1YLBZeeeUVvv32W1q2bEnLli3p06dPedbs9OWXX5KRkcHQoUOdNQGEhYWVGBcWFsahQ4ecY3x8fKhevfpZY0pfMvyjyZMn88ILL5Rj9SIiUh7a1KnOF490YvC7v7D7WDYPzdvAvOEdsHp5ml2auLFLPoNUs2ZNevfuzfjx4/n000/ZsWMHWVlZ/Pzzz4waNYqrrrqKxYsXc9ddd5VnvSW8//779O3bl/Dw8BLrLRZLiZ8NwzhrXWkXGjNhwgQcDodzOXLkyKUXLiIi5apRzUDmPNCBalYv1h84yVOfb9HTbXJZLvkM0rn4+vrSvn172rdvX567PadDhw7x/fffs3DhQuc6u90OnDlLVKtWLef6tLQ051klu91Ofn4+6enpJc4ipaWl0blz5/P+eVarFatVb5MWEamomocHMfu+GIZ8sJ5vt6YQbvPlrzc1N7sscVNu+6qRDz/8kJo1a3LTTTc519WvXx+73e58sg3O3KcUFxfnDD8xMTF4e3uXGJOSkkJiYuKfBiQREan4rm0UwrQ7WwLw7uoDfLDmgMkVibsq1zNIV0pxcTEffvghQ4YMwcvrf4dgsViIjY1l0qRJNG7cmMaNGzNp0iT8/f0ZPHgwADabjeHDhzNmzBhq1KhBcHAwY8eOJTo6mh49eph1SCIiUk5uaxNBiiOXqct28dK3O6hl86VvdK0Lf1DkD9wyIH3//fccPnyYYcOGnbVt/Pjx5OTkMHLkSNLT0+nYsSPLly8nMDDQOWbGjBl4eXkxcOBAcnJy6N69O3PmzMHTUzf0iYhUBo92bUhyRg4f/+cwT3y2mZBAK+3rBZtdlrgRi6EX2VySzMxMbDYbDoeDoKAgs8sREZFSiooNRsxL4Ptfj2Hz82bBo51oVDPwwh+USq2s399uew+SiIjIn/H0sPDG3W1oHXkVjpwChnwQT1pmrtlliZtQQBIRkUrLz8eT94e0o14Nf45m5PDAnHiy9UoSKQMFJBERqdRqVLMyd1gHagT4sD05k5GfbKSgSC+3lT+ngCQiIpVe3RoBfDC0PX7enqza/RsTFm5Dt+DKn1FAEhGRKqFV5FXMHNwGDwt8kZDEjBW7zS5JKjAFJBERqTK6Nwvj77dGA/D6D3v51/rDJlckFZUCkoiIVCmDO9Zh9A2NAHjuy0R+2HnM5IqkIlJAEhGRKuepnlczoG0ERcUGj32yiS1HMswuSSoYBSQREalyLBYLrwyI5rrGIeQUFDFsTjyHTpwyuyypQBSQRESkSvL29GDWvTE0rxXEiVP5DP0wnhPZeWaXJRWEApKIiFRZ1axezHmgPbWv8uPA8VM8+NEGcvKLzC5LKgAFJBERqdJqBvkyd1h7bH7ebDqcwePzN1FUrB5JVZ0CkoiIVHmNagby3pB2+Hh5sGLHMSYu3q5GklWcApKIiAjQvl4w/xzUGosF5v3nEG/H7Te7JDGRApKIiMh/3Rhdi+duag7AlGU7+XLTUZMrErMoIImIiPzB8C71ebBLfQDGfbGFn/ceN7kiMYMCkoiISCnP3tiMm1rWoqDI4JF5Cfyakml2SXKFKSCJiIiU4uFh4dU7W9GhfjBZeYU88GE8yRk5ZpclV5ACkoiIyDn4envy7n3taFSzGqmZuQz9cD2OnAKzy5IrRAFJRETkPGz+3swd1oGagVZ2H8vm4Y82kFeoRpJVgQKSiIjIn6h9lR8fPtCealYvfjlwkrH/3kqxGklWegpIIiIiF9Ai3Mase9vi5WHh6y3JTFm20+ySxMUUkERERMrgusahTL2jJQCzV+1nzs8HTK5IXEkBSUREpIxubxvBuN5NAHjhmx0sS0wxuSJxFQUkERGRizCyW0MGd6yDYcAT8zez4eBJs0sSF1BAEhERuQgWi4UX+7egR7Oa5BUW8+BHG9iblm12WVLOFJBEREQukpenB6/f3YZWkVeRcbqAoR+uJy0r1+yypBwpIImIiFwCfx8vPhjSjno1/ElKz2HYnHiy8wrNLkvKiQKSiIjIJapRzcqcBzoQHOBD4tFMHvtkIwVFxWaXJeVAAUlEROQy1AsJ4P0h7fD19iBu9288u3AbhqFGku5OAUlEROQytalTnZl3t8XDAv9OSOKf3+8xuyS5TApIIiIi5aBH8zBeujUKgNdW7uGz+MMmVySXQwFJRESknNzTsS6jrm8EwLOLEvlxZ5rJFcmlUkASEREpR2N6Xc3tbWtTVGww8pONbE3KMLskuQQKSCIiIuXIYrHwyu0t6dIohJyCIobNiefwidNmlyUXSQFJRESknPl4eTDr3rY0qxXE8ex8hny4npOn8s0uSy6CApKIiIgLBPp6M+eB9tS+yo8Dx0/x4Nx4cguKzC5LysitAlJhYSHPPfcc9evXx8/PjwYNGvDiiy9SXPy/plyGYTBx4kTCw8Px8/OjW7dubN++vcR+8vLyGD16NCEhIQQEBNC/f3+SkpKu9OGIiEglFxbky5wH2hPk68XGwxk8/q9NFBWrR5I7cKuANGXKFN5++21mzpzJr7/+ytSpU5k2bRpvvPGGc8zUqVOZPn06M2fOJD4+HrvdTs+ePcnKynKOiY2NZdGiRcyfP581a9aQnZ1Nv379KCpSshcRkfLVOCyQd+9vh4+nB8t3HOOFr7erkaQbsBhuNEv9+vUjLCyM999/37luwIAB+Pv7M2/ePAzDIDw8nNjYWJ5++mngzNmisLAwpkyZwogRI3A4HISGhjJv3jwGDRoEQHJyMpGRkSxZsoTevXuXqZbMzExsNhsOh4OgoKDyP1gREalUvtmazKhPNwHwTN+mPNK1ockVVU1l/f52qzNIXbp0YeXKlezevRuALVu2sGbNGm688UYADhw4QGpqKr169XJ+xmq10rVrV9auXQtAQkICBQUFJcaEh4cTFRXlHHMueXl5ZGZmllhERETKql/LcJ67qRkAryzdyVebj5pckfwZL7MLuBhPP/00DoeDpk2b4unpSVFRES+//DJ33303AKmpqQCEhYWV+FxYWBiHDh1yjvHx8aF69epnjfn98+cyefJkXnjhhfI8HBERqWIevK4ByRm5fPDzAcb+ewuhgVY6Nwwxuyw5B7c6g/TZZ5/x8ccf8+mnn7Jx40bmzp3LP/7xD+bOnVtinMViKfGzYRhnrSvtQmMmTJiAw+FwLkeOHLn0AxERkSrruZuacVN0LQqKDEZ8lMDOVF2RqIjcKiCNGzeOZ555hrvuuovo6Gjuu+8+nnzySSZPngyA3W4HOOtMUFpamvOskt1uJz8/n/T09POOORer1UpQUFCJRURE5GJ5eFh4dWAr2terTlZeIUM/iCfFkWN2WVKKWwWk06dP4+FRsmRPT0/nY/7169fHbrezYsUK5/b8/Hzi4uLo3LkzADExMXh7e5cYk5KSQmJionOMiIiIK/l6e/Lu/e1oVLMaqZm5DP0gHkdOgdllyR+4VUC6+eabefnll/n22285ePAgixYtYvr06dx2223AmUtrsbGxTJo0iUWLFpGYmMjQoUPx9/dn8ODBANhsNoYPH86YMWNYuXIlmzZt4t577yU6OpoePXqYeXgiIlKFXOXvw5wH2hMaaGXXsSxGzNtAXqHazVQUbvWYf1ZWFv/3f//HokWLSEtLIzw8nLvvvpu//e1v+Pj4AGfuJXrhhReYPXs26enpdOzYkTfffJOoqCjnfnJzcxk3bhyffvopOTk5dO/enbfeeovIyMgy16LH/EVEpDxsT3Yw8O11nMovon+rcP45qDUeHn9+36xcurJ+f7tVQKpIFJBERKS8rNr9G8PmxFNYbDCiawMm9G1mdkmVVqXsgyQiIlIZ/eXqUF4Z0BKA2XH7mbv2oLkFiQKSiIhIRXBHTARjel4NwMSvt7Ms8fy9+cT1FJBEREQqiFE3NOLuDnUwDHhi/iYSDp00u6QqSwFJRESkgrBYLLx0Swu6N61JXmExw+duYN9v2WaXVSUpIImIiFQgXp4evDG4Da0ibGScLmDoh+tJy8o1u6wqRwFJRESkgvH38eL9oe2pE+zPkZM5DJ+zgVN5hWaXVaUoIImIiFRAIdWszB3WgeAAH7YddfDYpxspKCo2u6wqQwFJRESkgqofEsD7Q9rh6+3BT7t+47lFiah94ZWhgCQiIlKBtalTnTfubouHBT7bcITXV+41u6QqQQFJRESkguvZPIwXbznzyqwZ3+/m8/gjJldU+SkgiYiIuIF7r6nLyG4NAZiwaBs/7UozuaLKTQFJRETETYzr3YTb2tSmqNhg5Ccb2ZbkMLukSksBSURExE1YLBamDGjJtY1qcDq/iAfmxHPk5Gmzy6qUFJBERETciI+XB7PujaGpPZDj2XkM+XA96afyzS6r0lFAEhERcTNBvt7MeaAD4TZf9v92igc/2kBuQZHZZVUqCkgiIiJuyG7zZc6wDgT6epFwKJ0n5m+iqFg9ksqLApKIiIibujoskHfvb4ePpwffbT/G1O92ml1SpaGAJCIi4sauaVCDaXe2BGB23H5W/nrM5IoqBwUkERERN3dL69oM7VwPgDH/3sLRjBxzC6oEFJBEREQqgQk3NiW6to2M0wWM1ottL5sCkoiISCVg9fLkzcFtCfT1YuPhDP7x3S6zS3JrCkgiIiKVRJ0a/ky747/3I63S/UiXQwFJRESkEukTVct5P9JTn+t+pEulgCQiIlLJTLixKS0jbDhyChil+5EuiQKSiIhIJfPH+5E2Hc5gmu5HumgKSCIiIpVQZLA/0+5oBcA7q/bz/Q7dj3QxFJBEREQqqT5Rdh64th5wpj9SUvppcwtyIwpIIiIildiEvs1o5bwfaRP5hbofqSwUkERERCoxHy8PZg5uS5CvF5uPZDBN72srEwUkERGRSi4y2J9pd565H+nd1QdYofuRLkgBSUREpAro3cLOsGvrAzBW9yNdkAKSiIhIFfFM36a0irxK9yOVgQKSiIhIFeHj5cHMu9s470eaukz3I52PApKIiEgVEhnszz/+ez/Se2sOsHx7qskVVUwKSCIiIlVMrxZ2hnf53/1IR07qfqTSFJBERESqoKf7nLkfKTO3kFH/0v1IpSkgiYiIVEE+Xh68OfjM/UhbjmQwRfcjleB2ASkrK4vY2Fjq1q2Ln58fnTt3Jj4+3rndMAwmTpxIeHg4fn5+dOvWje3bt5fYR15eHqNHjyYkJISAgAD69+9PUlLSlT4UERERU0VU9+fVga0BeF/3I5XgdgHpwQcfZMWKFcybN49t27bRq1cvevTowdGjRwGYOnUq06dPZ+bMmcTHx2O32+nZsydZWVnOfcTGxrJo0SLmz5/PmjVryM7Opl+/fhQVFZl1WCIiIqbo2TyMB3U/0lkshmEYZhdRVjk5OQQGBvLVV19x0003Ode3bt2afv368dJLLxEeHk5sbCxPP/00cOZsUVhYGFOmTGHEiBE4HA5CQ0OZN28egwYNAiA5OZnIyEiWLFlC7969y1RLZmYmNpsNh8NBUFBQ+R+siIjIFVJQVMzA2evYdDiDVhE2/v1IZ3y83O4cSpmU9fvbrY6+sLCQoqIifH19S6z38/NjzZo1HDhwgNTUVHr16uXcZrVa6dq1K2vXrgUgISGBgoKCEmPCw8OJiopyjjmXvLw8MjMzSywiIiKVgbenB2/c3Qabnzdbkhy8slT3I7lVQAoMDKRTp0689NJLJCcnU1RUxMcff8wvv/xCSkoKqalnrp2GhYWV+FxYWJhzW2pqKj4+PlSvXv28Y85l8uTJ2Gw25xIZGVnORyciImKeiOr+vPrf/kgf/HyA76r4/UhuFZAA5s2bh2EY1K5dG6vVyuuvv87gwYPx9PR0jrFYLCU+YxjGWetKu9CYCRMm4HA4nMuRI0cu70BEREQqmB7Nw3joOt2PBG4YkBo2bEhcXBzZ2dkcOXKE9evXU1BQQP369bHb7QBnnQlKS0tznlWy2+3k5+eTnp5+3jHnYrVaCQoKKrGIiIhUNuP7NKVNnavIyi1k1Kcbq2x/JLcLSL8LCAigVq1apKen891333HLLbc4Q9KKFSuc4/Lz84mLi6Nz584AxMTE4O3tXWJMSkoKiYmJzjEiIiJVlbenBzMHt3XejzR56a9ml2QKL7MLuFjfffcdhmHQpEkT9u7dy7hx42jSpAkPPPAAFouF2NhYJk2aROPGjWncuDGTJk3C39+fwYMHA2Cz2Rg+fDhjxoyhRo0aBAcHM3bsWKKjo+nRo4fJRyciImK+2lf58eqdrXjwow18+PNBOtavQZ8ou9llXVFuF5AcDgcTJkwgKSmJ4OBgBgwYwMsvv4y3tzcA48ePJycnh5EjR5Kenk7Hjh1Zvnw5gYGBzn3MmDEDLy8vBg4cSE5ODt27d2fOnDkl7mMSERGpyno0D+PhvzTgnVX7GffFFlqEBxEZ7G92WVeMW/VBqkjUB0lERCq7gqJiBs1ex8bDGbSMsPHvRzph9XLvkwmVsg+SiIiIXDnenh68MbgtV/l7szXJweQlVac/kgKSiIiInFftq/yYPvBMf6Q5aw+yLDHF5IquDAUkERER+VM3NA1jRNcGAIz7YiuHT1T+/kgKSCIiInJBY3s1IaZudbJyC3ns043kFVbuF7wrIImIiMgF/f6+tqv8vdl21MGUpbvMLsmlFJBERESkTML/cD/SBz8fYO2+4yZX5DoKSCIiIlJmNzQN4+4OdQAY9++tZOUWmFyRayggiYiIyEX5603NiAz242hGDi99s8PsclxCAUlEREQuSjWrF6/e2RqLBT7fkMT3O46ZXVK5U0ASERGRi9ahfjAPXXfm0f9nFm7j5Kl8kysqXwpIIiIickme6nk1V4dV43h2Hs99uY3K9PYyBSQRERG5JL7enkwf2BovDwtLtqWyeEuy2SWVGwUkERERuWRRtW2MvqExAP/3ZSKpjlyTKyofCkgiIiJyWUZe35BWETYycwsZv2BrpbjUpoAkIiIil8Xb04NXB7bG6uXBqt2/8ckvh80u6bIpIImIiMhla1SzGuP7NAVg0pJfOXTilMkVXR4FJBERESkXD3SuxzUNgjmdX8SYz7dQVOy+l9oUkERERKRceHhYmHZHK6pZvdhwKJ33Vu83u6RLpoAkIiIi5SYy2J+/9WsOwKvLd7MzNdPkii6NApKIiIiUqzvbRdC9aU3yi4p56rMt5BcWm13SRVNAEhERkXJlsViYPCCa6v7e7EjJ5I0f9phd0kVTQBIREZFyVzPQl5dviwbgrZ/2selwuskVXRwFJBEREXGJG6NrcUvrcIqKDcZ8voWc/CKzSyozBSQRERFxmRf7RxEWZGX/8VNMWbbT7HLKTAFJREREXMbm782UAS0BmLP2IGv3Hje5orJRQBIRERGX6takJvd0rAPAuC+2kplbYHJFF6aAJCIiIi737I3NqBPsz9GMHF78eofZ5VyQApKIiIi4XIDVi1cHtsJigS8Sklix45jZJf0pBSQRERG5ItrXC+bh6xoAMGHhVk5k55lc0fkpIImIiMgV82TPq2kSFsjx7Hz+uigRw6iYL7RVQBIREZErxtfbk1cHtsLLw8Ky7al8ufmo2SWdkwKSiIiIXFFRtW080b0xAH/7ajspjhyTKzqbApKIiIhccY92a0iryKvIyi1k/BdbK9ylNgUkERERueK8PD2YPrAVVi8PVu85zse/HDa7pBIUkERERMQUDUOr8UzfpgBM+vZXDh4/ZXJF/6OAJCIiIqYZ0qkenRrUIKegiDH/3kJRccW41KaAJCIiIqbx8LAw7c6WVLN6kXAonXdW7Te7JKCCBaRVq1Zx8803Ex4ejsVi4csvvyyx3TAMJk6cSHh4OH5+fnTr1o3t27eXGJOXl8fo0aMJCQkhICCA/v37k5SUVGJMeno69913HzabDZvNxn333UdGRoaLj05ERETOJaK6P3+7uTkAM1bs5teUTJMrqmAB6dSpU7Rq1YqZM2eec/vUqVOZPn06M2fOJD4+HrvdTs+ePcnKynKOiY2NZdGiRcyfP581a9aQnZ1Nv379KCoqco4ZPHgwmzdvZtmyZSxbtozNmzdz3333ufz4RERE5NzujImgR7Mw8ouKeerzLeQXFptbkFFBAcaiRYucPxcXFxt2u9145ZVXnOtyc3MNm81mvP3224ZhGEZGRobh7e1tzJ8/3znm6NGjhoeHh7Fs2TLDMAxjx44dBmD85z//cY5Zt26dARg7d+4sc30Oh8MADIfDcamHKCIiIn+QlplrtHlxuVH36W+Mqct+dcmfUdbv7wp1BunPHDhwgNTUVHr16uVcZ7Va6dq1K2vXrgUgISGBgoKCEmPCw8OJiopyjlm3bh02m42OHTs6x1xzzTXYbDbnmHPJy8sjMzOzxCIiIiLlJzTQysu3RgEw66d9bDycblotbhOQUlNTAQgLCyuxPiwszLktNTUVHx8fqlev/qdjatasedb+a9as6RxzLpMnT3bes2Sz2YiMjLys4xEREZGz9Y2uxa2tw6nu70NWbqFpdXiZ9idfIovFUuJnwzDOWlda6THnGn+h/UyYMIGnnnrK+XNmZqZCkoiIiAu8cEsUBUXFhFSzmlaD25xBstvtAGed5UlLS3OeVbLb7eTn55Oenv6nY44dO3bW/n/77bezzk79kdVqJSgoqMQiIiIi5c/m521qOAI3Ckj169fHbrezYsUK57r8/Hzi4uLo3LkzADExMXh7e5cYk5KSQmJionNMp06dcDgcrF+/3jnml19+weFwOMeIiIhI1VahLrFlZ2ezd+9e588HDhxg8+bNBAcHU6dOHWJjY5k0aRKNGzemcePGTJo0CX9/fwYPHgyAzWZj+PDhjBkzhho1ahAcHMzYsWOJjo6mR48eADRr1ow+ffrw0EMPMXv2bAAefvhh+vXrR5MmTa78QYuIiEiFU6EC0oYNG7j++uudP/9+z8+QIUOYM2cO48ePJycnh5EjR5Kenk7Hjh1Zvnw5gYGBzs/MmDEDLy8vBg4cSE5ODt27d2fOnDl4eno6x3zyySc8/vjjzqfd+vfvf97eSyIiIlL1WAzDqBgvPXEzmZmZ2Gw2HA6H7kcSERFxE2X9/nabe5BERERErhQFJBEREZFSFJBERERESlFAEhERESlFAUlERESkFAUkERERkVIUkERERERKUUASERERKUUBSURERKSUCvWqEXfyewPyzMxMkysRERGRsvr9e/tCLxJRQLpEWVlZAERGRppciYiIiFysrKwsbDbbebfrXWyXqLi4mOTkZAIDA7FYLGaX49YyMzOJjIzkyJEjeq+diTQP5tMcVAyaB/O5cg4MwyArK4vw8HA8PM5/p5HOIF0iDw8PIiIizC6jUgkKCtJfRhWA5sF8moOKQfNgPlfNwZ+dOfqdbtIWERERKUUBSURERKQUBSQxndVq5fnnn8dqtZpdSpWmeTCf5qBi0DyYryLMgW7SFhERESlFZ5BERERESlFAEhERESlFAUlERESkFAUkERERkVIUkMQlJk+eTPv27QkMDKRmzZrceuut7Nq166xxv/76K/3798dmsxEYGMg111zD4cOHndvz8vIYPXo0ISEhBAQE0L9/f5KSkq7kobitssyBxWI55zJt2jTnGM3B5SnLPGRnZzNq1CgiIiLw8/OjWbNmzJo1q8QYzcOlK8scHDt2jKFDhxIeHo6/vz99+vRhz549JcZoDi7PrFmzaNmypbP5Y6dOnVi6dKlzu2EYTJw4kfDwcPz8/OjWrRvbt28vsY8rOgeGiAv07t3b+PDDD43ExERj8+bNxk033WTUqVPHyM7Odo7Zu3evERwcbIwbN87YuHGjsW/fPuObb74xjh075hzzyCOPGLVr1zZWrFhhbNy40bj++uuNVq1aGYWFhWYcllspyxykpKSUWD744APDYrEY+/btc47RHFyesszDgw8+aDRs2ND48ccfjQMHDhizZ882PD09jS+//NI5RvNw6S40B8XFxcY111xjXHfddcb69euNnTt3Gg8//PBZ86Q5uDyLFy82vv32W2PXrl3Grl27jGeffdbw9vY2EhMTDcMwjFdeecUIDAw0FixYYGzbts0YNGiQUatWLSMzM9O5jys5BwpIckWkpaUZgBEXF+dcN2jQIOPee+8972cyMjIMb29vY/78+c51R48eNTw8PIxly5a5tN7K6FxzUNott9xi3HDDDc6fNQfl71zz0KJFC+PFF18sMa5t27bGc889ZxiG5qG8lZ6DXbt2GYDzi9owDKOwsNAIDg423n33XcMwNAeuUr16deO9994ziouLDbvdbrzyyivObbm5uYbNZjPefvttwzCu/BzoEptcEQ6HA4Dg4GDgzMt+v/32W66++mp69+5NzZo16dixI19++aXzMwkJCRQUFNCrVy/nuvDwcKKioli7du0Vrb8yKD0HpR07doxvv/2W4cOHO9dpDsrfueahS5cuLF68mKNHj2IYBj/++CO7d++md+/egOahvJWeg7y8PAB8fX2dYzw9PfHx8WHNmjWA5qC8FRUVMX/+fE6dOkWnTp04cOAAqampJX6/VquVrl27On+/V3oOFJDE5QzD4KmnnqJLly5ERUUBkJaWRnZ2Nq+88gp9+vRh+fLl3Hbbbdx+++3ExcUBkJqaio+PD9WrVy+xv7CwMFJTU6/4cbizc81BaXPnziUwMJDbb7/duU5zUL7ONw+vv/46zZs3JyIiAh8fH/r06cNbb71Fly5dAM1DeTrXHDRt2pS6desyYcIE0tPTyc/P55VXXiE1NZWUlBRAc1Betm3bRrVq1bBarTzyyCMsWrSI5s2bO3+HYWFhJcb/8fd7pefAq9z3KFLKqFGj2Lp1q/NfYnDmDBLALbfcwpNPPglA69atWbt2LW+//TZdu3Y97/4Mw8Bisbi26ErmXHNQ2gcffMA999xT4l/R56M5uDTnm4fXX3+d//znPyxevJi6deuyatUqRo4cSa1atejRo8d596d5uHjnmgNvb28WLFjA8OHDCQ4OxtPTkx49etC3b98L7k9zcHGaNGnC5s2bycjIYMGCBQwZMsT5j2LgrN9lWX6/rpoDnUESlxo9ejSLFy/mxx9/JCIiwrk+JCQELy8vmjdvXmJ8s2bNnE+x2e128vPzSU9PLzEmLS3trH9lyPmdbw7+aPXq1ezatYsHH3ywxHrNQfk53zzk5OTw7LPPMn36dG6++WZatmzJqFGjGDRoEP/4xz8AzUN5+bP/FmJiYpxf3CkpKSxbtowTJ05Qv359QHNQXnx8fGjUqBHt2rVj8uTJtGrVitdeew273Q5w1pmgP/5+r/QcKCCJSxiGwahRo1i4cCE//PCD8y+Z3/n4+NC+ffuzHrXdvXs3devWBc78heXt7c2KFSuc21NSUkhMTKRz586uPwg3d6E5+KP333+fmJgYWrVqVWK95uDyXWgeCgoKKCgowMOj5F/Hnp6ezjOtmofLczH/LdhsNkJDQ9mzZw8bNmzglltuATQHrmIYBnl5edSvXx+73V7i95ufn09cXJzz93vF56Dcb/sWMQzj0UcfNWw2m/HTTz+VeIz89OnTzjELFy40vL29jXfeecfYs2eP8cYbbxienp7G6tWrnWMeeeQRIyIiwvj++++NjRs3GjfccIMeqy2jssyBYRiGw+Ew/P39jVmzZp1zP5qDy1OWeejatavRokUL48cffzT2799vfPjhh4avr6/x1ltvOcdoHi5dWebg888/N3788Udj3759xpdffmnUrVvXuP3220vsR3NweSZMmGCsWrXKOHDggLF161bj2WefNTw8PIzly5cbhnHmMX+bzWYsXLjQ2LZtm3H33Xef8zH/KzUHCkjiEsA5lw8//LDEuPfff99o1KiR4evra7Rq1apE3xfDMIycnBxj1KhRRnBwsOHn52f069fPOHz48BU8EvdV1jmYPXu24efnZ2RkZJxzP5qDy1OWeUhJSTGGDh1qhIeHG76+vkaTJk2MV1991SguLnaO0TxcurLMwWuvvWZEREQY3t7eRp06dYznnnvOyMvLK7EfzcHlGTZsmFG3bl3Dx8fHCA0NNbp37+4MR4Zxph/V888/b9jtdsNqtRp/+ctfjG3btpXYx5WcA4thGEb5n5cSERERcV+6B0lERESkFAUkERERkVIUkERERERKUUASERERKUUBSURERKQUBSQRERGRUhSQREREREpRQBIREREpRQFJREREpBQFJBEREZFSFJBERP7gxIkT1KxZk4MHD17U5+644w6mT5/umqJE5IpTQBKRSmnZsmVYLJY/XZYuXXrW5yZPnszNN99MvXr1nOuGDh3KrbfeWmLcF198ga+vL1OnTgXgb3/7Gy+//DKZmZmuPCwRuUIUkESkUuratSspKSnOpUaNGjz77LMl1vXs2bPEZ3Jycnj//fd58MEH/3Tf7733Hvfccw8zZ85k/PjxALRs2ZJ69erxySefuOyYROTKUUASkUrJz88Pu92O3W6nqKiIEydO0KVLF+c6u92Ol5dXic8sXboULy8vOnXqdN79Tp06lVGjRvHpp5+eFaT69+/Pv/71L5ccj4hcWQpIIlLpbdq0CYCYmJg/Hbdq1SratWt33u3PPPMML730Et988w0DBgw4a3uHDh1Yv349eXl5l1ewiJjO68JDRETc28aNG6lduzY1a9b803EHDx4kPDz8nNuWLl3KV199xcqVK7nhhhvOOaZ27drk5eWRmppK3bp1L7tuETGPziCJSKW3ceNG2rZte8FxOTk5+Pr6nnPb7/cY/e1vfyMrK+ucY/z8/AA4ffr0pRcrIhWCApKIVHobN2684OU1gJCQENLT08+5rXbt2sTFxZGSkkKfPn3OGZJOnjwJQGho6OUVLCKmU0ASkUrtxIkTHDlypExnkNq0acOOHTvOu71OnTrExcWRlpZGr169znqkPzExkYiICEJCQi67bhExlwKSiFRqCQkJAGUKSL1792b79u3nPYsEEBERwU8//cSJEyfo1asXDofDuW316tX06tXr8osWEdMpIIlIpbZp0yZq1qxJ7dq1Lzg2Ojqadu3a8fnnn//puN8vt2VkZNCzZ08yMjLIzc1l0aJFPPTQQ+VVuoiYyGIYhmF2ESIiFcWSJUsYO3YsiYmJeHiU/d+Qb775Jl999RXLly93YXUicqXoMX8RkT+48cYb2bNnD0ePHiUyMrLMn/P29uaNN95wYWUiciXpDJKIiIhIKboHSURERKQUBSQRERGRUhSQREREREpRQBIREREpRQFJREREpBQFJBEREZFSFJBERERESlFAEhERESlFAUlERESklP8H/7JdQ6Nl6vIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax=plt.subplots()\n", + "ax.plot(ams_moist_adiabat,1e-2*pa,label='AMS Adiabat')\n", + "ax.set_xlabel('$T$ (K)')\n", + "ax.set_ylabel('$p$ (hPa)')\n", + "ax.set_ylim(ax.get_ylim()[::-1])" + ] + }, + { + "cell_type": "markdown", + "id": "d15f8589-895e-4ad9-b5e9-edfb91a611fb", + "metadata": {}, + "source": [ + "### Pseudoadiabat\n", + "To compute the [pseudoadiabat](https://glossary.ametsoc.org/wiki/Pseudoadiabatic_lapse_rate), we change the lapse_type argument accordingly:" + ] + }, + { + "cell_type": "code", + "execution_count": 150, + "id": "7424e37e-c231-430c-9cc1-46fd2169b670", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[300.0 297.4945987436791 294.7444870478361 288.2638798031398 282.8989156391682 276.202733697518 267.2801075769228 254.06644669615565] kelvin\n" + ] + } + ], + "source": [ + "pseudoadiabat=moist_lapse(pa,t1,lapse_type='pseudoadiabatic')\n", + "print(pseudoadiabat)" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "id": "de3c4e50-b645-4441-9387-056a2cc269bd", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGyCAYAAAAf/ztNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpSElEQVR4nO3deZxN9ePH8de5985ujH2uYWyF7ESJlH1JlkJZIoqQ0IRIG6UoZSlK5WtLpL6hzRKprIkGZYlUdjNEY8YwZruf3x/z636bQQYzzsx4Px+P8/h+55zPPfd95sR9O+fccyxjjEFEREREvBx2BxARERHJaVSQRERERDJQQRIRERHJQAVJREREJAMVJBEREZEMVJBEREREMlBBEhEREcnAZXeA3Mrj8XD06FGCg4OxLMvuOCIiIpIJxhhOnz5NWFgYDsfFjxOpIF2ho0ePEh4ebncMERERuQKHDh2iZMmSF12ugnSFgoODgbRfcP78+W1OIyIiIpkRFxdHeHi493P8YlSQrtDfp9Xy58+vgiQiIpLLXOryGF2kLSIiIpKBCpKIiIhIBipIIiIiIhmoIImIiIhkoIIkIiIikoEKkoiIiEgGKkgiIiIiGaggiYiIiGSggiQiIiKSgQqSiIiISAa5qiBNmzaN6tWrex/vUa9ePZYtW+Zdboxh9OjRhIWFERAQQKNGjdi5c2e6dSQmJjJo0CCKFClCUFAQ7dq14/Dhw9d6U0RERCQHy1UFqWTJkrzyyiv8+OOP/PjjjzRp0oT27dt7S9D48eOZOHEiU6dOZfPmzbjdbpo3b87p06e964iIiGDx4sUsWLCAdevWER8fT5s2bUhNTbVrs0RERK6JMmXKMHnyZO/PlmXx6aefZvr1o0ePpmbNmlmeKyfKVQWpbdu2tG7dmgoVKlChQgVefvll8uXLx8aNGzHGMHnyZJ555hk6dOhA1apVmTNnDmfPnmX+/PkAxMbGMmPGDCZMmECzZs2oVasWH3zwAdu3b+frr7+2eevS7D9xhoMnz6b9ELMfTv5uax4REUlvw4YNOJ1OWrVqdd6y/fv3Y1kWLpeLI0eOpFsWFRWFy+XCsiz279/vnb9w4ULq1q1LSEgIwcHBVKlShaFDh2YqS9++fXE6nSxYsOCKtiUqKoq77rrril57NS63mNkhVxWkf0pNTWXBggWcOXOGevXqsW/fPqKjo2nRooV3jJ+fHw0bNmTDhg0AREZGkpycnG5MWFgYVatW9Y65mMTEROLi4tJN2eGNVXu587Vvuf+d7/l98RiYcjPMaAGRs+FcbLa8p4iIZN7MmTMZNGgQ69at4+DBgxccExYWxvvvv59u3pw5cyhRokS6eV9//TVdunShU6dObNq0icjISF5++WWSkpIumePs2bN89NFHPPnkk8yYMeOKtsXtduPn53dFr83rcl1B2r59O/ny5cPPz4/+/fuzePFiKleuTHR0NAChoaHpxoeGhnqXRUdH4+vrS8GCBS865mLGjRtHSEiIdwoPD8/CrUpjjCE+MQXLgk37/2LnviOkGgsO/QBfPI55vQJ88jD89jV4dEpQRPIGYwxnk1JsmYwxl5X1zJkzfPzxxzz66KO0adOG2bNnX3Bcz549mTVrVrp5s2fPpmfPnunmffnllzRo0IAnn3ySihUrUqFCBe655x6mTJlyySz//e9/qVy5MiNHjmT9+vXpjkoBHD9+nLZt2xIQEEDZsmWZN2/eeevIeCRnxIgRVKhQgcDAQMqVK8dzzz1HcnLyea979913CQ8PJzAwkPvuu49Tp055l23evJnmzZtTpEgRQkJCaNiwIVu2bPEuL1OmDAD33nsvlmV5f85pXHYHuFwVK1Zk27ZtnDp1ioULF9KzZ09Wr17tXW5ZVrrxxpjz5mWUmTEjR45kyJAh3p/j4uKyvCRZlsX0B+tw9FQCi7ceYfKWp3jpz8Pc61xHR+caKqQcgR0L06bg4lC9M9TsBkUrZmkOEZFrKSE5lcrPf2XLe+96sSWBvpn/KPzoo4+oWLEiFStWpHv37gwaNIjnnnvuvM+Qdu3a8c4777Bu3ToaNGjAunXr+Ouvv2jbti1jxozxjnO73cyfP58dO3ZQtWrVy8o+Y8YMunfvTkhICK1bt2bWrFm88MIL3uW9evXi0KFDfPPNN/j6+jJ48GCOHz/+r+sMDg5m9uzZhIWFsX37dh555BGCg4MZPny4d8xvv/3Gxx9/zBdffEFcXBy9e/fmscce8xaw06dP07NnT958800AJkyYQOvWrdm7dy/BwcFs3ryZYsWKMWvWLFq1aoXT6bys7b5Wct0RJF9fX2688Ubq1KnDuHHjqFGjBm+88QZutxvgvCNBx48f9x5VcrvdJCUlERMTc9ExF+Pn5+f99tzfU3YJKxDAY41vZNWQhrz3WBvO3jKQ+xyTaJv4EnNSmhNj8sHpKFg/Gd66Fd5rDJumw9m/si2TiIj8r5QAtGrVivj4eFatWnXeOB8fH7p3787MmTOBtNNy3bt3x8fHJ924QYMGccstt1CtWjXKlClDly5dmDlzJomJif+aY+/evWzcuJHOnTsD0L17d2bNmoXH4wHg119/ZdmyZfznP/+hXr161K5dmxkzZpCQkPCv63322WepX78+ZcqUoW3btgwdOpSPP/443Zhz584xZ84catasyZ133smUKVNYsGCB9/O3SZMmdO/enUqVKlGpUiXeffddzp496z2YUbRoUQAKFCiA2+32/pzT5LojSBkZY0hMTKRs2bK43W5WrlxJrVq1AEhKSmL16tW8+uqrANSuXRsfHx9WrlzJ/fffD6RdoLZjxw7Gjx9v2zZcjGVZ1AwvQM3wAjzbphLf/FKdhVvq8eqeI9zJFjo619DYsQ3X0S1wdAvmq6exKt4FNbrBjU3B6XPpNxERsVmAj5NdL7a07b0za8+ePWzatIlFixYB4HK56Ny5MzNnzqRZs2bnje/duzf16tVj7Nix/Pe//+X7778nJSUl3ZigoCCWLFnC77//zrfffsvGjRsZOnQob7zxBt9//z2BgYEXzDJjxgxatmxJkSJFAGjdujW9e/fm66+/pkWLFvzyyy+4XC7q1Knjfc1NN91EgQIF/nUbP/nkEyZPnsxvv/1GfHw8KSkp5x0QKFWqFCVLlvT+XK9ePTweD3v27MHtdnP8+HGef/55vvnmG44dO0Zqaipnz5696PVaOVWuKkhPP/00d911F+Hh4Zw+fZoFCxbw3XffsXz5cizLIiIigrFjx1K+fHnKly/P2LFjCQwMpFu3bgCEhITQu3dvhg4dSuHChSlUqBDDhg2jWrVqF/yPOyfxczm5q1px7qpWnBPx1fh8W3Umb2nGyKOHaO9cT0fnWipzAHZ9Brs+wwQVxareGWp0BfflHbYVEbmWLMu6rNNcdpkxYwYpKSnpLrQ2xuDj40NMTMx517dWrVqVm266ia5du1KpUiWqVq3Ktm3bLrjuG264gRtuuIE+ffrwzDPPUKFCBT766CMeeuih88ampqby/vvvEx0djcvlSjd/xowZtGjRwntt1aUuH/mnjRs30qVLF1544QVatmxJSEgICxYsYMKECf/6ur/f4+//7dWrF3/++SeTJ0+mdOnS+Pn5Ua9evUxdeJ6T5Pz/Iv/h2LFj9OjRg6ioKEJCQqhevTrLly+nefPmAAwfPpyEhAQGDBhATEwMdevWZcWKFQQHB3vXMWnSJFwuF/fffz8JCQk0bdqU2bNn59hzoBdSJJ8fDzcoy8MNyrI7Oo5FW2rRc+u9FI3fQ0fnWto711PkzJ/w/dS0yV0Naj4A1e6DoCJ2xxcRyXVSUlJ4//33mTBhQrpvQgN07NiRefPmMXDgwPNe9/DDDzNgwACmTZuW6fcqU6YMgYGBnDlz5oLLly5dyunTp9m6dWu6z67du3fzwAMPcPLkSSpVqkRKSgo//vgjt956K5B2BOyfF1NntH79ekqXLs0zzzzjnXfgwIHzxh08eJCjR48SFhYGwPfff4/D4aBChQoArF27lrfffpvWrVsDcOjQIU6cOJFuHT4+Pjn//oNGrkhsbKwBTGxsrN1RjDHGJKekmm92HzOPzYs0lZ753Dw88gWz9NmmJvH5gsaMym/MqPzG80IhY+Z3MWbX58YkJ9odWUQk11i8eLHx9fU1p06dOm/Z008/bWrWrGmMMWbfvn0GMFu3bjXGGJOcnGz+/PNPk5ycbIwxZuvWrQYw+/btM8YYM2rUKPPkk0+ab7/91vzxxx9my5YtplevXiYgIMDs3r37glnat29vOnfufN58j8djSpQoYSZPnmyMMaZVq1amevXqZuPGjebHH380DRo0MAEBAWbSpEne1wBm8eLFxhhjPv30U+NyucyHH35ofvvtN/PGG2+YQoUKmZCQEO/4UaNGmaCgINOsWTOzbds2s2bNGlOhQgXTpUsX75iaNWua5s2bm127dpmNGzeaO+6447z3LV++vHn00UdNVFSU+euvv/71d5/VMvv5nesu0pYLczkdNK5YjKndbub7Z1rR7J5ezAh7kVsT3+a55F785CmH5UmBPUvho+6YCRVh6ZNwdCtc5tdcRUSuNzNmzKBZs2aEhISct6xjx45s27Yt3VfZ/+ZyuShSpEi6U2H/1LBhQ/744w8efPBBbrrpJu666y6io6NZsWIFFSue/w3lY8eOsWTJEjp27HjeMsuy6NChg/eeSLNmzSI8PJyGDRvSoUMH+vbtS7FixS66je3bt+eJJ55g4MCB1KxZkw0bNvDcc8+dN+7GG2+kQ4cOtG7dmhYtWlC1alXefvtt7/KZM2cSExNDrVq16NGjB4MHDz7vfSdMmMDKlSsJDw/3Xjec01jG6NPxSsTFxRESEkJsbGy2fqPtau0/cYZFWw6zcMsRAmP30tG5hnud6wi1Tv1vUNFKabcLqH4/BLttyyoiIpLdMvv5rYJ0hXJLQfqbx2PYtP8vFkYe5qvth6mV8hOdnKtp4YjEz0q7CZixHFg3NE0rSxVbg4+/zalFRESylgpSNsttBemfzial8NXOaBZGHuHn3w/QxrGRjs411Hbs9Y4x/iFYVTum3TKgZB24jG9CiIiI5FQqSNksNxekf4qKTbtr98LIw3hO/EYH51o6ONdSwjr5v0GFy0PNrlC9C4SUuPjKREREcjgVpGyWVwrS34wx/HQ4lkVbDvPFtsNUSvyJTs413OXYRICVdu8Kg4VVrmHaLQNuagO+F76BmYiISE6lgpTN8lpB+qfElFS+3X2cTyKPsHnPAVpYG+nkXENdx27vGOMbjFWlfVpZKlVPp+BERCRXUEHKZnm5IP3TifhEvvjpKAu3HCb26F46OtfSwbGWUo4/vWNMwTJYNbpBjS5QsLSNaUVERP6dClI2u14K0j/tiT7Nwi2H+XTLIcqc+ZlOzjW0dv5APuvc/waVbpD2LbjK7cEvn31hRURELkAFKZtdjwXpbympHtb+doJFW46wdud+Gnt+oKNzDfUdu3BYaf85GZ9ArMrt054FV+YOcOiepCIiYr/Mfn7rU0su29937Z7StRarn2nDrfcMYHLY6zRIfIPxyffzh8eNlXwWfvoQ3m+HeaMafPMSnPzd7ugiInnK/v37sSzrog/Bza73+e6777As61+f7ZZRo0aNiIiIyJZ82UEFSa5KSIAPXW8txSeP1ufDJzvhavQkDwa+TYfE0cxPaUKcCcSKPQxrXoMpN8OMlhA5G87F2h1dROSy9erVC8uysCwLHx8fypUrx7Bhwy76YNm8qn79+t4Hx19LV1LMrtSFHw4jcgVKFw5iSPMKRDQtz6b9NVkY2YTXtx+gfvImOjnXcIfjZ5yHNsKhjZhlI7BuapN2f6VyjcHhvPQbiIjkAK1atWLWrFkkJyezdu1a+vTpw5kzZ5g2bZrd0a4ZX19f3O68/WgqHUGSLOdwWNxWrjCv3VeDdc+2ptl9jzKjzGvUT5rKuOSu/OopgZVyDnZ8Ah90xEyqAitHwZ977I4uInJJfn5+uN1uwsPD6datGw888ACffvopP/30E40bNyY4OJj8+fNTu3ZtfvzxR+/rNmzYwJ133klAQADh4eEMHjw43ZEny7L49NNP071XgQIFmD17tvfnTZs2UatWLfz9/alTpw5bt249L9/q1au59dZb8fPzo3jx4jz11FOkpKR4ly9fvpwGDRpQoEABChcuTJs2bfj99/SXQFzqfTIeyTl58iRdu3alZMmSBAYGUq1aNT788MPzsqWkpDBw4EDvez/77LP881LoDz74gDp16hAcHIzb7aZbt24cP34cSDvN17hxYwAKFiyIZVn06tXrAnsoa6ggSbYK9HVxT60SzO1dl0+f6khI82E8mv8t2ia+xJyU5sSYfFino2D9ZHjrVnivMWyaDmf/sju6iFwrxkDSGXumLPieUkBAAMnJyTzwwAOULFmSzZs3ExkZyVNPPYWPjw8A27dvp2XLlnTo0IGff/6Zjz76iHXr1jFw4MBMv8+ZM2do06YNFStWJDIyktGjRzNs2LB0Y44cOULr1q255ZZb+Omnn5g2bRozZszgpZdeSreeIUOGsHnzZlatWoXD4eDee+/F4/Fk+n0yOnfuHLVr1+bLL79kx44d9O3blx49evDDDz+kGzdnzhxcLhc//PADb775JpMmTeI///mPd3lSUhJjxozhp59+4tNPP2Xfvn3eEhQeHs7ChQsB2LNnD1FRUbzxxhuZ/v1dLp1ik2umeEgAAxrdyKMNb+Dnw7VYuKUxLbYd4ObEtFNwjR3bcB3dAke3YL56GqviXWnPgruxKTh97I4vItkl+SyMDbPnvZ8+Cr5BV/zyTZs2MX/+fJo2bcqyZct48sknuemmmwAoX768d9xrr71Gt27dvBcply9fnjfffJOGDRsybdo0/P0v/XDwefPmkZqaysyZMwkMDKRKlSocPnyYRx991Dvm7bffJjw8nKlTp2JZFjfddBNHjx5lxIgRPP/88zgcDjp27JhuvTNmzKBYsWLs2rWLqlWrZup9MipRokS6EjVo0CCWL1/Of//7X+rWreudHx4ezqRJk7Asi4oVK7J9+3YmTZrEI488AsDDDz/sHVuuXDnefPNNbr31VuLj48mXLx+FChUCoFixYhQoUOCSv7OroSNIcs1ZlkWN8AK82L4q655pxb3d+vNx+deon/w2Lyb3YJenNFZqEuz6DD7sjJlYCb56BqJ32B1dRIQvv/ySfPny4e/vT7169bjzzjuZMmUKQ4YMoU+fPjRr1oxXXnkl3WmryMhIZs+eTb58+bxTy5Yt8Xg87Nu3L1Pv+8svv1CjRg0CA//3mKd69eqdN6ZevXpY/3i6we233058fDyHDx8G4Pfff6dbt26UK1eO/PnzU7ZsWQAOHjyY6ffJKDU1lZdffpnq1atTuHBh8uXLx4oVK7zr/Nttt92WLlu9evXYu3cvqampAGzdupX27dtTunRpgoODadSoUbps15KOIImt/FxOWlUtTquqxTkZX43Pf7qN4Vs64zn6Mx2da2nvXE+RM3/C91Ph+6kYd3Wsmt2g2n0QVMTu+CKSFXwC047k2PXel6lx48ZMmzYNHx8fwsLCvKfRRo8eTbdu3ViyZAnLli1j1KhRLFiwwHv6ql+/fgwePPi89ZUqVQpI+8djxlsTJicne/9/Zm5baIxJV0D++bq/57dt25bw8HCmT59OWFgYHo+HqlWrkpSUlOn3yWjChAlMmjSJyZMnU61aNYKCgoiIiPCuMzPOnDlDixYtaNGiBR988AFFixbl4MGDtGzZ8rLWk1VUkCTHKJzPj4duL8tDt5dlT3RNFm1pQtstB6h8Nu0UXFPHFnyjf4blP2NWPItVvmXat+DKtwSXr93xReRKWdZVnea61oKCgrjxxhsvuKxChQpUqFCBJ554gq5duzJr1izuvfdebr75Znbu3HnR1wEULVqUqKgo78979+7l7Nmz3p8rV67M3LlzSUhIICAgAICNGzemW0flypVZuHBhuqK0YcMGgoODKVGiBCdPnuSXX37h3Xff5Y477gBg3bp1563jUu+T0dq1a2nfvj3du3cHwOPxsHfvXipVqpRuXMb1bNy4kfLly+N0Otm9ezcnTpzglVdeITw8HCDdRe6Q9u05wHvEKTvpFJvkSBXdwYxsXYm1I1vQo2d/llZ+jTtS3+G55F785CmH5UmBPUvgo+6YCRVh6XA4ujVLLrgUEblcCQkJDBw4kO+++44DBw6wfv16Nm/e7C0II0aM4Pvvv+exxx5j27Zt7N27l88//5xBgwZ519GkSROmTp3Kli1b+PHHH+nfv7/36BRAt27dcDgc9O7dm127drF06VJef/31dDkGDBjAoUOHGDRoELt37+azzz5j1KhRDBkyBIfDQcGCBSlcuDDvvfcev/32G9988w1DhgxJt47MvE9GN954IytXrmTDhg388ssv9OvXj+jo6PPGHTp0iCFDhrBnzx4+/PBDpkyZwuOPPw6kHUnz9fVlypQp/PHHH3z++eeMGTMm3etLly6NZVl8+eWX/Pnnn8THx2di71whI1ckNjbWACY2NtbuKNeN2IQk8+EPB0ynaetNs6feMdOe6Wainy9lzKj83snz1m3GrHvDmLgou+OKSB7Us2dP0759+/PmJyYmmi5dupjw8HDj6+trwsLCzMCBA01CQoJ3zKZNm0zz5s1Nvnz5TFBQkKlevbp5+eWXvcuPHDliWrRoYYKCgkz58uXN0qVLTUhIiJk1a5Z3zPfff29q1KhhfH19Tc2aNc3ChQsNYLZu3eod891335lbbrnF+Pr6GrfbbUaMGGGSk5O9y1euXGkqVapk/Pz8TPXq1c13331nALN48eJMv8+3335rABMTE2OMMebkyZOmffv2Jl++fKZYsWLm2WefNQ8++GC631XDhg3NgAEDTP/+/U3+/PlNwYIFzVNPPWU8Ho93zPz5802ZMmWMn5+fqVevnvn888/P274XX3zRuN1uY1mW6dmzZ6b22z9l9vNbz2K7Qtfzs9hyggMnz7BwyxE+izxAmbjNdHSuoaXjR/ystPP1xnJg3dA07cG5FVuDz6W/ISIiInmfHlabzVSQcgaPx7Bp/18s2nKYtdt/p1HKOjo511Dbsdc7xviFYFXrmHbLgJJ10q53EBGR65IKUjZTQcp5EpJS+WpnNAu3HObI79u517GWDs61lLBOeseYwuWxanaF6l0gpISNaUVExA4qSNlMBSlni449x+KtR1gUeZCiJ9O+BXeXYxMB1v9/jRULq1yjtFNwN7UB38v/qq+IiOQ+KkjZTAUpdzDG8PPhWBZuOczX237n9qS0U3B1Hbv/N8Y3H1aVe9PKUql6OgUnIpKHqSBlMxWk3CcxJZVvd//Jwi2H+W33dto71tDBsZZSjj+9Y0zBslg1ukKNLlCwtI1pRUQkO6ggZTMVpNztZHwin/90lMWRh/CP2kRH51rudm4kn3XOO8aUaYBVoxtUbg9++WxMKyIiWUUFKZupIOUde6JPs2jLYZZt+Z2bz66nk3M19R27cFhpfzQ8PoE4KreHGl2hzB3g0P1VRURyKxWkbKaClPekpHpY99sJFm05ws87d9DarKGTcw3lHP+7G6wnf0kcNbumlaXCN9iYVkREroQKUjZTQcrb4s4ls/TnKBZGHiL1YNq34No4N5Lf+t9zkUz4bWm3DKhyL/iH2JhWREQySwUpm6kgXT8OnDzDoi1H+HLL71SKXU8n5xrucPyM8+9TcE5/HJXapD04t1xjcDhtTiwiIhejgpTNVJCuPx6PYfP+v1i45TCbt++iecpqOjnXUMFx5H9j8rlx1OiSdsuAohVtTCsiIheigpTNVJCubwlJqazYFc0nPx4i9o/NdHCsob1zAwWt/z1Z2oTVTjsFV7UjBBayMa2IiPxNBSmbqSDJ3/6+a/fnkfsodXItnZxraOzYhsvyAOBx+OK46a60Z8Hd2AycLpsTi4hcv1SQspkKkmRkjGH7kVgWRh5m7bZfaJSUdgqusuOAd4wnsCiOGp3TvgXnrmpjWhGR65MKUjZTQZJ/k5Ti4Zvdx1m45TDRezZxj7WG9s71FLHivGM87uo4anaDavdBUBEb04qIXD8y+/mdq+94N27cOCzLIiIiwjvPGMPo0aMJCwsjICCARo0asXPnznSvS0xMZNCgQRQpUoSgoCDatWvH4cOHr3F6yct8XQ5aVXUz/cE6zHm6D867xtGn8Fx6Jw1lWeotJBknjuifYflTmNcrYj7sCr98ASlJdkcXERFycUHavHkz7733HtWrV083f/z48UycOJGpU6eyefNm3G43zZs35/Tp094xERERLF68mAULFrBu3Tri4+Np06YNqamp13oz5DpQKMiXXreX5dPBjRjx+BNsqz+Fu31n8FxyL37ylMMyKVh7lsJH3fG8XhGWDoejW0EHd0VEbJMrT7HFx8dz88038/bbb/PSSy9Rs2ZNJk+ejDGGsLAwIiIiGDFiBJB2tCg0NJRXX32Vfv36ERsbS9GiRZk7dy6dO3cG4OjRo4SHh7N06VJatmyZqQw6xSZXI9VjWPfbCRZGHua3nT/SjtXc61xLqHXKO8ZTtFLaKbjqnSE41L6wIiJ5SJ4+xfbYY49x991306xZs3Tz9+3bR3R0NC1atPDO8/Pzo2HDhmzYsAGAyMhIkpOT040JCwujatWq3jEXkpiYSFxcXLpJ5Eo5HRYNKxTlza61WPBsLwq0G8vj7nn0TBrB56n1SDQ+OP78BVY+h5lcFb56Bs7+ZXdsEZHrRq77vvGCBQvYsmULmzdvPm9ZdHTaM7NCQ9P/azs0NJQDBw54x/j6+lKwYMHzxvz9+gsZN24cL7zwwtXGFzlPfn8futxaii63luLAyVos2tKJdj/u4eb4b7nPuZqb+Q2+n4rZ+gHWncPg1r7g8rM7tohInparjiAdOnSIxx9/nA8++AB/f/+LjrMsK93Pxpjz5mV0qTEjR44kNjbWOx06dOjywotkQunCQTzRvAJfDr+bSm0G84jPKzyYNIJfPOFY507Bimdh6i2w/RNdoyQiko1yVUGKjIzk+PHj1K5dG5fLhcvlYvXq1bz55pu4XC7vkaOMR4KOHz/uXeZ2u0lKSiImJuaiYy7Ez8+P/Pnzp5tEsouP08GD9crw3ZONqN6wIx3NqzyZ3JdoUxBOHYCFvWF6E9i/3u6oIiJ5Uq4qSE2bNmX79u1s27bNO9WpU4cHHniAbdu2Ua5cOdxuNytXrvS+JikpidWrV1O/fn0AateujY+PT7oxUVFR7NixwztGJKcI9vdhWMuKfDOsKY5aPWiaNIHXk+8j3vjD0S0wuzV82A1O7LU7qohInpKrrkEKDg6matX0dx8OCgqicOHC3vkRERGMHTuW8uXLU758ecaOHUtgYCDdunUDICQkhN69ezN06FAKFy5MoUKFGDZsGNWqVTvvom+RnMId4s+rnarzUIMyvLosnEZ7mhDh+oQuzm9x7VmC+XU5Vu1e0Ggk5Ctqd1wRkVwvVxWkzBg+fDgJCQkMGDCAmJgY6taty4oVKwgODvaOmTRpEi6Xi/vvv5+EhASaNm3K7NmzcTqdNiYXubSb3PmZ9dCtbPitHGOXhTPraCueci2guTMSfpyB+fkjrAYRcNtj4Btod1wRkVwrV94HKSfQfZDEbh6P4YufjzJ++R5Kxm5hpM88ajr+AMAEh2E1eSbtmW8OFX8Rkb/pWWzZTAVJcopzyanM/f4AU7/ZQ8OkdTzp+ohwx59pC0OrQvMX4cam9oYUEckhVJCymQqS5DSnzibx9ne/M2/9XrqynEGuxYRYZ9MW3tAEmo8Bd9V/X4mISB6ngpTNVJAkpzr011kmrNjDt9t+ZZBrMQ86V+BrpWKwsGp2g8bPQEgJu2OKiNhCBSmbqSBJTrf9cCxjl/7C4X27GO76iLbOjQAYVwBWvcfg9sfBX//tisj1RQUpm6kgSW5gjOG7PX8ybtkvBB7fxtM+87jVsSdtWWARrEZPQe1e4PSxNaeIyLWigpTNVJAkN0n1GBZGHmbCit3UOLOeEa4F3OCISltYuDw0fwEqtoZLPJJHRCS3U0HKZipIkhudTUph5rp9/Gf1r7RJWUmEayFFrLi0haXqQ4uXoGRte0OKiGSjzH5+56pHjYjI1Qn0dTGwSXm+frIZjlv70Cx5ElNT2nPO+MDBDfCfJvDJwxCz3+6oIiK20hGkK6QjSJIX/PFnPK99tYetO3Yy1PVfOjrX4rAMxumLdWtfuGMoBBayO6aISJbRKbZspoIkeUnkgb8Yu3Q3Zw9uY6RrPnc6twNg/Atg3TkMbu0LLj+bU4qIXD0VpGymgiR5jTGGr3Ye49Xluwn/awMjXfOp5DiUtqxAaaymz0PVjrqQW0RyNRWkbKaCJHlVcqqHBZsO8ubK3TRKXMVQ139xWzFpC8NuTruQu8zt9oYUEblCKkjZTAVJ8rrT55J5b80ffLB2Fw94ltDf9QX5rHNpCyvenXZrgCLl7Q0pInKZVJCymQqSXC+iY88xaeWvfBu5g8HOT+ji/BaX5cFYTqzavaDRSMhX1O6YIiKZooKUzVSQ5HqzJ/o0ryz7hYO/buMp1wKaOyMBML75sBpEwG2PgW+gvSFFRC5BBSmbqSDJ9WrDbycYu+wXgo7+wEifedR0/AGACQ7DavIM1OgKDqfNKUVELkwFKZupIMn1zOMxfPHzUV5b9gs3n/6WJ10fEe74EwATWgWr+Ri4sanNKUVEzqeClM1UkEQgMSWVud8f4J1Vv3BP8hIGuRYTYp1NW3hDE2g+BtxV7Q0pIvIPetSIiGQ7P5eTPneUY9XwFjhuH0SzlDf5T8pdJBkn/P4N5p0G8OkAiD1id1QRkcuiI0hXSEeQRM536K+zTFixh8iftjLc9RFtnRsBMK4ArHqPwe2Pg7/+vIiIfXSKLZupIIlc3PbDsYxb9gtn//iBp33mcatjDwAmsAhWo6egdi9w+tiaUUSuTypI2UwFSeTfGWP47tc/eWXJL5Q+8S0jXAu4wRGVtqxweazmL0DF1np0iYhcUypI2UwFSSRzUj2GhZGHmbxiJ03OLifCtZAiVlzawlL10x5dUrK2vSFF5LqhgpTNVJBELk9CUioz1+/j/e+20yN1MX2cS/G3ktMWVu0ITZ+HgmVszSgieZ8KUjZTQRK5MifiE5myai+rftjK446P6ehci8MyGKcv1q194Y6hEFjI7pgikkepIGUzFSSRq7PvxBnGL9/N/p0/MNI1nzud2wEw/gWw7hwGt/YFl5/NKUUkr1FBymYqSCJZI/JADGOX/kLQoe8Y6ZpPJcchAEyB0lhNn087/aYLuUUki6ggZTMVJJGsY4zhq53HeG3ZTm4+tZyhrv/itmLSloXdjNXiJShzu80pRSQvUEHKZipIIlkvOdXDgk0HeWfldu5N/Iz+ri/IZ51LW1jxbmj+AhQpb29IEcnV9KgREcl1fJwOetQrw/LhrbAaPklLz2Q+SGlKinHAniWYt+rCl0Mg/k+7o4pIHqcjSFdIR5BEst+xuHNMWvkrP0ZuZIRzAc2dkQB4fIJw3PEE3PYY+AbanFJEchOdYstmKkgi186e6NO8unw3Z/asZqTPPGo6/gDABBfHavIs1OgKDqfNKUUkN1BBymYqSCLX3obfT/DKkl2Uif6KJ10fEe5IO9VmQqtgNR8DNza1OaGI5HQqSNlMBUnEHh6P4YufjzJ5+Q6anv6MQa7FhFhnATA3NEkrSu6qNqcUkZxKBSmbqSCJ2CsxJZW53x9gzqqt9Ez5Lw86V+BrpWKwsGp2g8bPQEgJu2OKSA6jgpTNVJBEcobYs8m89d1vrFr/AxGOD2nr3AiAx+WPo95AuP1x8NefURFJo4KUzVSQRHKWQ3+dZcKKPez/aQ1P+8zjVsceADyBRXA0egpq9wKnj70hRcR2efI+SKNHj8ayrHST2+32LjfGMHr0aMLCwggICKBRo0bs3Lkz3ToSExMZNGgQRYoUISgoiHbt2nH48OFrvSkiksXCCwUyuUstXhrYi8kl36Bv0hP87imO4+wJWDoMz9v1YPcS0L8JRSQTclVBAqhSpQpRUVHeafv27d5l48ePZ+LEiUydOpXNmzfjdrtp3rw5p0+f9o6JiIhg8eLFLFiwgHXr1hEfH0+bNm1ITU21Y3NEJItVLRHCvEduo2vPAQwq8DbPJj/ECZMfx8m9sKAbZtZdcDjS7pgiksPlqlNso0eP5tNPP2Xbtm3nLTPGEBYWRkREBCNGjADSjhaFhoby6quv0q9fP2JjYylatChz586lc+fOABw9epTw8HCWLl1Ky5YtM51Fp9hEcr5Uj2HhlsO889VWOiR8Qh/nUvyt5LSFVTtC0+ehYBlbM4rItZUnT7EB7N27l7CwMMqWLUuXLl3444+0G8bt27eP6OhoWrRo4R3r5+dHw4YN2bBhAwCRkZEkJyenGxMWFkbVqlW9Yy4mMTGRuLi4dJOI5GxOh8X9dcJZ8uTdWE2f527e5L8pd+IxFuxYiJl6K2yartNuInKeXFWQ6taty/vvv89XX33F9OnTiY6Opn79+pw8eZLo6GgAQkND070mNDTUuyw6OhpfX18KFix40TEXM27cOEJCQrxTeHh4Fm6ZiGSnAF8njzW+kY+f7MiOW8bRJnks61OrYKUmwtJh8FF3SIixO6aI5CC5qiDddddddOzYkWrVqtGsWTOWLFkCwJw5c7xjLMtK9xpjzHnzMsrMmJEjRxIbG+udDh06dIVbISJ2KZzPjxfaV2VUn84M9X+RF5J7kGScsPtLzDsN4OBGuyOKSA6RqwpSRkFBQVSrVo29e/d6v82W8UjQ8ePHvUeV3G43SUlJxMTEXHTMxfj5+ZE/f/50k4jkTnXLFWZZxJ0crtiLDkkvsN8TihV7GDOrNax5HTz60obI9S5XF6TExER++eUXihcvTtmyZXG73axcudK7PCkpidWrV1O/fn0AateujY+PT7oxUVFR7NixwztGRK4PBYN8ea9Hbe5v15Z7PeP4NLU+lkmFb8bA3Hvh9DG7I4qIjVx2B7gcw4YNo23btpQqVYrjx4/z0ksvERcXR8+ePbEsi4iICMaOHUv58uUpX748Y8eOJTAwkG7dugEQEhJC7969GTp0KIULF6ZQoUIMGzbMe8pORK4vlmXxYL0y1CldiEHzC7EuZhkvumYTuG815p3bse59B27U3w0i16NcVZAOHz5M165dOXHiBEWLFuW2225j48aNlC5dGoDhw4eTkJDAgAEDiImJoW7duqxYsYLg4GDvOiZNmoTL5eL+++8nISGBpk2bMnv2bJxOp12bJSI2qxyWny8G38ELnxembeSNTPWZQqUzB+GDjmmPKmnynO7CLXKdyVX3QcpJdB8kkbzp85+O8uKiSAanzuFB1/+fji9RBzrN0D2TRPKAPHsfJBGR7NSuRhiLBjdlYfEn6JcUQawJhCM/pn3Lbediu+OJyDWigiQikkGpwoF80r8eZe/oSuvEcUR6ymMlnob/9oIvIiA5we6IIpLNVJBERC7Ax+ngqbtu4pXedzPA5yXeSmmXdgfuyFmY6U3g+G67I4pINlJBEhH5F3eUL8qXEY35odwgHkx+ij9NCNbxXZj3GsGW9/WYEpE8SgVJROQSigb7MbvXLdzZ6j7aJL/CmtRqWCkJ8PkgWNgbzsXaHVFEspgKkohIJjgcFn3vvIH3Hm3Nc/leYFxyV5KNM+2ht+/eCUci7Y4oIllIBUlE5DLUCC/Al4/fSXS1ftyf9DyHPEWxYvZjZrSADVPA47E7oohkARUkEZHLFOzvw+TONenWsSMdzassTb0Vy5MCK56FDzvDmRN2RxSRq6SCJCJyBSzL4r464Xw4uCVTCz/H08m9OWd8YO8KzLTbYd8auyOKyFVQQRIRuQo3FM3Hosdux7dub9onjWGvpwRWfDRmTjv45mVITbE7oohcARUkEZGr5O/jZHS7KjzZowMPOl9hQUojLAysGQ9z2kLsYbsjishlUkESEckizSqHsjiiBYvDn2Jw0kBOmwA4uAEzrQHsXmp3PBG5DCpIIiJZyB3iz/xHbuPGpr1omzSWnzzlsM7FwIKusGwEpCTaHVFEMkEFSUQkizkdFoOblue1fvcwyH8c01Napy344R3Mf5rBid/sDSgil6SCJCKSTW4pU4jPI5rwY8WhPJT0JCdNMFb0z5h374CfFtgdT0T+hQqSiEg2KhDoyzvda9OkXQ/uSX2V71MrYyWfhcX9YPGjkBhvd0QRuQAVJBGRbGZZFj1uK830gW0ZVeBlJiR3ItVY8NN8zLsNIepnuyOKSAYqSCIi18hN7vx8NqghJ2o/TtekZ4kyhbD++i3tuqRN08EYuyOKyP9TQRIRuYYCfJ2M61Cdnl0f4D7rNVam3oyVmghLh8FH3eHsX3ZHFBFUkEREbHF39eJ8OLg1b7vHMDr5QRKNC3Z/ieedBnBwo93xRK57KkgiIjYJLxTIx/3rE3jHY3RMfoF9nlAccUcws1rDmtfAk2p3RJHrlgqSiIiNfJwOhre6iZEPd6GX7wQWp96OZVLhm5cwc++F09F2RxS5LqkgiYjkALffWISFES34rOwohib156zxw9q3Gs+022Hv13bHE7nuqCCJiOQQRfL5MbPXrVS6qx/3przMLk9pHGdPwLyOsOI5SEmyO6LIdUMFSUQkB3E4LPrcUY7XH72fiHyvMSeledqCDW9iZraCv/bZG1DkOqGCJCKSA1UrGcKix5uyrdqz9Et6glgTiHU0Es87d8DOxXbHE8nzVJBERHKofH4uJnWuSYuOfehoxvOjpwKOpNPw317wxeOQdNbuiCJ5lgqSiEgO17F2Sd4bdC8vFH6NKSn34DEWRM7GM70xHP/F7ngieZIKkohILlCuaD4+eewOYuqOoHvySI6bAjj+3I3nvUYQOUePKRHJYipIIiK5hJ/LyfNtK9PnwV50c77O6tTqOFLOwReDMZ88DOdi7Y4okmeoIImI5DJNbgplXkRb3i35KmOTu5JsnFg7F+GZdgccjrQ7nkieoIIkIpILheb3Z+4j9QhpNowuKaM45CmKI/YAZkYL2DAFPB67I4rkaipIIiK5lNNh8VjjG3m6bw/6BEziy9S6WCYFVjyLmX8/nDlhd0SRXEsFSUQkl6tduhAfP96KJRXGMjK5N+eMD9ZvK0l9uz78sdrueCK5kgqSiEgeEBLow9vda1OtXQSdUsfyq6cEzjPHMO+3h29egtQUuyOK5CoqSCIieYRlWXSrW4qJg7oytMBkPkxpjIWBNa/hmX03xB62O6JIrqGCJCKSx1QIDea/g5qyo/YYBiUN5LQJwHFoI6lv3w67l9gdTyRXyHUF6ciRI3Tv3p3ChQsTGBhIzZo1iYz839dajTGMHj2asLAwAgICaNSoETt37ky3jsTERAYNGkSRIkUICgqiXbt2HD6sf1mJSN7h7+Pk5Xur0brrQO63xrPNUw5n4ilY0A2WDofkc3ZHFMnRclVBiomJ4fbbb8fHx4dly5axa9cuJkyYQIECBbxjxo8fz8SJE5k6dSqbN2/G7XbTvHlzTp8+7R0TERHB4sWLWbBgAevWrSM+Pp42bdqQmppqw1aJiGSfu6oVZ/rjnRjnnsy7KXenzdz0Lp7/NIMTv9kbTiQHs4zJPfenf+qpp1i/fj1r16694HJjDGFhYURERDBixAgg7WhRaGgor776Kv369SM2NpaiRYsyd+5cOnfuDMDRo0cJDw9n6dKltGzZMlNZ4uLiCAkJITY2lvz582fNBoqIZJOUVA9vrNrLjtX/5XXXOxS2TuNxBeJoOwlqdLE7nsg1k9nP71x1BOnzzz+nTp063HfffRQrVoxatWoxffp07/J9+/YRHR1NixYtvPP8/Pxo2LAhGzZsACAyMpLk5OR0Y8LCwqhatap3zIUkJiYSFxeXbhIRyS1cTgdDW1TkkYf786DvRDakVsaRchYW94NlT+nGkiIZ5KqC9McffzBt2jTKly/PV199Rf/+/Rk8eDDvv/8+ANHR0QCEhoame11oaKh3WXR0NL6+vhQsWPCiYy5k3LhxhISEeKfw8PCs3DQRkWui/g1FmBtxD9PLTmRCcqe0mT9MSytKqcn2hhPJQa6qICUnJ3Po0CH27NnDX3/9lVWZLsrj8XDzzTczduxYatWqRb9+/XjkkUeYNm1aunGWZaX72Rhz3ryMLjVm5MiRxMbGeqdDhw5d+YaIiNioUJAv03vW5Xitxxmc9BjJxgnbP8Z82BWSztgdTyRHuOyCFB8fz7vvvkujRo0ICQmhTJkyVK5cmaJFi1K6dGkeeeQRNm/enB1ZKV68OJUrV043r1KlShw8eBAAt9sNcN6RoOPHj3uPKrndbpKSkoiJibnomAvx8/Mjf/786SYRkdzK5XTwSsdqhDd8kEeSh5JgfLF+W4l5/x44m/3/4BXJ6S6rIE2aNIkyZcowffp0mjRpwqJFi9i2bRt79uzh+++/Z9SoUaSkpNC8eXNatWrF3r17szTs7bffzp49e9LN+/XXXyldujQAZcuWxe12s3LlSu/ypKQkVq9eTf369QGoXbs2Pj4+6cZERUWxY8cO7xgRkeuBZVk82fImGt7djQeSnuaUCcI6vAnPrLsg7qjd8UTsZS5Dp06dzM8//3zJcefOnTNvvfWWmT59+uWs/pI2bdpkXC6Xefnll83evXvNvHnzTGBgoPnggw+8Y1555RUTEhJiFi1aZLZv3266du1qihcvbuLi4rxj+vfvb0qWLGm+/vprs2XLFtOkSRNTo0YNk5KSkukssbGxBjCxsbFZuo0iInb4dOth0+rpd0zU86WNGZXfpE6sYsyfe+2OJZLlMvv5nau+5g/w5ZdfMnLkSPbu3UvZsmUZMmQIjzzyiHe5MYYXXniBd999l5iYGOrWrctbb71F1apVvWPOnTvHk08+yfz580lISKBp06a8/fbbl3Xhtb7mLyJ5zepf/2TMB8t4j5cp54jGE1AER49PIKyW3dFEskxmP79zXUHKKVSQRCQv2nboFENmruSN1Jeo5tiPxzcfjq4fQtk77Y4mkiWuWUHatWsXBw8eJCkpKd38du3aXc1qczwVJBHJq347Hs+jM75j9Nmx3O7cicfhi6PTDKict/9el+tDthekP/74g3vvvZft27djWRZ/r+bvr8rn9cd2qCCJSF4WFZtAnxnrGBjzKnc5N2MsB1abSVC7l93RRK5Ktt9J+/HHH6ds2bIcO3aMwMBAdu7cyZo1a6hTpw7ffffdla5WRERygOIhAczr35CZxUcxP6UxlvHAF4/D2gmgKzPkOnDFBen777/nxRdfpGjRojgcDhwOBw0aNGDcuHEMHjw4KzOKiIgNCgT68n6f+nx9w9NMTWmfNnPVi/DVM3o0ieR5V1yQUlNTyZcvHwBFihTh6NG0e2aULl36vHsViYhI7hTg6+TdB+vwR/UhjEnunjZz41vw6aN6NInkaVdckKpWrcrPP/8MQN26dRk/fjzr16/nxRdfpFy5clkWUERE7OXjdPB6pxo4bx/IkKT+pBgH/LwAs+ABSDprdzyRbHHFBenZZ5/F8/+HWF966SUOHDjAHXfcwdKlS3nzzTezLKCIiNjP4bB4unUlKrbsS9/kIZwzPlh7v8Iz9x5IiLnk60Vymyy9D9Jff/1FwYIFL/lg2LxA32ITkevVJ5GH+XjRx0x3vUaIdRZP0co4eiyC/MXtjiZySdn2LbazZ8/y2GOPUaJECYoVK0a3bt04ceIEAIUKFbouypGIyPWsU+2S9Ov+AD08ozhmCuD4cxepM1rAyd/tjiaSZS67II0aNYrZs2dz991306VLF1auXMmjjz6aHdlERCSHaloplFF97qeX9RL7PaE4Yw+mlaSon+yOJpIlLvsU2w033MDLL79Mly5dANi0aRO33347586dw+l0ZkvInEin2EREYE/0aSJmfMXriS9SxXGAVN9gnN0WQJkGdkcTuaBsO8V26NAh7rjjDu/Pt956Ky6Xy/s1fxERuX5UdAczfUBrnso/jo2eSjiTTuOZey/sXmJ3NJGrctkFKTU1FV9f33TzXC4XKSkpWRZKRERyj5IFA5nzaHNeLzqWFam1caQmYT7qDls/sDuayBVzXe4LjDH06tULPz8/77xz587Rv39/goKCvPMWLVqUNQlFRCTHKxTky5y+dzJg7kvE7H+Vzq7v4LPH4OxJuP1xu+OJXLbLLkg9e/Y8b1737t2zJIyIiOReQX4upve6jWEfjyJmVzD9XV/AyufhzJ/QfAzoW86Si2TpfZCuJ7pIW0Tkwjwew4tf7sLnh6k84zMfAFOzG1bbKeC87H+Xi2SpbLtIW0RE5N84HBaj2lamQLOhDEvuR4pxYG2bj+ej7pCcYHc8kUy5qiNIq1atYtWqVRw/ftz72JG/zZw586rD5WQ6giQicmkLNh1k1WezmeJ6E38rGU+p+ji6LQD/ELujyXUq248gvfDCC7Ro0YJVq1Zx4sQJYmJi0k0iIiJdbi1Fp259eTj1aeJMAI6DG0id2RpOH7M7msi/uuIjSMWLF2f8+PH06NEjqzPlCjqCJCKSeRv/OMlrcz7hHV6mqBVLSkgZXD0/hUJl7Y4m15lsP4KUlJRE/fr1r/TlIiJyHbmtXGHG9OtKH9dYDniK4YrdT8p/WkD0DrujiVzQFRekPn36MH/+/KzMIiIieVjlsPxMGdCBiKBX+MVTCtfZ46TOvAsObLA7msh5LusU25AhQ7z/3+PxMGfOHKpXr0716tXx8fFJN3bixIlZlzIH0ik2EZEr8+fpRB6b8Q1D/xpNXcduUp1+OO+fAxXvsjuaXAcy+/l9WQWpcePGmRpnWRbffPNNZlebK6kgiYhcudPnknlszgZ6HB5Nc+cWPJYTR/upULOb3dEkj8uWgiT/o4IkInJ1ziWnMnRBJI1/HUMn55q0mS1egvqD7A0meVq2XKR98ODBywpx5MiRyxovIiLXD38fJ28+cAvbar3Eeyl3p81c8Sxm5SjQv93FZpdVkG655RYeeeQRNm3adNExsbGxTJ8+napVq+qBtSIi8q+cDosx91bnTMPRjEvuCoC1fjKezwdBaorN6eR6dlkPxfnll18YO3YsrVq1wsfHhzp16hAWFoa/vz8xMTHs2rWLnTt3UqdOHV577TXuuksX3ImIyL+zLIsnmldgbr6nGP5lMONc03FunUvq2b9wdpoJPv52R5Tr0BVdg3Tu3DmWLl3K2rVr2b9/PwkJCRQpUoRatWrRsmVLqlatmh1ZcxRdgyQikvW+/PkoSz6ezmTnFPysZFJK3Y6r2wLw19+zkjV0kXY2U0ESEcke6387wfT35zDFeo1gK4HkYtXweXAR5CtmdzTJA7L9TtoiIiLZ4fYbizC0bx/6OV/gT5Mfn+PbSZ7eAmL22x1NriMqSCIikuNUKxnCywO6M8h/HIc8RfGJ3Ufy9OZwbKfd0eQ6oYIkIiI5UtkiQbzxWCdGFHiN3Z5wfM4eJ2VGKzi40e5och1QQRIRkRwrNL8/0x5tw6vuiWz2VMCVFEfqnPbw61d2R5M87qoL0pEjR3RDSBERyTYhAT5Me6Qps8tNYlVqLZyp5/B82BV++sjuaJKHXXFBWr9+PWXLlqVUqVKUKlWK0NBQRowYQVxcXFbmExERwd/HyRs96rOy+gQWpjbAYVJhcV/M92/ZHU3yqCsuSP369aNKlSps3ryZn3/+mddee41Vq1ZRu3ZtTpw4kZUZRUREcDkdjOt0M7/Vf43/pKTdiNj66mnM1y/q0SSS5a64IP3+++9MmjSJm2++mSpVqvDggw+yefNmatasyeDBg7MyYzplypTBsqzzpsceewwAYwyjR48mLCyMgIAAGjVqxM6d6b/1kJiYyKBBgyhSpAhBQUG0a9eOw4cPZ1tmERHJGpZlMeKuylgtxzI+uXPavHUTSP38cfCk2pxO8pIrLkiVKlUiOjo63TzLsnjxxRf54osvrjrYxWzevJmoqCjvtHLlSgDuu+8+AMaPH8/EiROZOnUqmzdvxu1207x5c06fPu1dR0REBIsXL2bBggWsW7eO+Ph42rRpQ2qq/nCJiOQGve8oR4VOo3gmpQ+pxsK5dQ4pH/WElES7o0keccUFqVevXvTt25eDBw+mmx8bG0tISMhVB7uYokWL4na7vdOXX37JDTfcQMOGDTHGMHnyZJ555hk6dOhA1apVmTNnDmfPnmX+/PnefDNmzGDChAk0a9aMWrVq8cEHH7B9+3a+/vrrbMstIiJZ655aJWjeYwRPeJ4g0bhw7fmC5Pc7QuLpS79Y5BKuuCBFRESwZ88eKlSoQLdu3Rg/fjzjxo2jd+/evPbaa1mZ8aKSkpL44IMPePjhh7Esi3379hEdHU2LFi28Y/z8/GjYsCEbNmwAIDIykuTk5HRjwsLCqFq1qnfMhSQmJhIXF5duEhERezWqWIyHHhnMQMfTxBt/fA6uJWXOPZB01u5oksu5rvSF0dHRbN26lZ9++olt27Yxe/Zs9u7di2VZvPLKKyxZsoTq1atTvXp1WrVqlZWZvT799FNOnTpFr169vJkAQkND040LDQ3lwIED3jG+vr4ULFjwvDEZTxn+07hx43jhhReyML2IiGSFWqUKMuLRvgx4Lx9vJr9AgaM/krqwD87Oc8HhtDue5FJXfASpWLFitGzZkuHDhzN//nx27drF6dOnWb9+PQMHDqRAgQJ8/vnndOnSJSvzpjNjxgzuuusuwsLC0s23LCvdz8aY8+ZldKkxI0eOJDY21jsdOnToyoOLiEiWurFYME893JVBjCDR+ODcswSz/Cl9u02u2BUfQboQf39/brnlFm655ZasXO0FHThwgK+//ppFixZ557ndbiDtKFHx4sW9848fP+49quR2u0lKSiImJibdUaTjx49Tv379i76fn58ffn5+Wb0ZIiKSRSqH5ad/jwd4cvYJ3nS9ibXpPShQCuoPsjua5EK59lEjs2bNolixYtx9993eeWXLlsXtdnu/2QZp1ymtXr3aW35q166Nj49PujFRUVHs2LHjXwuSiIjkfLffWITGHfvxUvIDaTNWPAs7F9sbSnKlLD2CdK14PB5mzZpFz549cbn+twmWZREREcHYsWMpX7485cuXZ+zYsQQGBtKtWzcAQkJC6N27N0OHDqVw4cIUKlSIYcOGUa1aNZo1a2bXJomISBa5t1ZJok49waxVJ3jI9RWpC/vizOeG0vXsjia5SK4sSF9//TUHDx7k4YcfPm/Z8OHDSUhIYMCAAcTExFC3bl1WrFhBcHCwd8ykSZNwuVzcf//9JCQk0LRpU2bPno3TqYv5RETygkcb3cjzp57mqy0nacmPpMzrjOuRr6FoBbujSS5hGaMr2K5EXFwcISEhxMbGkj9/frvjiIhIBqkew6A56+mz73FudvxGcnA4Pv2+gXzF7I4mNsrs53euvQZJRETk3zgdFhMeqMfkomPY7wnF5/QhkufeB0ln7I4muYAKkoiI5FkBvk4mPdSUZ4JGcdIE43NsGykf9YLUFLujSQ6ngiQiInla4Xx+jO1zD0OcIzlnfHD9voLUpcN0jyT5VypIIiKS55UuHMSQhx7gSc9gPMbCGTkLs26S3bEkB1NBEhGR60KN8ALc060fY1J7AGCtegF+/q/NqSSnUkESEZHrRtNKoZRv+yTTU1oDkLq4P+xbY3MqyYlUkERE5LrSrW4p4u54niWpt+I0KSTP7wbHf7E7luQwKkgiInLdGdLiJtZUeZnNngr4JJ8maU4HiIuyO5bkICpIIiJy3bEsi5fuq8PMkmP53VMc3zNHSXq/IySetjua5BAqSCIicl3ycTp4rWdjXi4whj9NfnxP7CTpwx6Qmmx3NMkBVJBEROS6lc/PxSt92vKU37OcNX747v+WlM8f1z2SRAVJRESub8Xy+zOyTzdGWE+QaixcP83Ds3q83bHEZipIIiJy3buxWDAP9urHC56HAXB8NxazdZ7NqcROKkgiIiLALWUKcdv9TzItpS0Ans8Hw+/f2JxK7KKCJCIi8v9aVyuOb8sX+Cy1fto9kj7sDtE77I4lNlBBEhER+Yfed9zArlvGsdFTCZ+UMyS+3xFij9gdS64xFSQREZEMRrSpwSflX+VXTwn8zkZzbs69cC7W7lhyDakgiYiIZOBwWLzUpQGTQ8dy3BTA/689JM57AFKS7I4m14gKkoiIyAX4+zgZ99DdPJ9vFPHGH79Da0la/JjukXSdUEESERG5iJBAH557pCtPu4aRYhz47vyYlFVj7I4l14AKkoiIyL8oUSCAfr378iJ9AXCtm4Dnx9n2hpJsp4IkIiJyCVXCQmjefRhTUjukzfhyCOxdaW8oyVYqSCIiIplwR/milLjnRRam3oGDVJIX9ICj2+yOJdlEBUlERCSTOtQO53ij11ibWhWf1ATOvd8JYg7YHUuygQqSiIjIZejf5Ca+qfE6v3jC8T/3JwmzO0BCjN2xJIupIImIiFwGy7J45t66zCw9nihTiIDY30iY2xVSEu2OJllIBUlEROQyuZwOXujRgnGFxhBnAgg4+j3n/tsXPB67o0kWUUESERG5AoG+Lkb1vo/RAU+RbJz47/mUpBWj7I4lWUQFSURE5AoVzufH4D6P8KLjUQB8N75J6g/TbU4lWUEFSURE5CqUKRJEh4eG8YbnPgCsZcMxu5fYnEqulgqSiIjIVapVqiBVOr/EgtTGOPCQ8vFDcCTS7lhyFVSQREREskCzKm48rV/nu9Qa+HgSOTenE/y1z+5YcoVUkERERLJIt3o38lO9yezwlME/6S/OzroXzv5ldyy5AipIIiIiWWjwXbX4b8WJHDZFCDy9jzOzO0Fygt2x5DKpIImIiGQhy7J4pnNj3nSPI84EEnQ8krMf9dE9knIZFSQREZEs5uty8NxD9/JS8LMkGheBv33JuSUj7Y4ll0EFSUREJBsE+/swtG9vxvoOBsA/8h2S179lcyrJrFxVkFJSUnj22WcpW7YsAQEBlCtXjhdffBHPPw5bGmMYPXo0YWFhBAQE0KhRI3bu3JluPYmJiQwaNIgiRYoQFBREu3btOHz48LXeHBERyeNC8/vTvc8QJtENAOfKZ0jd+ZnNqSQzclVBevXVV3nnnXeYOnUqv/zyC+PHj+e1115jypQp3jHjx49n4sSJTJ06lc2bN+N2u2nevDmnT5/2jomIiGDx4sUsWLCAdevWER8fT5s2bUhNTbVjs0REJA8rHxpM/R5jmJfaHAcGzyd9MAc32h1LLsEyxhi7Q2RWmzZtCA0NZcaMGd55HTt2JDAwkLlz52KMISwsjIiICEaMGAGkHS0KDQ3l1VdfpV+/fsTGxlK0aFHmzp1L586dATh69Cjh4eEsXbqUli1bZipLXFwcISEhxMbGkj9//qzfWBERyVOWbDuI38IHaebcSoJPAQL6fwOFb7A71nUns5/fueoIUoMGDVi1ahW//vorAD/99BPr1q2jdevWAOzbt4/o6GhatGjhfY2fnx8NGzZkw4YNAERGRpKcnJxuTFhYGFWrVvWOuZDExETi4uLSTSIiIpl1d81SHG76Fj95yhGQfIr4me0h/k+7Y8lF5KqCNGLECLp27cpNN92Ej48PtWrVIiIigq5duwIQHR0NQGhoaLrXhYaGepdFR0fj6+tLwYIFLzrmQsaNG0dISIh3Cg8Pz8pNExGR60CvRlX4uuYUDnqKku/MIU7P6ghJZ+2OJReQqwrSRx99xAcffMD8+fPZsmULc+bM4fXXX2fOnDnpxlmWle5nY8x58zK61JiRI0cSGxvrnQ4dOnTlGyIiItetJ+65nVllXyfG5CP45E+cnt8TPLoGNqfJVQXpySef5KmnnqJLly5Uq1aNHj168MQTTzBu3DgA3G43wHlHgo4fP+49quR2u0lKSiImJuaiYy7Ez8+P/Pnzp5tEREQul8NhMaJ7WyYWHkWi8SF4/wrOfDYUcs8lwdeFXFWQzp49i8ORPrLT6fR+zb9s2bK43W5WrlzpXZ6UlMTq1aupX78+ALVr18bHxyfdmKioKHbs2OEdIyIikp38fZwM7dOLVwOfwGMsgn6aRcLqyXbHkn9w2R3gcrRt25aXX36ZUqVKUaVKFbZu3crEiRN5+OGHgbRTaxEREYwdO5by5ctTvnx5xo4dS2BgIN26pd2DIiQkhN69ezN06FAKFy5MoUKFGDZsGNWqVaNZs2Z2bp6IiFxHCgT68nDfJ3hjyjGe8Mwh4LvRJBcsiU+N++yOJuSygjRlyhSee+45BgwYwPHjxwkLC6Nfv348//zz3jHDhw8nISGBAQMGEBMTQ926dVmxYgXBwcHeMZMmTcLlcnH//feTkJBA06ZNmT17Nk6n047NEhGR61TJgoG06P0ic987Tg9rGdanj+LJH4aj7O12R7vu5ar7IOUkug+SiIhklTW7o0mY352Wjs0kOPMT0P9rKFrR7lh5Up68D5KIiEhedOdNbs60eYctnhsJSI0jfsY9cPqY3bGuaypIIiIiOUCHW28kst409nlCyXfuKLEz7oXEeLtjXbdUkERERHKIPq1uYWGlNzhpggk5tZPYud0hNcXuWNclFSQREZEcwrIsIu5vyTvFXybB+BJy+FtiFw7WPZJsoIIkIiKSg7icDp54+AEm5R+Ox1iE7JpH/Krxdse67qggiYiI5DCBvi769hvMm769Aci3biznIj+0OdX1RQVJREQkByqSz4/2/V7kfastAK4vBpLy23f2hrqOqCCJiIjkUGWLBFGt1xss9dyGixSS5z+AObbT7ljXBRUkERGRHKxW6cL43TedzZ6KBHjiiZ95L8RF2R0rz1NBEhERyeGaVivFvmb/4XdPcYITjxHzn/ZwLs7uWHmaCpKIiEgucP+d1fn65rf504RQMG4Pf83uCqnJdsfKs1SQREREcom+7Rszt+x4zho/CkWv46+PBugeSdlEBUlERCSXsCyLgd3v5+0iT5NqLAr9+jGxy1+yO1aepIIkIiKSi/i6HPR95DHeCnwUgJAfXufMD3NsTpX3qCCJiIjkMvn9fbi//yjmODsA4LfsCZL2rLQ5Vd6igiQiIpILuUP8qffIZJbQABeppC54kNSjP9sdK89QQRIREcmlKrhDKPLAdDZ6KhNgznJmVgc4c8LuWHmCCpKIiEguVrd8GCfbzOQ3Txj5k//kxNxe4PHYHSvXU0ESERHJ5e6+tRIrqrzKOeNDkei1xK563e5IuZ4KkoiISB7Qu+PdTM+X9s22fOvHkbJ/g82JcjcVJBERkTzAz+Wk/UNPsZTbceLhzPxecPYvu2PlWipIIiIieUSpIkH4tH+DPzxuQpKO8ecHvXWn7SukgiQiIpKHNK9VnhWVXyHR+FD06DfEfjvZ7ki5kgqSiIhIHvNQp3bMzNcHgKA1Y0g5uNnmRLmPCpKIiEge4+dy0ubh51jBbbhIJf6DHpBwyu5YuYoKkoiISB4UXjgIR/upHPQUpUBSFMc/6KPrkS6DCpKIiEge1axWeZZXfoUk46TYkZXErH7L7ki5hgqSiIhIHtarUwfm5OsNQL7vRpF8aKvNiXIHFSQREZE8zNfloNXDo/mGOviQwukPHoBzcXbHyvFUkERERPK48MJB0P4tDpsiFEo8QvS8vroe6RJUkERERK4DTWrdxFc3jSPZOHEfWkbM2nftjpSjqSCJiIhcJ3rc14l5+XoCEPTNsyQf+cnmRDmXCpKIiMh1wtfloOnDY1hDLXxJJu797pAYb3esHEkFSURE5DoSXjgfqe3eJsoUonDiQY7Oe1TXI12ACpKIiMh1pvHNlfnqppdJMQ7CDn7OX+tm2h0px1FBEhERuQ51u68LHwb1ACBo1UiSo3banChnUUESERG5Dvm6HDTuM5YNVMePRE7NeQCSztgdK8fIdQXp9OnTREREULp0aQICAqhfvz6bN//vKcXGGEaPHk1YWBgBAQE0atSInTvTt+LExEQGDRpEkSJFCAoKol27dhw+fPhab4qIiIitShbKR3K7dzhuClD03D6OzB9od6QcI9cVpD59+rBy5Urmzp3L9u3badGiBc2aNePIkSMAjB8/nokTJzJ16lQ2b96M2+2mefPmnD592ruOiIgIFi9ezIIFC1i3bh3x8fG0adOG1NRUuzZLRETEFg1vrsJXFV8i1ViU2L+Ik+vn2B0pR7CMyT2XrickJBAcHMxnn33G3Xff7Z1fs2ZN2rRpw5gxYwgLCyMiIoIRI0YAaUeLQkNDefXVV+nXrx+xsbEULVqUuXPn0rlzZwCOHj1KeHg4S5cupWXLlpnKEhcXR0hICLGxseTPnz/rN1ZEROQaSU718MnEgXQ9M48E/HH2X42v+ya7Y2WLzH5+56ojSCkpKaSmpuLv759ufkBAAOvWrWPfvn1ER0fTokUL7zI/Pz8aNmzIhg0bAIiMjCQ5OTndmLCwMKpWreodcyGJiYnExcWlm0RERPICH6eDOx5+lU1UIYBzxMzpBskJdseyVa4qSMHBwdSrV48xY8Zw9OhRUlNT+eCDD/jhhx+IiooiOjoagNDQ0HSvCw0N9S6Ljo7G19eXggULXnTMhYwbN46QkBDvFB4ensVbJyIiYp+ShYM51/Zd/jT5CU34nUMfPm53JFvlqoIEMHfuXIwxlChRAj8/P9588026deuG0+n0jrEsK91rjDHnzcvoUmNGjhxJbGysdzp06NDVbYiIiEgOc2ftaqysOAaPsQj/4yNObPzQ7ki2yXUF6YYbbmD16tXEx8dz6NAhNm3aRHJyMmXLlsXtdgOcdyTo+PHj3qNKbrebpKQkYmJiLjrmQvz8/MifP3+6SUREJK+5r/ODLAq6H4DAr54g6fhvNieyR64rSH8LCgqiePHixMTE8NVXX9G+fXtvSVq5cqV3XFJSEqtXr6Z+/foA1K5dGx8fn3RjoqKi2LFjh3eMiIjI9crH6aBenwlEUolAk8DJWV0hJdHuWNdcritIX331FcuXL2ffvn2sXLmSxo0bU7FiRR566CEsyyIiIoKxY8eyePFiduzYQa9evQgMDKRbt24AhISE0Lt3b4YOHcqqVavYunUr3bt3p1q1ajRr1szmrRMREbFfiULBnG3zLn+ZfBRP+JUDHw6xO9I157I7wOWKjY1l5MiRHD58mEKFCtGxY0defvllfHx8ABg+fDgJCQkMGDCAmJgY6taty4oVKwgODvauY9KkSbhcLu6//34SEhJo2rQps2fPTncdk4iIyPXsjjo1+OjXF+n86xBK//4BJzY1pMit99sd65rJVfdBykl0HyQREcnrklM9fDmhD/eeXUi8FYTPgHX4FS1nd6yrkifvgyQiIiLXjo/Twa29J/MT5clnznBiVjdISbI71jWhgiQiIiIXVaJwfs60fY9TJogSZ39h/0fD7I50TaggiYiIyL+qX/tmvq4wCoAye+fw5+bFNifKfipIIiIickntuzzCF4H3AOC/dCCJJw/YGyibqSCJiIjIJfk4HdTu/SY7uYFgE8+xmd3Bk2p3rGyjgiQiIiKZElY4hNg273LaBFDqzM/s/3K83ZGyjQqSiIiIZFr9OrewouRgAMK2vM6ZQ9ttTpQ9VJBERETksrTs8STfO27GlxRi5vWG1GS7I2U5FSQRERG5LPn8ffDv+DanTBAlz+3h90Vj7I6U5VSQRERE5LLVqlKJ724YDkDpnVOJ/eNHmxNlLRUkERERuSKtugxkraseLlKJX9AHk3zO7khZRgVJREREroi/r4siXd7ipMlPiaR97P34GbsjZRkVJBEREblilW68ge8rPQvADXtncHL3OpsTZQ0VJBEREbkqLe97hG/9GuPEkPRJP0zSGbsjXTUVJBEREbkqPk4HpR+YyjFTkOIph9k970m7I101FSQRERG5auVKlWRbrbSv+1c6MI/on1banOjqqCCJiIhIlmjerjurAu8CwPrsMVIT4mxOdOVUkERERCRLOBwWFR98k8OmKKGeY+yZ+7jdka6YCpKIiIhkmZLuYuy97VUAKh9dxKFNn9mc6MqoIImIiEiWatSqA18H3wtAwLInSDr9l82JLp8KkoiIiGQpy7Ko/tBEDlCcIuYke98fYHeky6aCJCIiIlmuWKFCHGk0kVRjUeXPZfyxdoHdkS6LCpKIiIhki/qNWvNt4S4AFPhmOAkxx2xOlHkqSCIiIpJtbun1Or9b4RQyseyb0xeMsTtSpqggiYiISLYJyZ+PmBZTSDZOKp/6jl+/nmV3pExRQRIREZFsVadeY1a7ewHgXv8cp08csjdQJqggiYiISLar1/NldjtuID/xHJr9SI4/1aaCJCIiItkuKDCA5LZvk2hcVI7/np1L3rY70r9SQRIREZFrolqt21hfqj8ApX8cQ8yR32xOdHEqSCIiInLN1O8+ip3OSuQjgWMf9MF4Uu2OdEEqSCIiInLN+Pv54tPxHRKMLzclbOWnxRPsjnRBKkgiIiJyTVWoXJNNNz6e9v+3v87xA7tsTnQ+FSQRERG55m7v+hQ/+dQgkERi5vXBpKbYHSkdFSQRERG55lwuFwW6vEe8CaBi0k62fPyy3ZHSUUESERERW5S+4Sa2VRkOQLXdb3JkzxabE/2PCpKIiIjYpn7HCLb63YqvlULCf/uSmpxkdyRABUlERERs5HA6CO3+LrEmiBtT9hI573m7IwE5rCCtWbOGtm3bEhYWhmVZfPrpp+mWG2MYPXo0YWFhBAQE0KhRI3bu3JluTGJiIoMGDaJIkSIEBQXRrl07Dh8+nG5MTEwMPXr0ICQkhJCQEHr06MGpU6eyeetERETkQsLCy7Hr5lEA1Nr3Hn9s32BzohxWkM6cOUONGjWYOnXqBZePHz+eiRMnMnXqVDZv3ozb7aZ58+acPn3aOyYiIoLFixezYMEC1q1bR3x8PG3atCE19X83ourWrRvbtm1j+fLlLF++nG3bttGjR49s3z4RERG5sNvaPsKPgXfgY6ViLe5P0rkEewOZHAowixcv9v7s8XiM2+02r7zyinfeuXPnTEhIiHnnnXeMMcacOnXK+Pj4mAULFnjHHDlyxDgcDrN8+XJjjDG7du0ygNm4caN3zPfff28As3v37kzni42NNYCJjY290k0UERGRf/gz+rA5OaqkMaPym+/fG5Qt75HZz+8cdQTp3+zbt4/o6GhatGjhnefn50fDhg3ZsCHtUFxkZCTJycnpxoSFhVG1alXvmO+//56QkBDq1q3rHXPbbbcREhLiHXMhiYmJxMXFpZtEREQk6xQJLcG+28YCcMvh99n94yrbsuSaghQdHQ1AaGhouvmhoaHeZdHR0fj6+lKwYMF/HVOsWLHz1l+sWDHvmAsZN26c95qlkJAQwsPDr2p7RERE5Hy1W/Vgc/4WxFrBJMWfsi1HrilIf7MsK93Pxpjz5mWUccyFxl9qPSNHjiQ2NtY7HTp06DKTi4iISGZUeGga5tHvqd6oo20Zck1BcrvdAOcd5Tl+/Lj3qJLb7SYpKYmYmJh/HXPs2LHz1v/nn3+ed3Tqn/z8/MifP3+6SURERLJeSMEiFA4taWuGXFOQypYti9vtZuXKld55SUlJrF69mvr16wNQu3ZtfHx80o2Jiopix44d3jH16tUjNjaWTZs2ecf88MMPxMbGeseIiIjI9c1ld4B/io+P57fffvP+vG/fPrZt20ahQoUoVaoUERERjB07lvLly1O+fHnGjh1LYGAg3bp1AyAkJITevXszdOhQChcuTKFChRg2bBjVqlWjWbNmAFSqVIlWrVrxyCOP8O677wLQt29f2rRpQ8WKFa/9RouIiEiOk6MK0o8//kjjxo29Pw8ZMgSAnj17Mnv2bIYPH05CQgIDBgwgJiaGunXrsmLFCoKDg72vmTRpEi6Xi/vvv5+EhASaNm3K7NmzcTqd3jHz5s1j8ODB3m+7tWvX7qL3XhIREZHrj2WMMXaHyI3i4uIICQkhNjZW1yOJiIjkEpn9/M411yCJiIiIXCsqSCIiIiIZqCCJiIiIZKCCJCIiIpKBCpKIiIhIBipIIiIiIhmoIImIiIhkoIIkIiIikoEKkoiIiEgGOepRI7nJ3zcgj4uLszmJiIiIZNbfn9uXepCICtIVOn36NADh4eE2JxEREZHLdfr0aUJCQi66XM9iu0Iej4ejR48SHByMZVl2x8nV4uLiCA8P59ChQ3qunY20H+ynfZAzaD/YLzv3gTGG06dPExYWhsNx8SuNdATpCjkcDkqWLGl3jDwlf/78+ssoB9B+sJ/2Qc6g/WC/7NoH/3bk6G+6SFtEREQkAxUkERERkQxUkMR2fn5+jBo1Cj8/P7ujXNe0H+ynfZAzaD/YLyfsA12kLSIiIpKBjiCJiIiIZKCCJCIiIpKBCpKIiIhIBipIIiIiIhmoIEm2GDduHLfccgvBwcEUK1aMe+65hz179pw37pdffqFdu3aEhIQQHBzMbbfdxsGDB73LExMTGTRoEEWKFCEoKIh27dpx+PDha7kpuVZm9oFlWRecXnvtNe8Y7YOrk5n9EB8fz8CBAylZsiQBAQFUqlSJadOmpRuj/XDlMrMPjh07Rq9evQgLCyMwMJBWrVqxd+/edGO0D67OtGnTqF69uvfmj/Xq1WPZsmXe5cYYRo8eTVhYGAEBATRq1IidO3emW8c13QdGJBu0bNnSzJo1y+zYscNs27bN3H333aZUqVImPj7eO+a3334zhQoVMk8++aTZsmWL+f33382XX35pjh075h3Tv39/U6JECbNy5UqzZcsW07hxY1OjRg2TkpJix2blKpnZB1FRUemmmTNnGsuyzO+//+4do31wdTKzH/r06WNuuOEG8+2335p9+/aZd9991zidTvPpp596x2g/XLlL7QOPx2Nuu+02c8cdd5hNmzaZ3bt3m759+563n7QPrs7nn39ulixZYvbs2WP27Nljnn76aePj42N27NhhjDHmlVdeMcHBwWbhwoVm+/btpnPnzqZ48eImLi7Ou45ruQ9UkOSaOH78uAHM6tWrvfM6d+5sunfvftHXnDp1yvj4+JgFCxZ45x05csQ4HA6zfPnybM2bF11oH2TUvn1706RJE+/P2gdZ70L7oUqVKubFF19MN+7mm282zz77rDFG+yGrZdwHe/bsMYD3g9oYY1JSUkyhQoXM9OnTjTHaB9mlYMGC5j//+Y/xeDzG7XabV155xbvs3LlzJiQkxLzzzjvGmGu/D3SKTa6J2NhYAAoVKgSkPex3yZIlVKhQgZYtW1KsWDHq1q3Lp59+6n1NZGQkycnJtGjRwjsvLCyMqlWrsmHDhmuaPy/IuA8yOnbsGEuWLKF3797eedoHWe9C+6FBgwZ8/vnnHDlyBGMM3377Lb/++istW7YEtB+yWsZ9kJiYCIC/v793jNPpxNfXl3Xr1gHaB1ktNTWVBQsWcObMGerVq8e+ffuIjo5O9/v18/OjYcOG3t/vtd4HKkiS7YwxDBkyhAYNGlC1alUAjh8/Tnx8PK+88gqtWrVixYoV3HvvvXTo0IHVq1cDEB0dja+vLwULFky3vtDQUKKjo6/5duRmF9oHGc2ZM4fg4GA6dOjgnad9kLUuth/efPNNKleuTMmSJfH19aVVq1a8/fbbNGjQANB+yEoX2gc33XQTpUuXZuTIkcTExJCUlMQrr7xCdHQ0UVFRgPZBVtm+fTv58uXDz8+P/v37s3jxYipXruz9HYaGhqYb/8/f77XeB64sX6NIBgMHDuTnn3/2/ksM0o4gAbRv354nnngCgJo1a7JhwwbeeecdGjZseNH1GWOwLCt7Q+cxF9oHGc2cOZMHHngg3b+iL0b74MpcbD+8+eabbNy4kc8//5zSpUuzZs0aBgwYQPHixWnWrNlF16f9cPkutA98fHxYuHAhvXv3plChQjidTpo1a8Zdd911yfVpH1yeihUrsm3bNk6dOsXChQvp2bOn9x/FwHm/y8z8frNrH+gIkmSrQYMG8fnnn/Ptt99SsmRJ7/wiRYrgcrmoXLlyuvGVKlXyfovN7XaTlJRETExMujHHjx8/718ZcnEX2wf/tHbtWvbs2UOfPn3Szdc+yDoX2w8JCQk8/fTTTJw4kbZt21K9enUGDhxI586def311wHth6zyb38Wateu7f3gjoqKYvny5Zw8eZKyZcsC2gdZxdfXlxtvvJE6deowbtw4atSowRtvvIHb7QY470jQP3+/13ofqCBJtjDGMHDgQBYtWsQ333zj/Uvmb76+vtxyyy3nfdX2119/pXTp0kDaX1g+Pj6sXLnSuzwqKoodO3ZQv3797N+IXO5S++CfZsyYQe3atalRo0a6+doHV+9S+yE5OZnk5GQcjvR/HTudTu+RVu2Hq3M5fxZCQkIoWrQoe/fu5ccff6R9+/aA9kF2McaQmJhI2bJlcbvd6X6/SUlJrF692vv7veb7IMsv+xYxxjz66KMmJCTEfPfdd+m+Rn727FnvmEWLFhkfHx/z3nvvmb1795opU6YYp9Np1q5d6x3Tv39/U7JkSfP111+bLVu2mCZNmuhrtZmUmX1gjDGxsbEmMDDQTJs27YLr0T64OpnZDw0bNjRVqlQx3377rfnjjz/MrFmzjL+/v3n77be9Y7Qfrlxm9sHHH39svv32W/P777+bTz/91JQuXdp06NAh3Xq0D67OyJEjzZo1a8y+ffvMzz//bJ5++mnjcDjMihUrjDFpX/MPCQkxixYtMtu3bzddu3a94Nf8r9U+UEGSbAFccJo1a1a6cTNmzDA33nij8ff3NzVq1Eh33xdjjElISDADBw40hQoVMgEBAaZNmzbm4MGD13BLcq/M7oN3333XBAQEmFOnTl1wPdoHVycz+yEqKsr06tXLhIWFGX9/f1OxYkUzYcIE4/F4vGO0H65cZvbBG2+8YUqWLGl8fHxMqVKlzLPPPmsSExPTrUf74Oo8/PDDpnTp0sbX19cULVrUNG3a1FuOjEm7H9WoUaOM2+02fn5+5s477zTbt29Pt45ruQ8sY4zJ+uNSIiIiIrmXrkESERERyUAFSURERCQDFSQRERGRDFSQRERERDJQQRIRERHJQAVJREREJAMVJBEREZEMVJBEREREMlBBEhEREclABUlEREQkAxUkEZF/OHnyJMWKFWP//v2X9bpOnToxceLE7AklItecCpKI5EnLly/Hsqx/nZYtW3be68aNG0fbtm0pU6aMd16vXr2455570o375JNP8Pf3Z/z48QA8//zzvPzyy8TFxWXnZonINaKCJCJ5UsOGDYmKivJOhQsX5umnn043r3nz5ulek5CQwIwZM+jTp8+/rvs///kPDzzwAFOnTmX48OEAVK9enTJlyjBv3rxs2yYRuXZUkEQkTwoICMDtduN2u0lNTeXkyZM0aNDAO8/tduNyudK9ZtmyZbhcLurVq3fR9Y4fP56BAwcyf/7884pUu3bt+PDDD7Nle0Tk2lJBEpE8b+vWrQDUrl37X8etWbOGOnXqXHT5U089xZgxY/jyyy/p2LHjectvvfVWNm3aRGJi4tUFFhHbuS49REQkd9uyZQslSpSgWLFi/zpu//79hIWFXXDZsmXL+Oyzz1i1ahVNmjS54JgSJUqQmJhIdHQ0pUuXvurcImIfHUESkTxvy5Yt3HzzzZccl5CQgL+//wWX/X2N0fPPP8/p06cvOCYgIACAs2fPXnlYEckRVJBEJM/bsmXLJU+vARQpUoSYmJgLLitRogSrV68mKiqKVq1aXbAk/fXXXwAULVr06gKLiO1UkEQkTzt58iSHDh3K1BGkWrVqsWvXrosuL1WqFKtXr+b48eO0aNHivK/079ixg5IlS1KkSJGrzi0i9lJBEpE8LTIyEiBTBally5bs3LnzokeRAEqWLMl3333HyZMnadGiBbGxsd5la9eupUWLFlcfWkRsp4IkInna1q1bKVasGCVKlLjk2GrVqlGnTh0+/vjjfx339+m2U6dO0bx5c06dOsW5c+dYvHgxjzzySFZFFxEbWcYYY3cIEZGcYunSpQwbNowdO3bgcGT+35BvvfUWn332GStWrMjGdCJyrehr/iIi/9C6dWv27t3LkSNHCA8Pz/TrfHx8mDJlSjYmE5FrSUeQRERERDLQNUgiIiIiGaggiYiIiGSggiQiIiKSgQqSiIiISAYqSCIiIiIZqCCJiIiIZKCCJCIiIpKBCpKIiIhIBipIIiIiIhn8H7IiABmZsWW+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 151, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ax.plot(pseudoadiabat,1e-2*pa,label='Pseudoadiabat')\n", + "ax.legend(frameon=False)\n", + "fig" + ] + }, + { + "cell_type": "markdown", + "id": "af3c548e-357b-4346-8426-1175ac785a2e", + "metadata": { + "tags": [] + }, + "source": [ + "### Reversible moist adiabat\n", + "The [reversible moist adiabat](https://glossary.ametsoc.org/wiki/Reversible_moist-adiabatic_process) assumes all condensates stay in the parcel. To compute it using MetPy," + ] + }, + { + "cell_type": "code", + "execution_count": 152, + "id": "48f56960-6be9-4942-9f8d-0f8f93621e72", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[300.0 297.4945398114784 294.7445174664109 288.267902974603 282.9154257493355 276.2570473100615 267.44869622647735 254.6114144064029] kelvin\n" + ] + } + ], + "source": [ + "reversible=moist_lapse(pa,t1,lapse_type='reversible')\n", + "print(reversible)" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "id": "9dca3d03-268c-4aa9-a162-a9ad46d7c3de", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGyCAYAAAAf/ztNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzhElEQVR4nO3dd3gU9cLF8e/upldIAgmB0It0EBBBlF6lo3QERKRjpIoVG00FRRQbAqIIKgSRJojSkY70SCeBhFBCCunZef/guq+hSICETcL5PM8+92bmt7NnMuqeTDUZhmEgIiIiIjZmewcQERERyWlUkERERESuo4IkIiIich0VJBEREZHrqCCJiIiIXEcFSUREROQ6KkgiIiIi13Gwd4Dcymq1cu7cOTw9PTGZTPaOIyIiIplgGAZxcXEEBgZiNt96P5EK0l06d+4cQUFB9o4hIiIidyEsLIwiRYrccr4K0l3y9PQErv2Cvby87JxGREREMiM2NpagoCDb9/itqCDdpX8Oq3l5eakgiYiI5DK3Oz1GJ2mLiIiIXEcFSUREROQ6KkgiIiIi11FBEhEREbmOCpKIiIjIdVSQRERERK6jgiQiIiJyHRUkERERkeuoIImIiIhcRwVJRERE5Dq5qiDNnDmTKlWq2B7vUadOHVauXGmbbxgG48ePJzAwEFdXVxo0aMDBgwczLCM5OZlhw4bh5+eHu7s7bdu2JTw8/H6vioiIiORguaogFSlShEmTJrFz50527txJo0aNaNeuna0ETZkyhalTpzJjxgx27NhBQEAATZs2JS4uzraM4OBgQkJCWLBgAZs2bSI+Pp7WrVuTnp5ur9USERG5L4oXL86HH35o+9lkMrFkyZJMv3/8+PFUq1Yty3PlRLmqILVp04ZWrVpRtmxZypYty7vvvouHhwd//vknhmHw4Ycf8sorr9CxY0cqVarE3LlzSUhIYP78+QDExMQwa9YsPvjgA5o0aUL16tX59ttv2b9/P7/99pud1+6aUxevcuZSwrUfok/BpeMZ5qdb09kesR2rYb3/4UREhC1btmCxWGjRosUN806dOoXJZMLBwYGzZ89mmBcREYGDgwMmk4lTp07Zpi9atIjatWvj7e2Np6cnFStWZOTIkZnK8vzzz2OxWFiwYMFdrUtERAQtW7a8q/feizstZvaQqwrSv6Wnp7NgwQKuXr1KnTp1OHnyJJGRkTRr1sw2xtnZmfr167NlyxYAdu3aRWpqaoYxgYGBVKpUyTbmVpKTk4mNjc3wyg4frT3KE+/9QefPtnI85G34+GGY1Qx2zYGkGLZGbKXf6n60WtyKmX/N5Fz8uWzJISIiN/f1118zbNgwNm3axJkzZ246JjAwkG+++SbDtLlz51K4cOEM03777Te6du3KU089xfbt29m1axfvvvsuKSkpt82RkJDAwoULGT16NLNmzbqrdQkICMDZ2fmu3pvX5bqCtH//fjw8PHB2dmbgwIGEhIRQoUIFIiMjAfD3988w3t/f3zYvMjISJycn8ufPf8sxtzJx4kS8vb1tr6CgoCxcq2sMwyA+OQ2TCbafuszBk2dJN0wQtg1+eQHj/bJEbZiMp8WFs/Fn+XTvp7RY1ILnVz/PypMrSU5PzvJMIiLZzTAMElLS7PIyDOOOsl69epUffviBQYMG0bp1a+bMmXPTcb1792b27NkZps2ZM4fevXtnmLZs2TLq1avH6NGjKVeuHGXLlqV9+/Z8/PHHt83y448/UqFCBcaNG8fmzZsz7JUCiIqKok2bNri6ulKiRAm+++67G5Zx/Z6csWPHUrZsWdzc3ChZsiSvvfYaqampN7zv888/JygoCDc3N55++mmuXLlim7djxw6aNm2Kn58f3t7e1K9fn927d9vmFy9eHIAOHTpgMplsP+c0DvYOcKfKlSvH3r17uXLlCosWLaJ3796sX7/eNt9kMmUYbxjGDdOul5kx48aNY8SIEbafY2Njs7wkmUwmvnymJueuJBKy5ywf7n6Jdy6E08GyiU6WDZRNO0vH0A20NJlY61uIJb6F2JZyga0RW9kasRUvJy+eLPkkHUp3oLxv+SzNJiKSXRJT06nw+q92+exDbzXHzSnzX4ULFy6kXLlylCtXjp49ezJs2DBee+21G75D2rZty2effcamTZuoV68emzZt4vLly7Rp04a3337bNi4gIID58+dz4MABKlWqdEfZZ82aRc+ePfH29qZVq1bMnj2bN9980za/T58+hIWF8fvvv+Pk5MTw4cOJior6z2V6enoyZ84cAgMD2b9/P/3798fT05MxY8bYxhw7dowffviBX375hdjYWPr168eQIUNsBSwuLo7evXszffp0AD744ANatWrF0aNH8fT0ZMeOHRQsWJDZs2fTokULLBbLHa33/ZLr9iA5OTlRunRpatasycSJE6latSofffQRAQEBADfsCYqKirLtVQoICCAlJYXo6OhbjrkVZ2dn29Vz/7yyS2A+V4Y0LM3aEfX5YkhrEmoN5WnzNNokv8PctKYkWd1pffEcX4XuYmXYWQamuRLg4EFsSizfH/mezss68/QvT/Pd4e+4knQl23KKiDxo/iklAC1atCA+Pp61a9feMM7R0ZGePXvy9ddfA9cOy/Xs2RNHR8cM44YNG0atWrWoXLkyxYsXp2vXrnz99dckJ//3EYGjR4/y559/0qVLFwB69uzJ7NmzsVqvnZ/6999/s3LlSr766ivq1KlDjRo1mDVrFomJif+53FdffZW6detSvHhx2rRpw8iRI/nhhx8yjElKSmLu3LlUq1aNJ554go8//pgFCxbYvn8bNWpEz549KV++POXLl+fzzz8nISHBtjOjQIECAOTLl4+AgADbzzlNrtuDdD3DMEhOTqZEiRIEBASwZs0aqlevDkBKSgrr169n8uTJANSoUQNHR0fWrFlD586dgWsnqB04cIApU6bYbR1uxWQyUS0oH9WC8vFq6/L8frgKi3bXYXLoWZ5gN50sG2ho7GVIWCgDgT/dPVhSqCRrrXEcuXyESdsn8cHOD2hctDEdSnegdqHaWMw5s6mLyIPL1dHCobea2+2zMys0NJTt27ezePFiABwcHOjSpQtff/01TZo0uWF8v379qFOnDhMmTODHH39k69atpKWlZRjj7u7O8uXLOX78OH/88Qd//vknI0eO5KOPPmLr1q24ubndNMusWbNo3rw5fn5+ALRq1Yp+/frx22+/0axZMw4fPoyDgwM1a9a0veehhx4iX758/7mOP/30Ex9++CHHjh0jPj6etLS0G3YIFC1alCJFith+rlOnDlarldDQUAICAoiKiuL111/n999/5/z586Snp5OQkHDL87VyqlxVkF5++WVatmxJUFAQcXFxLFiwgHXr1rFq1SpMJhPBwcFMmDCBMmXKUKZMGSZMmICbmxvdu3cHwNvbm379+jFy5Eh8fX3x8fFh1KhRVK5c+ab/cOckzg4WWlYuRMvKhbgYX5mle6vw4e4mjDsXRjvLZjpZNvLY1dM8dmwfMWYzy30KEpLfjyNpsaw6tYpVp1YR4B5Au1LtaFe6HUGeWX8OlYjI3TCZTHd0mMteZs2aRVpaWoYTrQ3DwNHRkejo6BvOb61UqRIPPfQQ3bp1o3z58lSqVIm9e/fedNmlSpWiVKlSPPfcc7zyyiuULVuWhQsX0rdv3xvGpqen88033xAZGYmDg0OG6bNmzaJZs2a2c6tud/rIv/3555907dqVN998k+bNm+Pt7c2CBQv44IMP/vN9/3zGP//bp08fLly4wIcffkixYsVwdnamTp06mTrxPCfJ+f9E/sv58+fp1asXEREReHt7U6VKFVatWkXTpk0BGDNmDImJiQwePJjo6Ghq167N6tWr8fT0tC1j2rRpODg40LlzZxITE2ncuDFz5szJscdAb8bPw5ln65Xg2XolOBIZy+Ld1em9pwMF4kPpZNlIO8tmul+MpPvFSA47ORLiX4zlTiYir0by+b7P+Xzf5zwS8AjtS7enabGmuDi42HuVRERytLS0NL755hs++OCDDFdCA3Tq1InvvvuOoUOH3vC+Z599lsGDBzNz5sxMf1bx4sVxc3Pj6tWrN52/YsUK4uLi2LNnT4bvriNHjtCjRw8uXbpE+fLlSUtLY+fOnTzyyCPAtT1g/z6Z+nqbN2+mWLFivPLKK7Zpp0+fvmHcmTNnOHfuHIGBgQBs3boVs9lM2bJlAdi4cSOffvoprVq1AiAsLIyLFy9mWIajo2OOv/9gripIt7uM0WQyMX78eMaPH3/LMS4uLnz88ceZukIgN3gowIuXW3kxpnk5Nh6rwqJddfjg0FnqWPfwlGUDjZN383LYMUaa4Hd3D5YULMpW4yrbI7ezPXI7E7dNpGWJlnQo04GKvhXv6K8NEZEHxbJly4iOjqZfv354e3tnmPfUU08xa9asmxak/v378/TTT9/y0Nb48eNJSEigVatWFCtWjCtXrjB9+nRSU1Ntf/xfb9asWTz55JNUrVo1w/SKFSsSHBzMt99+ywsvvECLFi3o378/X3zxBQ4ODgQHB+Pq6nrLdSxdujRnzpxhwYIF1KpVi+XLlxMSEnLDOBcXF3r37s37779PbGwsw4cPp3PnzrZzgUuXLs28efOoWbMmsbGxjB49+obPLV68OGvXruWxxx7D2dn5hr1vOUGuO0lbbs7BYqZhuYLM6P4wW19pQZP2fZgV+BaPJH/Ka6l9OJJekpbx8Xx+4hCrwsIZHJdMYbMrcalx/PD3D3Rb3o2OSzvyzcFvuJx02d6rIyKSo8yaNYsmTZrcUI7g2h6kvXv3ZriU/R8ODg74+fllOBT2b/Xr1+fEiRM888wzPPTQQ7Rs2ZLIyEhWr15NuXLlbhh//vx5li9fTqdOnW6YZzKZ6Nixo21nwuzZswkKCqJ+/fp07NiR559/noIFC95yHdu1a8eLL77I0KFDqVatGlu2bOG11167YVzp0qXp2LEjrVq1olmzZlSqVIlPP/3UNv/rr78mOjqa6tWr06tXL4YPH37D537wwQesWbOGoKAg23nDOY3JuNObQAhw7TJ/b29vYmJisvWKtnt16uJVFu8OZ9Hus7jFHKWTZQMdLJvwN13BCuxwcSbEL5DfnCDZuLa708HsQMOghrQv3Z66gXVxMOeqHY0iIiK3lNnvbxWku5RbCtI/rFaD7acus2hXOL/uD6d62l88ZVlPM/MunE2pxJpNrPTwIMS3EAdJsr2voGtB2pZuS/vS7SnmVcyOayAiInLvVJCyWW4rSP+WkJLGrwcjWbTrLPuOn6a1+U86WTZQw3wUgFBHR5bk82GZpwdXjP+/g+rDBR+mY5mONC3WFDfHm196KiIikpOpIGWz3FyQ/i0i5tpduxftCsd68RgdLRvpaNlIYdMlUoF1bq4s9vFni6OBlWv/qLg5uNGyREval25P1QJVdWK3iIjkGipI2SyvFKR/GIbBX+ExLN4dzi97wymf/BdPWTbQ0rwdV1MKkRYLSz3cWeLjRxj/f6OzEt4l6FC6A21KtcHP1c+OayAiInJ7KkjZLK8VpH9LTkvnjyNR/LTrLDtCT9PM9CdPWTZQ23wEA9jl4kyIVz7WuLuSyLXb2ltMFp4o8gQdSnegXpF6OJod//tDRERE7EAFKZvl5YL0bxfjk/nlr3Ms2h1OzLmjdLJspKN5I0XNF4g3mVjl4UZIPl/2/etCN18XX9qWakv7Mu0p6V3SfuFFRESuo4KUzR6UgvRvoZFxLNodzpLdYRS/uo+nLBtoZdmGhymJ444OLPHwYKl3Pi6brLb3VC1QlY5lOtK8eHPcHd3tmF5EREQFKds9iAXpH2npVjYeu8ji3WfZePAUDa3b6GTZQF3zIdJNBhvdXFns5cUmV2f+uZG8q4MrzYo1o0OZDjxc8GGd2C0iInahgpTNHuSC9G8xiams2B/Bol3hnDt9lPaWTTxl2UBJcyQXLGZ+8XAnxDsfpyz/X4iKeRWjfen2tC3VloJut76rq4iI/LdTp05RokQJ9uzZQ7Vq1e7b56xbt46GDRsSHR19y8eoXK9BgwZUq1aNDz/8MNtyZkZmv7/1qBG5J96ujnR7pCg/DarL96OfwqHBaJ5x+5SOyeNZk9yAp66ks/RMGPPORdIxLh43w8Tp2NN8tPsjmv7UlCFrh/Db6d9ITU+9/YeJiNhZnz59MJlMmEwmHB0dKVmyJKNGjbrlg2Xzqrp169oeHH8/rVu3DpPJ9J8P3c0qeoaEZJlivu6MaFqW4MZl2H6qGot2NeL9/aepm7qdp9I38HrSPsZeiuZXdzdCvDzZ4+zEhvANbAjfQH7n/LQu1ZoOpTtQJn8Ze6+KiMgttWjRgtmzZ5OamsrGjRt57rnnuHr1KjNnzrR3tPvGycnJ9nDavEp7kCTLmc0mHi3py3tPV2XTq61o8vQgZhV/j7opM/gopSsVY/PxzblIfgk7R78rMRRIN4hOjmbeoXl0XNqR7su780PoD8SlxNl7VUREbuDs7ExAQABBQUF0796dHj16sGTJEv766y8aNmyIp6cnXl5e1KhRg507d9ret2XLFp544glcXV0JCgpi+PDhGfY8mUwmlixZkuGz8uXLx5w5c2w/b9++nerVq+Pi4kLNmjXZs2fPDfnWr1/PI488grOzM4UKFeKll14iLe3/71+3atUq6tWrR758+fD19aV169YcP348wzJu9znX78m5dOkS3bp1o0iRIri5uVG5cmW+//77G7KlpaUxdOhQ22e/+uqr/PtMn2+//ZaaNWvi6elJQEAA3bt3JyoqCrh2mK9hw4YA5M+fH5PJRJ8+fW6yhbKGCpJkKzcnB9pXL8y8frVZ8lInvJuOYpDXJ7RJfof1SQ3pfTmd1WfC+CQyisZXE3AwYP/F/bz959s0+qER4zaOY3vEdqyG9fYfJiK5k2FAylX7vLLgNFxXV1dSU1Pp0aMHRYoUYceOHezatYuXXnoJR8dr94Tbv38/zZs3p2PHjuzbt4+FCxeyadMmhg4dmunPuXr1Kq1bt6ZcuXLs2rWL8ePHM2rUqAxjzp49S6tWrahVqxZ//fUXM2fOZNasWbzzzjsZljNixAh27NjB2rVrMZvNdOjQAavVmunPuV5SUhI1atRg2bJlHDhwgOeff55evXqxbdu2DOPmzp2Lg4MD27ZtY/r06UybNo2vvvrKNj8lJYW3336bv/76iyVLlnDy5ElbCQoKCmLRokUAhIaGEhERwUcffZTp39+d0iE2uW8KebsyuEFpBtUvxb7w6iza3ZBme0/zcPK1Q3DvJ+wlxnKZZR7uhHh6cNwJlp1YxrITyyjiUYT2pdvTrnQ7Atzz9m5dkQdOagJMCLTPZ798Dpzu/hYk27dvZ/78+TRu3JiVK1cyevRoHnroIQDKlPn/0wXee+89unfvTnBwsG3e9OnTqV+/PjNnzsTFxeW2n/Xdd9+Rnp7O119/jZubGxUrViQ8PJxBgwbZxnz66acEBQUxY8YMTCYTDz30EOfOnWPs2LG8/vrrmM1mOnXqlGG5s2bNomDBghw6dIhKlSpl6nOuV7hw4QwlatiwYaxatYoff/yR2rVr26YHBQUxbdo0TCYT5cqVY//+/UybNo3+/fsD8Oyzz9rGlixZkunTp/PII48QHx+Ph4cHPj4+ABQsWDDTJ4ffLe1BkvvOZDJRNSgfb7WrxKZXWtCh+0B+KPMedVM/5ZPkHtS64kPI2Qjmn43k6dg4PKwG4fHhzNg7g2Y/NWPgmoGsOrWKlPQUe6+KiDyAli1bhoeHBy4uLtSpU4cnnniCjz/+mBEjRvDcc8/RpEkTJk2alOGw1a5du5gzZw4eHh62V/PmzbFarZw8eTJTn3v48GGqVq2Km9v/Pyy8Tp06N4ypU6dOhlupPPbYY8THxxMeHg7A8ePH6d69OyVLlsTLy4sSJUoAcObMmUx/zvXS09N59913qVKlCr6+vnh4eLB69WrbMv/x6KOPZshWp04djh49Snr6tZvC7Nmzh3bt2lGsWDE8PT1p0KBBhmz3k/YgiV05O1hoUakQLSoV4lJ8ZZb+9ShjdnfBem4fndI2Mjh5M6Mvh/ObuyshHh7scHVh87nNbD63GW9nb1qXvHZidzmfcvZeFRG5W45u1/bk2Ouz71DDhg2ZOXMmjo6OBAYG2g6jjR8/nu7du7N8+XJWrlzJG2+8wYIFC2yHrwYMGMDw4cNvWF7RokWBa388Xn/nndTU/7/CNzN35TEM44b7zP3zvn+mt2nThqCgIL788ksCAwOxWq1UqlSJlJSUTH/O9T744AOmTZvGhx9+SOXKlXF3dyc4ONi2zMy4evUqzZo1o1mzZnz77bcUKFCAM2fO0Lx58ztaTlZRQZIcw9fDmb6PlaDvYyUIjazG4t2NaLP7NBUStvNU2gY+i9vNeUcTSzzc+dnTg/PE8N3h7/ju8HeU9ylPhzIdaFWiFd7O9/eyUxG5RybTPR3mut/c3d0pXbr0TeeVLVuWsmXL8uKLL9KtWzdmz55Nhw4dePjhhzl48OAt3wdQoEABIiIibD8fPXqUhIQE288VKlRg3rx5JCYm4urqCsCff/6ZYRkVKlRg0aJFGYrSli1b8PT0pHDhwly6dInDhw/z+eef8/jjjwOwadOmG5Zxu8+53saNG2nXrh09e/YEwGq1cvToUcqXL59h3PXL+fPPPylTpgwWi4UjR45w8eJFJk2aRFBQEECGk9zh2tVzgG2PU3bSITbJkcoFeDKuVXk2jmtGr94DWVHhPR5P/4wvEnvyxGVffg07y8zIKJrFX8XBMDh8+TATtk2g0Q+NGLNhDFvPbdWJ3SJy3yQmJjJ06FDWrVvH6dOn2bx5Mzt27LAVhLFjx7J161aGDBnC3r17OXr0KEuXLmXYsGG2ZTRq1IgZM2awe/dudu7cycCBA217pwC6d++O2WymX79+HDp0iBUrVvD+++9nyDF48GDCwsIYNmwYR44c4eeff+aNN95gxIgRmM1m8ufPj6+vL1988QXHjh3j999/Z8SIERmWkZnPuV7p0qVZs2YNW7Zs4fDhwwwYMIDIyMgbxoWFhTFixAhCQ0P5/vvv+fjjj3nhhReAa3vSnJyc+Pjjjzlx4gRLly7l7bffzvD+YsWKYTKZWLZsGRcuXCA+Pj4TW+cuGXJXYmJiDMCIiYmxd5QHRkxiivH9ttPGUzM3G01e+syY+Up3I/L1osblN/MZ334QaHT8vKxRaU4l26vpj02NT/Z8YoTHhds7uojkEb179zbatWt3w/Tk5GSja9euRlBQkOHk5GQEBgYaQ4cONRITE21jtm/fbjRt2tTw8PAw3N3djSpVqhjvvvuubf7Zs2eNZs2aGe7u7kaZMmWMFStWGN7e3sbs2bNtY7Zu3WpUrVrVcHJyMqpVq2YsWrTIAIw9e/bYxqxbt86oVauW4eTkZAQEBBhjx441UlNTbfPXrFljlC9f3nB2djaqVKlirFu3zgCMkJCQTH/OH3/8YQBGdHS0YRiGcenSJaNdu3aGh4eHUbBgQePVV181nnnmmQy/q/r16xuDBw82Bg4caHh5eRn58+c3XnrpJcNqtdrGzJ8/3yhevLjh7Oxs1KlTx1i6dOkN6/fWW28ZAQEBhslkMnr37p2p7fZvmf3+1qNG7pIeNWJfpy9dZdHus/y86zTFY3fQybKBZuadHHeGEE8PVri7E2f5/x2ktQvVpmPpjjQq2ggXh9tfLSIiInmTnsWWzVSQcgar1WD7qcss3h3Oxv3HaZB27VlwFS3H+N3NlRBPd/783zF0AE8nT1qVaEWHMh2o4FNBD80VEXnAqCBlMxWknCcxJZ1fD0ayaHc4Z4/vp4N5Ix0tG8HxCj97eLDE050Ih/+/LqFs/rJ0KN2B1iVbk88ln/2Ci4jIfaOClM1UkHK2yJgkQvacZfGuMxS4tJ2nLBtobt7OPlcTIZ4erHVzI8V8be+Ro9mRhkEN6VCmA3UK1cFittg5vYiIZBcVpGymgpQ7GIbBvvAYFu0O57e9x3ks5dohuIccQlnp7s5iTw8OOzvZxhd0K0i7Uu3oULoDQV5BdkwuIiLZQQUpm6kg5T7Jaen8ceQCi3aHc+zIftqZN9DRvJEElyss8fBgmYcbMZb/33tUK6AWHUp3oEmxJrg6uP7HkkVEJLdQQcpmKki526X4ZJb+dY6QXWG4RGynk2UjTS1/ssP92iG4La4uGP87gdvdwY2WJVvRoXQHKvtV1ondIiK5mApSNlNByjtCI+NYvDuclbuP83DCZp6yrKekYyi/eLmxxMOd8H/dqK20dynal7l2Yrevq68dU4uIyN1QQcpmKkh5T1q6lU3HLrJ491n2HTxAK2MDHS0biHaLJsTDgzXuriSZr91bycFkoX5QAzqU7sBjhR/Dwayn9oiI5AYqSNlMBSlvi01KZcW+CBbtCiP9zLWr4Bo4bGOzJ4R4eLDfxdk21s/Fl7alr53YXdy7uP1Ci4jIbakgZTMVpAfH6UtXWbz7LMt2H6d8zGaesmygkPNhlnq5sczDncv/OrH74YLVaV+6A82LN8ftLp4SLiKSHcaPH8+SJUvYu3cvAH369OHKlSssWbLklu9p0KAB1apV48MPP7wvGe+XzH5/62G1IrdRzNedF5uWZc3oFvR67kVWVP2YganTST3fkk9PwYfnL1A/IRGzYbA7ag+vb3mdBgvr8/rm19kTtQf9DSKSd/Tp0weTyYTJZMLBwYGiRYsyaNAgoqOj7R3tP40aNYq1a9faO0auohMnRDLJbDZRu6QvtUv6kti2EqsPPcGknWHEnNhBx9gNvOC0lfWeJpZ4unMaCDkWQsixEIp7FqVD2U60KdmGAm4F7L0aInKPWrRowezZs0lLS+PQoUM8++yzXLlyhe+//94uedLT0zGZTJjNt97n4eHhgYeHx31MlftpD5LIXXB1stCuWmHmPfcoX4ztT2KTSQx3n8OOC88y/HQAX5+Non1cPK5WK6fizjBt1zSa/tiEYb8NYe2ZtaRaU+29CiJyl5ydnQkICKBIkSI0a9aMLl26sHr1atv82bNnU758eVxcXHjooYf49NNPbfPq1KnDSy+9lGF5Fy5cwNHRkT/++AOAlJQUxowZQ+HChXF3d6d27dqsW7fONn7OnDnky5ePZcuWUaFCBZydnTl9+jTr1q3jkUcewd3dnXz58vHYY49x+vRp4NohtmrVqt2wLm+++SYFCxbEy8uLAQMGkJKScsv1vl2uvEZ7kETuUYC3C4MalGJg/ZLsP1uTRbueZuPewzSIWM9Mh/Wc9rxEiKcHe12cWXd2A+vObsDHyYu2ZTrSvnR7SuUrZe9VELErwzBITEu0y2e7Orje073NTpw4wapVq3D83+1AvvzyS9544w1mzJhB9erV2bNnD/3798fd3Z3evXvTo0cP3nvvPSZOnGj73IULF+Lv70/9+vUB6Nu3L6dOnWLBggUEBgYSEhJCixYt2L9/P2XKlAEgISGBiRMn8tVXX+Hr64uPjw/Vq1enf//+fP/996SkpLB9+/b/XLe1a9fi4uLCH3/8walTp+jbty9+fn68++67Nx2fmVx5iU7Svks6SVv+S0qald+PRLFodziRodtpb9pAdZetrPOEpR7uXHL4/xO7q/hUoEO5p2lRvAUeTtoFLg+ehNQEas+vbZfP3tZ92x1dUNGnTx++/fZbXFxcSE9PJykpCYCpU6fy4osvUrRoUSZPnky3bt1s73nnnXdYsWIFW7Zs4cKFCwQGBvL777/z+OOPA1C3bl3q1avHlClTOH78OGXKlCE8PJzAwEDbMpo0acIjjzzChAkTmDNnDn379mXv3r1UrVoVgMuXL+Pr68u6detsRevfbnaS9i+//EJYWBhubtfW/7PPPmP06NHExMRgNpsznKSdmVy5xQNxkvY/DTw4ONg2zTAMxo8fT2BgIK6urjRo0ICDBw9meF9ycjLDhg3Dz88Pd3d32rZtS3h4+H1OL3mZk4OZFpUC+PKZmsx9+TksLSfyltdcDp7vx6hThZgWeYlGVxNwMAz2XT7Em1vfpOHCJ3hlw0vsjNypE7tFcrCGDRuyd+9etm3bxrBhw2jevDnDhg3jwoULhIWF0a9fP9s5Px4eHrzzzjscP34cgAIFCtC0aVO+++47AE6ePMnWrVvp0aMHALt378YwDMqWLZthGevXr7ctA8DJyYkqVarYfvbx8aFPnz40b96cNm3a8NFHHxEREfGf61G1alVbOYJrh//i4+MJCwu7YWxmc+UlufYQ244dO/jiiy8y/AMCMGXKFKZOncqcOXMoW7Ys77zzDk2bNiU0NBRPT08AgoOD+eWXX1iwYAG+vr6MHDmS1q1bs2vXLiwWPcldspaPuxN9HitBn8dK8Pf5Giza/TS/7z7Co2fX8ZHTek54XmSxpwcnnWDpyeUsPbmcoq7+tH+oM21LtcPf3d/eqyCSrVwdXNnWfZvdPvtOubu7U7p0aQCmT59Ow4YNefPNNxk6dChw7TBb7doZ94j9+7ulR48evPDCC3z88cfMnz+fihUr2vYEWa1WLBbLTb+P/n2StavrjYcGZ8+ezfDhw1m1ahULFy7k1VdfZc2aNTz66KN3tH43OyyX2Vx5Sa4sSPHx8fTo0YMvv/ySd955xzbdMAw+/PBDXnnlFTp27AjA3Llz8ff3Z/78+QwYMICYmBhmzZrFvHnzaNKkCQDffvstQUFB/PbbbzRv3twu6yQPhrL+noxrWZ4xzR9i07F6/LSrD8cO7qTN5XU85LaV9Z4GqzzcOJN4nul7PmbGnhnU9a9Fh4e60DCoIY4Wx9t/iEguYzKZcvV9w9544w1atmzJoEGDKFy4MCdOnLDtEbqZ9u3bM2DAAFatWsX8+fPp1auXbV716tVJT08nKirKdgjuTlSvXp3q1aszbtw46tSpw/z5829ZkP766y8SExNxdb1WEv/88088PDwoUqTITZd7L7lyo1x5iG3IkCE8+eSTtoLzj5MnTxIZGUmzZs1s05ydnalfvz5btmwBYNeuXaSmpmYYExgYSKVKlWxjbiY5OZnY2NgML5G7ZTGbqF+2ANO7VWfBq33I33Yin+f/hpMR/Rl1sjDjo65QIzEJKwabzm9n5PqRPLm4JStOrNDhN5EcpkGDBlSsWJEJEyYwfvx4Jk6cyEcffcTff//N/v37mT17NlOnTrWNd3d3p127drz22mscPnyY7t272+aVLVuWHj168Mwzz7B48WJOnjzJjh07mDx5MitWrLhlhpMnTzJu3Di2bt3K6dOnWb16NX///Tfly5e/5XtSUlLo168fhw4dYuXKlbzxxhsMHTr0prcLuNtcuVmu24O0YMECdu/ezY4dO26YFxkZCYC/f8ZDEv7+/rZLHSMjI3FyciJ//vw3jPnn/TczceJE3nzzzXuNL3IDLxdHuj5SlK6PFOX0peos3v0Uq3aG8nDYH0x2Wccxr4uEeHgQkXCesRvH8u2hbxj9yFiqF6xu7+gi8j8jRoygb9++HDt2jK+++or33nuPMWPG4O7uTuXKlTOcKwvXDrM9+eSTPPHEExQtWjTDvNmzZ/POO+8wcuRIzp49i6+vL3Xq1KFVq1a3/Hw3NzeOHDnC3LlzuXTpEoUKFWLo0KEMGDDglu9p3LgxZcqU4YknniA5OZmuXbsyfvz4W46/m1y5Wa66ii0sLIyaNWuyevVq2/Haf59lv2XLFh577DHOnTtHoUKFbO/r378/YWFhtt2Zffv2JTk5OcOymzZtSqlSpfjss89u+tnJyckZ3hMbG0tQUJCuYpNskZpu5fvtZ/jot6NUTNzBCMf5bM8Xw1f5vEj83193TYs24cUaIwjyCrJzWhGR3CNPXsW2a9cuoqKiqFGjBg4ODjg4OLB+/XqmT5+Og4ODbc/R9XuCoqKibPMCAgJISUm54bbw/x5zM87Oznh5eWV4iWQXR4uZZ+oUZ93oBlSp34nu1skcvdiVOWEJdIqNx2wYrDnzG22XtGHKjinEJMfYO7KISJ6SqwpS48aN2b9/P3v37rW9atasSY8ePdi7dy8lS5YkICCANWvW2N6TkpLC+vXrqVu3LgA1atTA0dExw5iIiAgOHDhgGyOSU3i6ODKqeTl+H9UYc/VePJ34Ph6Rjfkm/DKPJSSSZqQz79A8Wi1qwbxD80hN1x26RUSyQq46xHYz1z9tePLkyUycOJHZs2dTpkwZJkyYwLp16zJc5j9o0CCWLVvGnDlz8PHxYdSoUVy6dOmOLvPXjSLFHo5ExjJ55RH2hx4j2OEninpsYZqvN8ecnAAo6l6YF2uNonHRxvd0d2ARkbwqs9/fue4k7dsZM2YMiYmJDB48mOjoaGrXrs3q1att5Qhg2rRpODg40LlzZxITE2ncuDFz5szRPZAkx3sowIvZfR9hy7GSTFgZROK5Foy++j3x+UKZkS8fZ66e5cV1L/JwgWqMfmQslfwq2TuyiEiulOv3INmL9iCJvVmtBr/sO8eUVaEUidlNsNO37Mx/mW+8PUn634ncrYq3JLjGixTyKHSbpYmIPBgy+/2tgnSXVJAkp0hKTWfe1tPM+D2U+imb6Ou8kJ9801nqee3utk4mB3pV7M1zlZ/Ts95E5IGngpTNVJAkp7mSkMKn647z3eajdGMVzdyW8pmvKztcXQDwcfJiyMMv0LFMRxzMee7ouohIpqggZTMVJMmpwi4n8MHqUP7Y+zdDHRZT3HMj0328OOV07TElpTyLMuKRsTxe+HGdyC0iDxwVpGymgiQ53f7wGCasOEz4yUOMdFhAQr6DzMzvzZX/XYzwqH9NRj3yEuV8ytk5qYjI/aOClM1UkCQ3MAyDdaEXmLjyMG5Rewl2/pZd+aP4ztuTVJMJE9C+VDuGPjycgm4F7R1XRCTbqSBlMxUkyU3SrQaLdoXzweojVL26mT4uC1jsm8KvHu4AuJod6Vv5OXpX7JOrn6ouInI7KkjZTAVJcqOElDS+3nSSr9b/Teu0NTR1X8IXvk7sc3EGoKBzPobWGEHbUm2xmHVfMBHJe1SQspkKkuRmF+OTmb72KEu3HaGf+WeKe/3BJz6enHW8dnXbQ14lGfXoy9QuVNvOSUVEspYKUjZTQZK84MSFeN77NZQ9Bw7yguMPJOX/iy/zeRFnuXajyfqF6jCi9kuU9C5p56QiIllDBSmbqSBJXrLr9GUmrDhCwpm9DHP6lr98z/GDlwdpJhMWTDxV5ikGPzwUHxcfe0cVEbknKkjZTAVJ8hrDMPj14HkmrzpC0OUt9HadzxLfRNa5Xztp28PszHPVBtGzQk+cLc52TisicndUkLKZCpLkVanpVhZsP8P0NUdokLyWJh6LmeXrwGFnJwACnX144ZGxtCzRUjeaFJFcRwUpm6kgSV4Xl5TKFxtO8O3GQ3S3LqNYvt/43MeNKIdrJ3JXzleG0XVeo3rB6nZOKiKSeSpI2UwFSR4UkTFJTFvzN3/sOsAghx9I8tnN7HyeJJqvncjdtPATvPjISwR5Bdk5qYjI7akgZTMVJHnQhEbGMWnlYc78vZfBzvPZ73uaEE93rCYTDpjpVq4LA6oPwdvZ295RRURuSQUpm6kgyYNqy7GLTFh5GPdz2+jp/i3LfePZ7OYKgJfFhYHVh9L1oe44WhztnFRE5EYqSNlMBUkeZFarwS/7zvHeysM8HPcHDT1/5Bs/E8ecrp3IXdTFjxGPvkqjoo10IreI5CgqSNlMBUkEktPSmbf1NJ+tPUzb1GUUz7+SWT5uXLZce0zJw/kfYkzd8VT0q2jnpCIi16ggZTMVJJH/F5OQyifrjhGy+QB9zT+Q4rudb709SP7fidxPFmnIC7XHUcijkJ2TisiDTgUpm6kgidwo7HICH6wOZddfe3jeZT6HfU/wi6c7AM5Y6FW+O/2qDcbDycPOSUXkQaWClM1UkERubX94DBNXHibhxDa6u89jpV8MO11dAPCxuDKkxot0LPc0DmYHOycVkQeNClI2U0ES+W+GYbDu7wtMWn6Yohd/p6HXD8z3MzjteO3qtlKuBRlR5w0eL/K4TuQWkftGBSmbqSCJZE661WDRrnA+XH2QBgkrKOaznHn5nYn534ncj/pUZNRjb1LOp5ydk4rIg0AFKZupIIncmcSUdL7efJJv1u2ns/Ejqb5b+cHbnVSTCRPQoWhThtYeRwG3AvaOKiJ5mApSNlNBErk7F+OT+XjtUdZu28MzTt8RWuAoqz3cAHA1Wehb4Rl6Vx2Im6ObnZOKSF6kgpTNVJBE7s3Ji1eZsuoIpw5uo4vHN6zxu8w+F2cAClrcGFZrNG3LdsRsMts5qYjkJSpI2UwFSSRr7DodzYQVh3EL+4MG3t/zo286Zx2vXd32kGsAo+q9Te3AR+2cUkTyChWkbKaCJJJ1DMPg14PneW/lQarGLKe4zy98n9+J+P/daLK+T2VGPPEOJb1L2jmpiOR2KkjZTAVJJOulpltZsP0Mn63ZT8u0n0jz28QSL1fSTSYswFPFWjD40XH4uPjYO6qI5FIqSNlMBUkk+8QlpfLFhhMs3ribzg7f8XeBI2xwdwXAw+TAcxX70rPaAJwtznZOKiK5jQpSNlNBEsl+52OTmLbmb3bu+pOOHt+wzu8Ch52dAAh0cOeFWmNpWaa9bjQpIpmmgpTNVJBE7p/QyDgmrzpCfOg6Hvf5liU+KUQ5XDuRu7JrIUY/MYHqATXtnFJEcgMVpGymgiRy/205fpFJyw8RdH45Rf1+ZlE+C4n/O5G7qW9VXnxiIkFeQXZOKSI5mQpSNlNBErEPq9Xgl33n+HDVAeom/IhRYD3LPZ2xmkw4AN2LteL5Oi/j7ext76gikgOpIGUzFSQR+0pOS2fe1tPMXbuHJ83zOF7gIH+6uQDgbXJgYKXn6FL1eRwtjnZOKiI5iQpSNlNBEskZYhJS+WTdMdZu3kYrj9ls8ovkmNO1E7mLOngwovbLNCrVWidyiwiggpTtVJBEcpawywl8sDqUk3+to57PPJb5JnHZYgGghlsgo+tPoWLBqnZOKSL2ltnv71z1kKPx48djMpkyvAICAmzzDcNg/PjxBAYG4urqSoMGDTh48GCGZSQnJzNs2DD8/Pxwd3enbdu2hIeH3+9VEZEsFuTjxoddq/Pu0GfZ4/0JpY934OnodJytVnYlnKPryp68tKwXEXHn7B1VRHKBXFWQACpWrEhERITttX//ftu8KVOmMHXqVGbMmMGOHTsICAigadOmxMXF2cYEBwcTEhLCggUL2LRpE/Hx8bRu3Zr09HR7rI6IZLFKhb35rv+j9HzmBf60zqD+qcdpGpcCwPJLe2mzqDnT14/jaupVOycVkZwsVx1iGz9+PEuWLGHv3r03zDMMg8DAQIKDgxk7dixwbW+Rv78/kydPZsCAAcTExFCgQAHmzZtHly5dADh37hxBQUGsWLGC5s2bZzqLDrGJ5HzpVoNFu8P57Nc9PG79hpMF9rHH9drdt31wYEiV5+lYtT8OZgc7JxWR+yVPHmIDOHr0KIGBgZQoUYKuXbty4sQJAE6ePElkZCTNmjWzjXV2dqZ+/fps2bIFgF27dpGampphTGBgIJUqVbKNuZXk5GRiY2MzvEQkZ7OYTXSuGcTy0U9SsN4kwiPeoPO5AhRNSeUyaby971Oe+bEF4bFh9o4qIjlMripItWvX5ptvvuHXX3/lyy+/JDIykrp163Lp0iUiIyMB8Pf3z/Aef39/27zIyEicnJzInz//LcfcysSJE/H29ra9goJ0MzqR3MLVycKQhqX5cfRTpFWYjvXkEDpfcMYz3cr+pPN0DmnNmqMh9o4pIjlIripILVu2pFOnTlSuXJkmTZqwfPlyAObOnWsbc/2lvIZh3Pby3syMGTduHDExMbZXWJj+4hTJbXw9nHmzXSXGP9ed5cmTqHe6DlWSkonDyogtr/POmmEkpyfbO6aI5AC5qiBdz93dncqVK3P06FHb1WzX7wmKioqy7VUKCAggJSWF6OjoW465FWdnZ7y8vDK8RCR3ql3Sl5XBTxBdaiBXTg3hqeg0ABaeW0ePH5pyMvq4nROKiL3l6oKUnJzM4cOHKVSoECVKlCAgIIA1a9bY5qekpLB+/Xrq1q0LQI0aNXB0dMwwJiIiggMHDtjGiMiDIb+7E1/0qkGXtu1YcvEdnjnnh096OqEp0XRZ2oGlB+bZO6KI2FGuunRj1KhRtGnThqJFixIVFcU777xDbGwsvXv3xmQyERwczIQJEyhTpgxlypRhwoQJuLm50b17dwC8vb3p168fI0eOxNfXFx8fH0aNGmU7ZCciDxaTycQzdYpTs5gPw+b7UOVUCPGBq9jp6swru6aw7czvvNL0E9wc3ewdVUTus1xVkMLDw+nWrRsXL16kQIECPProo/z5558UK1YMgDFjxpCYmMjgwYOJjo6mdu3arF69Gk9PT9sypk2bhoODA507dyYxMZHGjRszZ84cLP+7466IPHgqBHrxy/DHeXOpLwd3VaBLgU/40cdg6YWd7PuhMe83/4pyfhXtHVNE7qNcdR+knET3QRLJm5b+dY63Fu+ig+NMfi90kigHB5wMGFNlEJ2rD9Iz3URyuTx7HyQRkezUtmogi4c3Znv+Vyh2qh11r6aQYoJ39s9k5C9diU3RPdBEHgQqSCIi1ynq68ZPA+tQtm4f9p95ia4XLTgYBmuiD9F5YWP2R+y0d0QRyWYqSCIiN+FoMfNSy4eY3K81SxMm0TasHIVT0zhrTeKZX/syd9t7WA2rvWOKSDZRQRIR+Q+PlynAsuCGnCw8lvynutEgPoU0E7x/5BuGhnTgcuIle0cUkWyggiQichsFPJ2Z06cWDZv1YNvZ1+ka5YKz1crGuBM8/WNTdpxZZ++IIpLFVJBERDLBbDbx/BOl+HLQk6y2TqLxmYcpnpJKlJHKc78PY+bG10i3pts7pohkERUkEZE7UDUoH8teeIKkciMwn+xH09g0rCb49MQSnv+pFVHx//3gaxHJHVSQRETukKeLIx92qUbPjl3ZFPUOXSK9cbVa2Z54jqcXtWDT8RX2jigi90gFSUTkLphMJp6uGcT3w5uzxXkCj56uR9nkVC6TzqBNY5m69kVSran2jikid0kFSUTkHpQq4MHiIY/h8/Bw4k4NoWXMtUv/Z4f/Rp+FTTkbc8bOCUXkbqggiYjcIxdHC+PbVmRMz85sjJ5Ip3P+eKZb2ZdyiadDWvPb4YX2jigid0gFSUQkizSp4E9IcDMO+7xNxVPNqJiUSpzJ4MXt7/DuqudJTk+2d0QRySQVJBGRLBTg7cL8/o9Suf5gIk6NpHX0tYfbLji/lR4LGnLq8t92TigimaGCJCKSxSxmE8Mbl+H9AZ3YnDCFtmeL4ZOeTmhaHJ2XduKXvV/ZO6KI3IYKkohINqlV3IelwY24GDSeIic7UD0xlUQTvPzXR7z6Sw8SUhPsHVFEbkEFSUQkG+Vzc+KznjVo8eTznAh/hbaXnDAbBj9f3kfXBQ0IPb/X3hFF5CZUkEREspnJZKLXo8X4amg7dhjv0Sy8PAXS0jhpTaT7yl78sH0qhmHYO6aI/IsKkojIffJQgBc/D6uPQ4XXyHeyB7WvppFigrcPz2ZUSEfikmPtHVFE/kcFSUTkPnJ1sjCxYxX6de7H4ai3aHvRHQfDYHXcMZ5e0JAD4ZvtHVFEUEESEbGLJ6sUYsHwJznk8j6Ph9WgcGoaZ0mh128DmLvpLayG1d4RRR5oKkgiInYS5OPGDwPrUqTWOMynnuOx+HTSTCbeP/4jw35sRXTCRXtHFHlgqSCJiNiRo8XMmBYP8Uqf3hyKnkSbqPw4WQ02JJ7lqR+bsPPkantHFHkgqSCJiOQAj5X2Y3Fwc875vkeNM49TPCWNKNLpt34En/0+hnRrur0jijxQVJBERHIIPw9nvu7zCI80Gk3S6aHUjwWrycQnYSsZsLAJF+LO2juiyANDBUlEJAcxm00893hJpg7syd+J79MyMgBXq5VtKRfptKglm48ssndEkQeCCpKISA5UuYg3i19oTGrx93joVAtKJ6cRbTIYuG08034dRKo11d4RRfI0FSQRkRzKw9mBaV2q0a7ti8SeHUOjGAsAX0duou/3DTgXfdzOCUXyLhUkEZEcrlONInw59GlOGB/SJKIEnulW/kqL5amf27N231x7xxPJk1SQRERygZIFPPhpyOPkrziJwFMdKZ+URpwJgve8z4RfniE5LcneEUXyFBUkEZFcwtnBwuttKjC4+1AunX+DJtHOAHx/eQ895z/BqQv77ZxQJO9QQRIRyWUaPeTP/OD2nHedTv3wCuRLT+eIkUiX5d1ZtvNje8cTyRNUkEREciF/Lxfm9a9D+brv4nOqJ1US00kwwbiDX/BaSCcSkuPtHVEkV1NBEhHJpSxmE0Malub1fgO5ED2RJpc8MBsGS2L/ptuC+vx9bru9I4rkWipIIiK5XI1iPvz4QiuSCnxM7fCaFEhL5wQpdF/9LD9ufhfDMOwdUSTXUUESEckDvN0c+bRnDRo0fQvnMwOoftUg2WTirWMLGP3jk8QlRts7okiuooIkIpJHmEwmutcuykeDn+Vy0vs0uuCLg2Hwa2IYnRc25MCptfaOKJJrqCCJiOQxZf09+WlYUzxKfUyVM09QKDWdcFM6vda9wDd/vKRDbiKZkOsK0tmzZ+nZsye+vr64ublRrVo1du3aZZtvGAbjx48nMDAQV1dXGjRowMGDBzMsIzk5mWHDhuHn54e7uztt27YlPDz8fq+KiEi2cXG08G6HynTt8Bqmc8HUijeRZjLx3pnlDFvQmCvxkfaOKJKj5aqCFB0dzWOPPYajoyMrV67k0KFDfPDBB+TLl882ZsqUKUydOpUZM2awY8cOAgICaNq0KXFxcbYxwcHBhISEsGDBAjZt2kR8fDytW7cmPT3dDmslIpJ9WlYuxKxhPYk3Tad+VCBOVoP1KRd46sdm7Pp7qb3jieRYJiMX7Wt96aWX2Lx5Mxs3brzpfMMwCAwMJDg4mLFjxwLX9hb5+/szefJkBgwYQExMDAUKFGDevHl06dIFgHPnzhEUFMSKFSto3rx5prLExsbi7e1NTEwMXl5eWbOCIiLZJC3dykdrj7J96xfEBa4kzMmC2TAYXKgBzzX9CIvZYu+IIvdFZr+/c9UepKVLl1KzZk2efvppChYsSPXq1fnyyy9t80+ePElkZCTNmjWzTXN2dqZ+/fps2bIFgF27dpGampphTGBgIJUqVbKNuZnk5GRiY2MzvEREcgsHi5mRzcrxQs9xGBdepk6sA1aTiRmR6wle2IyklAR7RxTJUXJVQTpx4gQzZ86kTJky/PrrrwwcOJDhw4fzzTffABAZee2Yur+/f4b3+fv72+ZFRkbi5ORE/vz5bznmZiZOnIi3t7ftFRQUlJWrJiJyX9Qt5cd3L3Qm1f1T6kWUxNlqZV1KFAMWNiE28bK944nkGPdUkFJTUwkLCyM0NJTLl7P/Xyyr1crDDz/MhAkTqF69OgMGDKB///7MnDkzwziTyZThZ8Mwbph2vduNGTduHDExMbZXWFjY3a+IiIgd+bg78WXv2niVfpsK4fXwSLey2xrHsz8042LMGXvHE8kR7rggxcfH8/nnn9OgQQO8vb0pXrw4FSpUoECBAhQrVoz+/fuzY8eO7MhKoUKFqFChQoZp5cuX58yZa/9CBwQEANywJygqKsq2VykgIICUlBSio6NvOeZmnJ2d8fLyyvASEcmtHCxmJnWqTOVHXiQorCU+aemEkswzIW0Jizpg73gidndHBWnatGkUL16cL7/8kkaNGrF48WL27t1LaGgoW7du5Y033iAtLY2mTZvSokULjh49mqVhH3vsMUJDQzNM+/vvvylWrBgAJUqUICAggDVr1tjmp6SksH79eurWrQtAjRo1cHR0zDAmIiKCAwcO2MaIiDwITCYTo5s/RMsmQ/A83YXA1HTCTOk8s7wboWGb7B1PxK7u6Cq2p59+mtdff53KlSv/57jk5GRmzZqFk5MTzz333D2H/MeOHTuoW7cub775Jp07d2b79u3079+fL774gh49egAwefJkJk6cyOzZsylTpgwTJkxg3bp1hIaG4unpCcCgQYNYtmwZc+bMwcfHh1GjRnHp0iV27dqFxZK5Kzl0FZuI5CU/7z3LJ4sX4lrkK044W/C0Gsx4bAIPl21r72giWSqz39+56jJ/gGXLljFu3DiOHj1KiRIlGDFiBP3797fNNwyDN998k88//5zo6Ghq167NJ598QqVKlWxjkpKSGD16NPPnzycxMZHGjRvz6aef3tGJ1ypIIpLXrP/7Am/OD6FAwEcccjXjYhh8UH0kT1Tta+9oIlkmzxaknEIFSUTyor1hV3hx9gqC/Cayxx0shsHbD/WhzaOj7B1NJEtk9vvb4V4/6NChQ5w5c4aUlJQM09u21W5ZEZHcplpQPr4c2JaBs9ypnT6ebV5pvBw6l5iEi/RsNMne8UTum7veg3TixAk6dOjA/v37MZlMtocf/nOpfF5/bIf2IIlIXhYRk0i/WRsoZnmdTfmu3UTy+QKPMrTlF7e9bYpITpbtd9J+4YUXKFGiBOfPn8fNzY2DBw+yYcMGatasybp16+52sSIikgMU8nZl/sCGXHB8j/oXfQD44sKfvB3yFOnpaXZOJ5L97rogbd26lbfeeosCBQpgNpsxm83Uq1ePiRMnMnz48KzMKCIidpDPzYl5zz1Ggs97PH4+CJNh8GPc34z+sRUpqUn2jieSre66IKWnp+Ph4QGAn58f586dA6BYsWI33KtIRERyJ1cnC58/UxOX4hN4NKICjobBmuQIhixsQkJSjL3jiWSbuy5IlSpVYt++fQDUrl2bKVOmsHnzZt566y1KliyZZQFFRMS+HC1m3n+qKsWrvknl8Nq4Wq38mR5Dv4VNiI47Z+94ItnirgvSq6++itVqBeCdd97h9OnTPP7446xYsYLp06dnWUAREbE/s9nEy63KU/fxlyke1gzvdCsHSKL3olZEXjpi73giWS5L74N0+fJl8ufP/0Bc4aCr2ETkQfXTrnDm/fIF8UE/EeVgIcBq4vNmX1KycG17RxO5rWy7ii0hIYEhQ4ZQuHBhChYsSPfu3bl48SIAPj4+D0Q5EhF5kD1VowjDuwzBObwvRVPSiTQb9F79HAeOr7J3NJEsc8cF6Y033mDOnDk8+eSTdO3alTVr1jBo0KDsyCYiIjlU4/L+vN2nH6kRL1AmycoVMzy7YRRbD3xn72giWeKOD7GVKlWKd999l65duwKwfft2HnvsMZKSkjL9oNe8QIfYREQgNDKO4V8vxTf/JPa7gaNhMKni8zSrpdu9SM6UbYfYwsLCePzxx20/P/LIIzg4ONgu8xcRkQdHuQBPZg3qQOzVd6gRbyHVZGLUwS/4ccPr9o4mck/uuCClp6fj5OSUYZqDgwNpabqzqojIg6hIfje+GdSSOOv71IlxwTCZeOtkCF/+OgQ9D11yqzs+xGY2m2nZsiXOzs62ab/88guNGjXC3d3dNm3x4sVZlzIH0iE2EZGMrianMWjeNtxjX2KT7xUAenlXYlS77zCb7vquMiJZKrPf33dckPr27ZupcbNnz76TxeY6KkgiIjdKSbMy6oe9pJ4bx6YC1069aONahDc7/Yyjxek27xbJftlWkOQaFSQRkZuzWg3eWnaI8EOvszMglHSTiScc8vP+U8txdfa0dzx5wGXbSdoiIiL/xWw28UabClSvPZmq52ribDXYkBbNgIVNiL0aZe94IplyT3uQ1q5dy9q1a4mKirI9duQfX3/99T2Hy8m0B0lE5PYWbD9DyK/vc6bwWuItZsoajnzW7kcK5C9l72jygMr2PUhvvvkmzZo1Y+3atVy8eJHo6OgMLxERka6PFOXZji8TEN4B37R0/jal8sySDoRF7LF3NJH/dNd7kAoVKsSUKVPo1atXVmfKFbQHSUQk8/48cYl3v5tFcqE5RDha8LXC5w0+olyJRvaOJg+YbN+DlJKSQt26de/27SIi8gB5tKQvk/sNxPH8cEokW7lkhj7rhrPr8E/2jiZyU3ddkJ577jnmz5+flVlERCQPqxDoxcyBz8CVcZRPhHiziQHbxrN+12f2jiZygzs6xDZixAjb/7darcydO5cqVapQpUoVHB0dM4ydOnVq1qXMgXSITUTk7lyIS2bQrF9xcXqdv9zTsRgGb5XuStt6r9o7mjwAsuU+SA0bNszUOJPJxO+//57ZxeZKKkgiIncvLimVwXM34pAyhp1eyQCMDmzMM00/tG8wyfN0o8hspoIkInJvklLTGfH9DlIvj+TP/LEA9M9fjWFtvsFkMtk5neRV2XKS9pkzZ+4oxNmzZ+9ovIiIPDhcHC183LM2BYM+oc5FfwC+jN7LWz+1JT1dD0AX+7qjglSrVi369+/P9u3bbzkmJiaGL7/8kkqVKuX5B9aKiMi9sZhNvNOxKuWrfMoj50thNgx+SjjF6IVNSUlJsHc8eYDd0SG2y5cvM2HCBL7++mscHR2pWbMmgYGBuLi4EB0dzaFDhzh48CA1a9bk1VdfpWXLltmZ3a50iE1EJGvN23qKNete40ChPaSaTNQ2ufPRU8txd/O1dzTJQ7L1HKSkpCRWrFjBxo0bOXXqFImJifj5+VG9enWaN29OpUqV7il8bqCCJCKS9ZbtO8d3v7zLicB1JJjNVDAc+azDEvJ7F7V3NMkjdJJ2NlNBEhHJHpuPXeTDhR8QWWgpVyxmilvNfPHktxQqWNne0SQPyPY7aYuIiGSHx0r78XrvlygQ2YuCaVZOma30WtadE2c22juaPEBUkEREJMepXMSbD54fRr6LQwhKsXLeAr3XDmJ/6M/2jiYPCBUkERHJkUr4ufPpoGfxiH+Z0kkGV8wm+m15hS17v7Z3NHkAqCCJiEiO5e/lwpcDO+OZPpGKCWYSzSaG7J3Kr1un2Dua5HH3XJDOnj2rG0KKiEi28XZ15Iv+rcjv+iHV4pxIM5kYHfoNP6wdY+9okofddUHavHkzJUqUoGjRohQtWhR/f3/Gjh1LbGxsVuYTERG5dtftXvUJLPgZNWM8MEwm3g5fyefLnkUXY0t2uOuCNGDAACpWrMiOHTvYt28f7733HmvXrqVGjRpcvHgxKzOKiIjgYDEz6emalCv9FY9cKgDAjEs7mLyoE1Zrup3TSV5z1wXp+PHjTJs2jYcffpiKFSvyzDPPsGPHDqpVq8bw4cOzMmMGxYsXx2Qy3fAaMmQIAIZhMH78eAIDA3F1daVBgwYcPHgwwzKSk5MZNmwYfn5+uLu707ZtW8LDw7Mts4iIZA2TycRLrSpSt9ZX1IwqDsB3V4/y8oLmpKYl2Tec5Cl3XZDKly9PZGRkhmkmk4m33nqLX3755Z6D3cqOHTuIiIiwvdasWQPA008/DcCUKVOYOnUqM2bMYMeOHQQEBNC0aVPi4uJsywgODiYkJIQFCxawadMm4uPjad26Nenp+gtERCQ36Pd4Sdo1+YyHIyvjYBgsTz3PC/MbkZgUY+9okkfcdUHq06cPzz//PGfOnMkwPSYmBm9v73sOdisFChQgICDA9lq2bBmlSpWifv36GIbBhx9+yCuvvELHjh2pVKkSc+fOJSEhgfnz59vyzZo1iw8++IAmTZpQvXp1vv32W/bv389vv/2WbblFRCRrta9emL7tP6RCRD2crVY2GnE8v6AxMXG6cEju3V0XpODgYEJDQylbtizdu3dnypQpTJw4kX79+vHee+9lZcZbSklJ4dtvv+XZZ5/FZDJx8uRJIiMjadasmW2Ms7Mz9evXZ8uWLQDs2rWL1NTUDGMCAwOpVKmSbczNJCcnExsbm+ElIiL21aBcQUb1mEjp80/imW5lrymZ/j+15urVC/aOJrmcw92+MTIykj179vDXX3+xd+9e5syZw9GjRzGZTEyaNInly5dTpUoVqlSpQosWLbIys82SJUu4cuUKffr0sWUC8Pf3zzDO39+f06dP28Y4OTmRP3/+G8Zcf8jw3yZOnMibb76ZhelFRCQrVC+an3eefY1xs72JLDCfw5Y0Ri5qy8fd/8DRwcXe8SSXuus9SAULFqR58+aMGTOG+fPnc+jQIeLi4ti8eTNDhw4lX758LF26lK5du2Zl3gxmzZpFy5YtCQwMzDDdZDJl+NkwjBumXe92Y8aNG0dMTIztFRYWdvfBRUQkS5Uu6MmbvYZRMLIDzlaDzUY87yzqgGG12jua5FJ3vQfpZlxcXKhVqxa1atXKysXe1OnTp/ntt99YvHixbVpAQABwbS9RoUKFbNOjoqJse5UCAgJISUkhOjo6w16kqKgo6tate8vPc3Z2xtnZOatXQ0REskiFQC9GdA7mkx8jOVjoTxYnhRO4oh8DWs+2dzTJhXLto0Zmz55NwYIFefLJJ23TSpQoQUBAgO3KNrh2ntL69ett5adGjRo4OjpmGBMREcGBAwf+syCJiEjO91hpP55uMZ5qUaUBmHFpJ0vXv2HnVJIbZekepPvFarUye/ZsevfujYPD/6+CyWQiODiYCRMmUKZMGcqUKcOECRNwc3Oje/fuAHh7e9OvXz9GjhyJr68vPj4+jBo1isqVK9OkSRN7rZKIiGSRDtWLEHHlPcx7+7PT5xJvnFxEQe9iPFrtWXtHk1wkVxak3377jTNnzvDsszf+wz5mzBgSExMZPHgw0dHR1K5dm9WrV+Pp6WkbM23aNBwcHOjcuTOJiYk0btyYOXPmYLFY7udqiIhINhnUoDTnoqeSdu559nom8+Keqcz1DKJsqab2jia5hMnQQ2zuSmxsLN7e3sTExODl5WXvOCIicp10q8GQueu4mPwCoa4GBdMNvmu9kICCFe0dTewos9/fufYcJBERkf9iMZuY1uMJnFJfJyjFSpTFxODlPYi/GmXvaJILqCCJiEie5epk4eO+bXCPGYxPmpWj5nSCf2pDamqivaNJDqeCJCIieZqvhzPv9+1DwQtP42q1so0E3vipne6RJP9JBUlERPK8Yr7uvNojmNKRT2AxDH5JieDTX3rbO5bkYCpIIiLyQKgalI9+7cdTNaocAJ9d2UvIHy/bOZXkVCpIIiLywGhc3p/m9adR83IBAN48vZTNuz6zcyrJiVSQRETkgdK9dlEqlp9B9VgX0k0mRuybwZFjK+0dS3IYFSQREXngjGxeHn+/j3go0UyC2cSgDaOJiPzL3rEkB1FBEhGRB47JZGJC50fJZ36boikGFy0mBq14hti4c/aOJjmECpKIiDyQHC1mpvVuRb6rwfimWTlusfLConakpFy1dzTJAVSQRETkgeXh7MC0Z3sScLkbblYrO01JvPZTG90jSVSQRETkwVbQy4V3er9A6ajGWAyDFakXmP5zD3vHEjtTQRIRkQde6YKeBHcZT9Woaw+y/Sr2AD/+NtrOqcSeVJBERESAWsV96NLyQ2pe8gfg3fCVbNjxsZ1Tib2oIImIiPxPq8qFeKzmZ1SPdSPdZGLUgc85GLrU3rHEDlSQRERE/uW5J0pTrugnVEgwk2g2MWTzy5w9t8veseQ+U0ESERG5zrg2NSjkPpliyQaXLCYGrupLTGyYvWPJfaSCJCIich2z2cSkbk3xTxtDgTQrpywGwxd3ICU53t7R5D5RQRIREbkJF0cLU/t0o3BMb9ytVnabknn5x9ZYren2jib3gQqSiIjILXi7OTLp2WGUvtAcB8Pg1/RLTAvpYu9Ych+oIImIiPyHwvlcGdfzDapeqAbAnPhQ5v/6gn1DSbZTQRIREbmNioHe9Gs/jZqXAgGYHLGWP7ZNs3MqyU4qSCIiIpnweJkCtH7iSx6O8cBqMjHm0Cz2H15k71iSTVSQREREMqlTzaLUqvAFFa5aSDKbGLL1DcLCt9k7lmQDFSQREZE7MKRxJcoUmEaJZINoi4mBq5/jypVT9o4lWUwFSURE5A6YTCbGd6xPMcurFEy1csYCQ0I6kZQUY+9okoVUkERERO6Qg8XM5F5PUTyxPx7pVvaZU3jph9ZY09PsHU2yiAqSiIjIXXBzcmBK30GUu9IaR8NgrXGFKYufsncsySIqSCIiInfJ18OZ8c+8TpWLNQD4LuE481YOsXMqyQoqSCIiIveguJ87L3T+kFqXggB47/x6ftsy2c6p5F6pIImIiNyj6kXz063ZLB6O8cIwmXgpdB57Dy60dyy5BypIIiIiWaBppUI0rfk1la46kmw2MXTb25w+s9neseQuqSCJiIhkkZ51y1Gj2CeUTIIYi4mBvw3kcvQJe8eSu6CCJCIikoVGtnqUh9zfxj/VSrgFBod0IjEx2t6x5A6pIImIiGQhk8nE213bUjZtCJ7pVg5a0hj9Q2vS01LtHU3ugAqSiIhIFnNyMDO5T38qxHbAyWqwnlgm/tQBwzDsHU0ySQVJREQkG3i6OPLus69SLfpRABYmn2bO8gF2TiWZlasKUlpaGq+++iolSpTA1dWVkiVL8tZbb2G1Wm1jDMNg/PjxBAYG4urqSoMGDTh48GCG5SQnJzNs2DD8/Pxwd3enbdu2hIeH3+/VERGRPM7fy4WXekyj1qXiAEy9tJWVG9+1byjJlFxVkCZPnsxnn33GjBkzOHz4MFOmTOG9997j448/to2ZMmUKU6dOZcaMGezYsYOAgACaNm1KXFycbUxwcDAhISEsWLCATZs2ER8fT+vWrUlPT7fHaomISB5Wxt+T59t+zcNX8gHw6vHv2bVvnn1DyW2ZjFx0QLR169b4+/sza9Ys27ROnTrh5ubGvHnzMAyDwMBAgoODGTt2LHBtb5G/vz+TJ09mwIABxMTEUKBAAebNm0eXLl0AOHfuHEFBQaxYsYLmzZtnKktsbCze3t7ExMTg5eWV9SsrIiJ5yi97TjJ/SycOeKTilW7l28YzKVHsCXvHeuBk9vs7V+1BqlevHmvXruXvv/8G4K+//mLTpk20atUKgJMnTxIZGUmzZs1s73F2dqZ+/fps2bIFgF27dpGampphTGBgIJUqVbKNuZnk5GRiY2MzvERERDKrTfUSNCr/FaWSINZiZuDawVy8GGrvWHILuaogjR07lm7duvHQQw/h6OhI9erVCQ4Oplu3bgBERkYC4O/vn+F9/v7+tnmRkZE4OTmRP3/+W465mYkTJ+Lt7W17BQUFZeWqiYjIA6B/o4ep5TuFQqlWzllMDFrahYSES/aOJTeRqwrSwoUL+fbbb5k/fz67d+9m7ty5vP/++8ydOzfDOJPJlOFnwzBumHa9240ZN24cMTExtldYWNjdr4iIiDywxnVsQRXLCLzTrRyxpDPihydJS0u2dyy5Tq4qSKNHj+all16ia9euVK5cmV69evHiiy8yceJEAAICAgBu2BMUFRVl26sUEBBASkoK0dHRtxxzM87Oznh5eWV4iYiI3Cmz2cQ7PftQNbEzzlaDzaarvP1DO4x/XZEt9perClJCQgJmc8bIFovFdpl/iRIlCAgIYM2aNbb5KSkprF+/nrp16wJQo0YNHB0dM4yJiIjgwIEDtjEiIiLZycXRwrt9x/FwTD1MhsHi1LN8/ks/e8eSf8lVBalNmza8++67LF++nFOnThESEsLUqVPp0KEDcO3QWnBwMBMmTCAkJIQDBw7Qp08f3Nzc6N69OwDe3t7069ePkSNHsnbtWvbs2UPPnj2pXLkyTZo0sefqiYjIAySfmxOv957KI9FlAPjkyk5+WfeGnVPJP3LVZf5xcXG89tprhISEEBUVRWBgIN26deP111/HyckJuHYu0Ztvvsnnn39OdHQ0tWvX5pNPPqFSpUq25SQlJTF69Gjmz59PYmIijRs35tNPP72jE691mb+IiGSFg2ev8N6iduzyvoyjYfBZ1ZE8Ur2vvWPlWZn9/s5VBSknUUESEZGssu7wOb74vS37PZLxtFqZV/8jSpXUUY3skCfvgyQiIpIXNSgfSLsacymdaCLObGbgH8FciDpk71gPNBUkERGRHKDLoxVpGDSNwBQrkQ4mBv7SjYT4KHvHemCpIImIiOQQw1o1orb7OPKlW/nbwcoLP7YhLTXJ3rEeSCpIIiIiOYTJZOL1Lt2pldoLZ6vBn+YEXl/YRvdIsgMVJBERkRzEwWLmnb6jeCS+EWbD4Jf0SD75+Rl7x3rgqCCJiIjkMG5ODrzV9z1qXykPwOexf7F47St2TvVgUUESERHJgfw8nBnXcw61YgoA8HbYz2zZ+bmdUz04VJBERERyqBJ+7gxpu5AqcS6kmUyM2D+d0GMr7R3rgaCCJCIikoPVKF6AXo9/T9lEM1fNZgZvGM358/vtHSvPU0ESERHJ4VpULU3bcjMpkmIQZTExYFkP4uMi7B0rT1NBEhERyQV6N6xLI983yJ9m5biDwbAf25KammDvWHmWCpKIiEguMarDU9Sz9MPFarDTksTL37fWPZKyiQqSiIhILmEymRjfM5jHkpphNgxWGRf4cHF3e8fKk1SQREREchEnBzNv9Z1M3dgqAHx99SALfx1l51R5jwqSiIhILuPl4sgbvb+mdkwAAJMiVrF+2ww7p8pbVJBERERyoQBvF0Y//SPV4t1IM5kYe2gmh0J/sXesPEMFSUREJJcqVygfA5ospFyihatmM0M3jePy5WP2jpUnqCCJiIjkYvXKFadr1a8onGJwwcHE6CXdsKan2TtWrqeCJCIikss9Vacmj3kMx9lqsN2SxMyfn7V3pFxPBUlERCQPGPN0P2rHVwfgy9jd7Pxrnp0T5W4qSCIiInmAs4OFMV1nUi3ejXSTibE7J3Ml+qS9Y+VaKkgiIiJ5RLECHnSu/SWBKQZRDibGhHTVnbbvkgqSiIhIHtKmZhXquQ/GyWqw1ZLAl7/0t3ekXEkFSUREJI8Z03kAj16tBMDM6G3sPbDQzolyHxUkERGRPMbZwcLYrl9R5aoLaSYTY7a9TWxMmL1j5SoqSCIiInlQUT8Puj7yJf6pViIcTLy0uLPOR7oDKkgiIiJ5VJua1ajvNgAHw2CjOZ5ZywbbO1KuoYIkIiKSh43tPJS68eUB+PTyJvYdCrFzotxBBUlERCQPc3IwM7brbCpfdSLVZGLM1teIj4uwd6wcTwVJREQkjyvq50G3Wp9RMNXKWQcT4356Sucj3YYKkoiIyAOgTa1aNHTth4NhsM4cy9wVw+0dKUdTQRIREXlAjOkSTN2rZQD4+MI6Dh75xc6Jci4VJBERkQeEk4OZMV3mUjHBkRSzidGbXiYhPsresXIkFSQREZEHSDE/L3rU+BS/NCthjvDyjzof6WZUkERERB4wbR55lMYuz2AxDNaao/lu1Sh7R8pxVJBEREQeQGO6jKZufEkAPjy/miNHV9k5Uc6igiQiIvIAcnIw81K3bymf6ECy2cSo9aNJSLho71g5Rq4rSHFxcQQHB1OsWDFcXV2pW7cuO3bssM03DIPx48cTGBiIq6srDRo04ODBgxmWkZyczLBhw/Dz88Pd3Z22bdsSHh5+v1dFRETEror6etGr+gx80qycdoTXfnja3pFyjFxXkJ577jnWrFnDvHnz2L9/P82aNaNJkyacPXsWgClTpjB16lRmzJjBjh07CAgIoGnTpsTFxdmWERwcTEhICAsWLGDTpk3Ex8fTunVr0tPT7bVaIiIidtGm9mM0de6G2TBYbbrI96vG2jtSjmAyDMOwd4jMSkxMxNPTk59//pknn3zSNr1atWq0bt2at99+m8DAQIKDgxk79toGTk5Oxt/fn8mTJzNgwABiYmIoUKAA8+bNo0uXLgCcO3eOoKAgVqxYQfPmzTOVJTY2Fm9vb2JiYvDy8sr6lRUREblPUtOtvPBZGzZ6nMHVamXe49MpV7qxvWNli8x+f+eqPUhpaWmkp6fj4uKSYbqrqyubNm3i5MmTREZG0qxZM9s8Z2dn6tevz5YtWwDYtWsXqampGcYEBgZSqVIl25ibSU5OJjY2NsNLREQkL3C0mBnb5TseSrSQaDYzZl0wSYnR9o5lV7mqIHl6elKnTh3efvttzp07R3p6Ot9++y3btm0jIiKCyMhIAPz9/TO8z9/f3zYvMjISJycn8ufPf8sxNzNx4kS8vb1tr6CgoCxeOxEREfsp5pePZ6pNJ3+alROO8PoDfj5SripIAPPmzcMwDAoXLoyzszPTp0+ne/fuWCwW2xiTyZThPYZh3DDtercbM27cOGJiYmyvsLCwe1sRERGRHKbNo0/Q3PlpTIbBSs7zw+rX7B3JbnJdQSpVqhTr168nPj6esLAwtm/fTmpqKiVKlCAgIADghj1BUVFRtr1KAQEBpKSkEB0dfcsxN+Ps7IyXl1eGl4iISF4zptvrPHa1CAAfnF3M8ZMb7ZzIPnJdQfqHu7s7hQoVIjo6ml9//ZV27drZStKaNWts41JSUli/fj1169YFoEaNGjg6OmYYExERwYEDB2xjREREHlSOFjPjunxP2SQzCWYzo9YOISU57vZvzGNyXUH69ddfWbVqFSdPnmTNmjU0bNiQcuXK0bdvX0wmE8HBwUyYMIGQkBAOHDhAnz59cHNzo3v37gB4e3vTr18/Ro4cydq1a9mzZw89e/akcuXKNGnSxM5rJyIiYn9F/fLTu8o0vNOtHHM0eGPBU/aOdN852DvAnYqJiWHcuHGEh4fj4+NDp06dePfdd3F0dARgzJgxJCYmMnjwYKKjo6lduzarV6/G09PTtoxp06bh4OBA586dSUxMpHHjxsyZMyfDeUwiIiIPsrZ1GrH/eAcWpP/MMs5R67c36djkDXvHum9y1X2QchLdB0lERPK61HQrwz5vzmb3SDysVr5r9BUli9Wxd6x7kifvgyQiIiL3j6PFzLinF1I6yUS82cyYNQNJTb5q71j3hQqSiIiI3FKxAj48W+V9PNOthDpaeWvhg3F/JBUkERER+U9t6jSjlWNrAJYYYfz8+0Q7J8p+KkgiIiJyW2O7T+SxqwUBmHzqW06H77BzouylgiQiIiK39c/5SCWTTcRZzIxd2Z/0tBR7x8o2KkgiIiKSKcUK+PFspYm4Wa0cdErno8XP2TtStlFBEhERkUxrV/dJGlsfBeC7q7s5cGSlnRNlDxUkERERuSPjus+kUqIjKWYTr28cS2pqgr0jZTkVJBEREbkjnq5O9K/9MZ7pVo46Gbz3Yx97R8pyKkgiIiJyxxpVf4zmlkYA/JhyiB37Ftk5UdZSQRIREZG7MqbrVKoluJBmMvHW9vEkJ8XaO1KWUUESERGRu+Lq7MiQ+p+RL93KKUeY8ENPe0fKMipIIiIictcerVCDJ52fBGCJ9QQbdnxj50RZQwVJRERE7snIrpOomeCB1WRi4l9TSEi4ZO9I90wFSURERO6Jo8XMi82+xjfNSrijiTd/6G7vSPdMBUlERETuWZVS5Wnv1RmAFaZz/Lpppp0T3RsVJBEREckSwzu9Tp2E/AC8H/oJsbERdk5091SQREREJEuYzSZGtfkG/1QrkQ4m3viph70j3TUVJBEREckyZYsU5+kCfQH4zXKBJb+/b+dEd0cFSURERLLU821H8nhiQQA+Ojmbi5dO2znRnVNBEhERkSxlMpl4qeM8AlMNLjqYeT0k9x1qU0ESERGRLFe0YCA9g4ZgNgw2OsYwf9Wb9o50R1SQREREJFv0aj6IBslFAPjs3A+ciwy1c6LMU0ESERGRbPNq5/kUTTGItph5/ZfeGFarvSNligqSiIiIZJsC+X3oW3oMDobBNqerzF42zt6RMkUFSURERLLVUw2foUlqKQC+uriMk+F/2TnR7akgiYiISLZ7tdu3lEw2EWcxM35Fvxx/qE0FSURERLKdt4cnAyu/gaNhsNs5mU8Wv2DvSP9JBUlERETui5Z1OtHSWhGAeXG/c/jYFjsnujUVJBEREblvXu42h7LJZhLMZt76fQjp6an2jnRTKkgiIiJy37i7ujKs5mScrQYHnNOY+sNAe0e6KRUkERERua8aPNyCtpYaAPyQtI09h3+3c6IbqSCJiIjIffdSty+pkORAktnEhI0jSEtNtnekDFSQRERE5L5zcnRiVL3puFmtHHFOZ9LCvvaOlIEKkoiIiNhFrYqP09H5cQAWp+1j856ldk70/1SQRERExG5Gdf6EqknOpJpMvLfzVZKSr9o7EqCCJCIiInZkcbAwtvFMPNOtHHcyePf7Z+wdCchhBWnDhg20adOGwMBATCYTS5YsyTDfMAzGjx9PYGAgrq6uNGjQgIMHD2YYk5yczLBhw/Dz88Pd3Z22bdsSHh6eYUx0dDS9evXC29sbb29vevXqxZUrV7J57URERORmKpeuRRfPFgAsI5Tfti2wc6IcVpCuXr1K1apVmTFjxk3nT5kyhalTpzJjxgx27NhBQEAATZs2JS4uzjYmODiYkJAQFixYwKZNm4iPj6d169akp6fbxnTv3p29e/eyatUqVq1axd69e+nVq1e2r5+IiIjc3LCOU6iZ5EaaycSH+94l/mqMfQMZORRghISE2H62Wq1GQECAMWnSJNu0pKQkw9vb2/jss88MwzCMK1euGI6OjsaCBQtsY86ePWuYzWZj1apVhmEYxqFDhwzA+PPPP21jtm7dagDGkSNHMp0vJibGAIyYmJi7XUURERH5l6NnDhj1ZlUwKs2pZIye1SpbPiOz3985ag/Sfzl58iSRkZE0a9bMNs3Z2Zn69euzZcu1Z7ns2rWL1NTUDGMCAwOpVKmSbczWrVvx9vamdu3atjGPPvoo3t7etjE3k5ycTGxsbIaXiIiIZJ3SQRXp5dMJgF/Np1m6YZbdsuSaghQZGQmAv79/hun+/v62eZGRkTg5OZE/f/7/HFOwYMEbll+wYEHbmJuZOHGi7Zwlb29vgoKC7ml9RERE5EbPt3+LOsleeFkNYq9etFsOB7t98l0ymUwZfjYM44Zp17t+zM3G324548aNY8SIEbafY2NjVZJERESywevtvyMpKZ7SRSvZLUOuKUgBAQHAtT1AhQoVsk2Pioqy7VUKCAggJSWF6OjoDHuRoqKiqFu3rm3M+fPnb1j+hQsXbtg79W/Ozs44OztnybqIiIjIrRUpWNzeEXLPIbYSJUoQEBDAmjVrbNNSUlJYv369rfzUqFEDR0fHDGMiIiI4cOCAbUydOnWIiYlh+/bttjHbtm0jJibGNkZEREQebDlqD1J8fDzHjh2z/Xzy5En27t2Lj48PRYsWJTg4mAkTJlCmTBnKlCnDhAkTcHNzo3v37gB4e3vTr18/Ro4cia+vLz4+PowaNYrKlSvTpEkTAMqXL0+LFi3o378/n3/+OQDPP/88rVu3ply5cvd/pUVERCTHyVEFaefOnTRs2ND28z/n/PTu3Zs5c+YwZswYEhMTGTx4MNHR0dSuXZvVq1fj6elpe8+0adNwcHCgc+fOJCYm0rhxY+bMmYPFYrGN+e677xg+fLjtare2bdve8t5LIiIi8uAxGYZh2DtEbhQbG4u3tzcxMTF4eXnZO46IiIhkQma/v3PNOUgiIiIi94sKkoiIiMh1VJBERERErqOCJCIiInIdFSQRERGR66ggiYiIiFxHBUlERETkOipIIiIiItdRQRIRERG5To561Ehu8s8NyGNjY+2cRERERDLrn+/t2z1IRAXpLsXFxQEQFBRk5yQiIiJyp+Li4vD29r7lfD2L7S5ZrVbOnTuHp6cnJpPJ3nFytdjYWIKCgggLC9Nz7exI28H+tA1yBm0H+8vObWAYBnFxcQQGBmI23/pMI+1Buktms5kiRYrYO0ae4uXlpf8Y5QDaDvanbZAzaDvYX3Ztg//ac/QPnaQtIiIich0VJBEREZHrqCCJ3Tk7O/PGG2/g7Oxs7ygPNG0H+9M2yBm0HewvJ2wDnaQtIiIich3tQRIRERG5jgqSiIiIyHVUkERERESuo4IkIiIich0VJMkWEydOpFatWnh6elKwYEHat29PaGjoDeMOHz5M27Zt8fb2xtPTk0cffZQzZ87Y5icnJzNs2DD8/Pxwd3enbdu2hIeH389VybUysw1MJtNNX++9955tjLbBvcnMdoiPj2fo0KEUKVIEV1dXypcvz8yZMzOM0Xa4e5nZBufPn6dPnz4EBgbi5uZGixYtOHr0aIYx2gb3ZubMmVSpUsV288c6deqwcuVK23zDMBg/fjyBgYG4urrSoEEDDh48mGEZ93UbGCLZoHnz5sbs2bONAwcOGHv37jWefPJJo2jRokZ8fLxtzLFjxwwfHx9j9OjRxu7du43jx48by5YtM86fP28bM3DgQKNw4cLGmjVrjN27dxsNGzY0qlataqSlpdljtXKVzGyDiIiIDK+vv/7aMJlMxvHjx21jtA3uTWa2w3PPPWeUKlXK+OOPP4yTJ08an3/+uWGxWIwlS5bYxmg73L3bbQOr1Wo8+uijxuOPP25s377dOHLkiPH888/fsJ20De7N0qVLjeXLlxuhoaFGaGio8fLLLxuOjo7GgQMHDMMwjEmTJhmenp7GokWLjP379xtdunQxChUqZMTGxtqWcT+3gQqS3BdRUVEGYKxfv942rUuXLkbPnj1v+Z4rV64Yjo6OxoIFC2zTzp49a5jNZmPVqlXZmjcvutk2uF67du2MRo0a2X7WNsh6N9sOFStWNN56660M4x5++GHj1VdfNQxD2yGrXb8NQkNDDcD2RW0YhpGWlmb4+PgYX375pWEY2gbZJX/+/MZXX31lWK1WIyAgwJg0aZJtXlJSkuHt7W189tlnhmHc/22gQ2xyX8TExADg4+MDXHvY7/LlyylbtizNmzenYMGC1K5dmyVLltjes2vXLlJTU2nWrJltWmBgIJUqVWLLli33NX9ecP02uN758+dZvnw5/fr1s03TNsh6N9sO9erVY+nSpZw9exbDMPjjjz/4+++/ad68OaDtkNWu3wbJyckAuLi42MZYLBacnJzYtGkToG2Q1dLT01mwYAFXr16lTp06nDx5ksjIyAy/X2dnZ+rXr2/7/d7vbaCCJNnOMAxGjBhBvXr1qFSpEgBRUVHEx8czadIkWrRowerVq+nQoQMdO3Zk/fr1AERGRuLk5ET+/PkzLM/f35/IyMj7vh652c22wfXmzp2Lp6cnHTt2tE3TNshat9oO06dPp0KFChQpUgQnJydatGjBp59+Sr169QBth6x0s23w0EMPUaxYMcaNG0d0dDQpKSlMmjSJyMhIIiIiAG2DrLJ//348PDxwdnZm4MCBhISEUKFCBdvv0N/fP8P4f/9+7/c2cMjyJYpcZ+jQoezbt8/2lxhc24ME0K5dO1588UUAqlWrxpYtW/jss8+oX7/+LZdnGAYmkyl7Q+cxN9sG1/v666/p0aNHhr+ib0Xb4O7cajtMnz6dP//8k6VLl1KsWDE2bNjA4MGDKVSoEE2aNLnl8rQd7tzNtoGjoyOLFi2iX79++Pj4YLFYaNKkCS1btrzt8rQN7ky5cuXYu3cvV65cYdGiRfTu3dv2RzFww+8yM7/f7NoG2oMk2WrYsGEsXbqUP/74gyJFitim+/n54eDgQIUKFTKML1++vO0qtoCAAFJSUoiOjs4wJioq6oa/MuTWbrUN/m3jxo2Ehoby3HPPZZiubZB1brUdEhMTefnll5k6dSpt2rShSpUqDB06lC5duvD+++8D2g5Z5b/+XahRo4btizsiIoJVq1Zx6dIlSpQoAWgbZBUnJydKly5NzZo1mThxIlWrVuWjjz4iICAA4IY9Qf/+/d7vbaCCJNnCMAyGDh3K4sWL+f33323/kfmHk5MTtWrVuuFS27///ptixYoB1/6D5ejoyJo1a2zzIyIiOHDgAHXr1s3+lcjlbrcN/m3WrFnUqFGDqlWrZpiubXDvbrcdUlNTSU1NxWzO+J9ji8Vi29Oq7XBv7uTfBW9vbwoUKMDRo0fZuXMn7dq1A7QNsothGCQnJ1OiRAkCAgIy/H5TUlJYv3697fd737dBlp/2LWIYxqBBgwxvb29j3bp1GS4jT0hIsI1ZvHix4ejoaHzxxRfG0aNHjY8//tiwWCzGxo0bbWMGDhxoFClSxPjtt9+M3bt3G40aNdJltZmUmW1gGIYRExNjuLm5GTNnzrzpcrQN7k1mtkP9+vWNihUrGn/88Ydx4sQJY/bs2YaLi4vx6aef2sZoO9y9zGyDH374wfjjjz+M48ePG0uWLDGKFStmdOzYMcNytA3uzbhx44wNGzYYJ0+eNPbt22e8/PLLhtlsNlavXm0YxrXL/L29vY3Fixcb+/fvN7p163bTy/zv1zZQQZJsAdz0NXv27AzjZs2aZZQuXdpwcXExqlatmuG+L4ZhGImJicbQoUMNHx8fw9XV1WjdurVx5syZ+7gmuVdmt8Hnn39uuLq6GleuXLnpcrQN7k1mtkNERITRp08fIzAw0HBxcTHKlStnfPDBB4bVarWN0Xa4e5nZBh999JFRpEgRw9HR0ShatKjx6quvGsnJyRmWo21wb5599lmjWLFihpOTk1GgQAGjcePGtnJkGNfuR/XGG28YAQEBhrOzs/HEE08Y+/fvz7CM+7kNTIZhGFm/X0pEREQk99I5SCIiIiLXUUESERERuY4KkoiIiMh1VJBERERErqOCJCIiInIdFSQRERGR66ggiYiIiFxHBUlERETkOipIIiIiItdRQRIRERG5jgqSiMi/XLp0iYIFC3Lq1Kk7et9TTz3F1KlTsyeUiNx3KkgikietWrUKk8n0n6+VK1fe8L6JEyfSpk0bihcvbpvWp08f2rdvn2HcTz/9hIuLC1OmTAHg9ddf59133yU2NjY7V0tE7hMVJBHJk+rXr09ERITt5evry8svv5xhWtOmTTO8JzExkVmzZvHcc8/957K/+uorevTowYwZMxgzZgwAVapUoXjx4nz33XfZtk4icv+oIIlInuTq6kpAQAABAQGkp6dz6dIl6tWrZ5sWEBCAg4NDhvesXLkSBwcH6tSpc8vlTpkyhaFDhzJ//vwbilTbtm35/vvvs2V9ROT+UkESkTxvz549ANSoUeM/x23YsIGaNWvecv5LL73E22+/zbJly+jUqdMN8x955BG2b99OcnLyvQUWEbtzuP0QEZHcbffu3RQuXJiCBQv+57hTp04RGBh403krV67k559/Zu3atTRq1OimYwoXLkxycjKRkZEUK1bsnnOLiP1oD5KI5Hm7d+/m4Ycfvu24xMREXFxcbjrvn3OMXn/9deLi4m46xtXVFYCEhIS7DysiOYIKkojkebt3777t4TUAPz8/oqOjbzqvcOHCrF+/noiICFq0aHHTknT58mUAChQocG+BRcTuVJBEJE+7dOkSYWFhmdqDVL16dQ4dOnTL+UWLFmX9+vVERUXRrFmzGy7pP3DgAEWKFMHPz++ec4uIfakgiUietmvXLoBMFaTmzZtz8ODBW+5FAihSpAjr1q3j0qVLNGvWjJiYGNu8jRs30qxZs3sPLSJ2p4IkInnanj17KFiwIIULF77t2MqVK1OzZk1++OGH/xz3z+G2K1eu0LRpU65cuUJSUhIhISH0798/q6KLiB2ZDMMw7B1CRCSnWLFiBaNGjeLAgQOYzZn/G/KTTz7h559/ZvXq1dmYTkTuF13mLyLyL61ateLo0aOcPXuWoKCgTL/P0dGRjz/+OBuTicj9pD1IIiIiItfROUgiIiIi11FBEhEREbmOCpKIiIjIdVSQRERERK6jgiQiIiJyHRUkERERkeuoIImIiIhcRwVJRERE5DoqSCIiIiLX+T/87pNZtg5YlAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 153, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ax.plot(reversible,1e-2*pa,label='Reversible')\n", + "ax.legend(frameon=False)\n", + "fig" + ] + }, + { + "cell_type": "markdown", + "id": "40a80711-07c3-48d9-815c-c8e4c0b26b8a", + "metadata": {}, + "source": [ + "## Dry adiabat to LCL, moist adiabat above\n", + "Generally rising air parcels are initially subsaturated. In such cases, it is more appropriate to follow the dry adiabat up to the level of saturation, or the [lifting condensation level (LCL)](https://glossary.ametsoc.org/wiki/Lifting_condensation_level). The function parcel_profile computes this temperature profile.\n", + "\n", + "To begin, we must specify the initial moisture content in the parcel. parcel_profile takes moisture in the form of dew point temperature. MetPy has functions that convert alternative quantities for moisture such as [relative humidity](https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.dewpoint_from_relative_humidity.html) and [specific humidity](https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.dewpoint_from_specific_humidity.html) to dew point temperature." + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "id": "be06a7f8-2c4c-45a1-97b4-f935eeefc2e7", + "metadata": {}, + "outputs": [], + "source": [ + "td=290*units.K # surface dew point temperature" + ] + }, + { + "cell_type": "markdown", + "id": "12723765-1a05-4982-9def-8130d57d86c0", + "metadata": {}, + "source": [ + "Calculate the temperature profile of an initially subsaturated parcel as follows" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "id": "5fa8ae50-e18c-4ef8-9c09-c8b8c31f860c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[300.0 293.39145714174094 287.10310830489635 279.4857760916165 272.98867697346196 264.624969177309 253.1546948219009 236.41984930654863] kelvin\n" + ] + } + ], + "source": [ + "subsaturated=parcel_profile(pa,t1,td,lapse_type='standard')\n", + "print(subsaturated)" + ] + }, + { + "cell_type": "code", + "execution_count": 156, + "id": "deaae3ae-eece-4f7a-b9cb-df59c41f1ae0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGyCAYAAAAf/ztNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACaKklEQVR4nOzdd3gU5d7G8e9sSU82gZCEQIDQQgm9SVFAeu9FQEGq0ozSRFFABQSkCAhykI5I6NKlKEjvKE1qaCEhlPSe3Xn/CO5rKFIkmZTf57r2Oiezz87eS8DceeaZGUVVVRUhhBBCCGGl0zqAEEIIIURmIwVJCCGEEOIRUpCEEEIIIR4hBUkIIYQQ4hFSkIQQQgghHiEFSQghhBDiEVKQhBBCCCEeYdA6QFZlsVi4ffs2zs7OKIqidRwhhBBCPAdVVYmOjsbb2xud7unzRFKQXtLt27fx8fHROoYQQgghXsLNmzfJnz//U5+XgvSSnJ2dgdQ/YBcXF43TCCGEEOJ5REVF4ePjY/05/jRSkF7S34fVXFxcpCAJIYQQWcyzlsfIIm0hhBBCiEdIQRJCCCGEeIQUJCGEEEKIR0hBEkIIIYR4hBQkIYQQQohHSEESQgghhHiEFCQhhBBCiEdIQRJCCCGEeIQUJCGEEEKIR0hBEkIIIYR4RJYqSHPmzKFs2bLW23tUr16drVu3Wp9XVZUxY8bg7e2Nvb09derU4ezZs2n2kZiYyKBBg3B3d8fR0ZGWLVty69atjP4oQgghhMjEslRByp8/P19//TXHjh3j2LFjvPnmm7Rq1cpagiZNmsTUqVOZNWsWR48excvLiwYNGhAdHW3dR0BAAOvWrWPFihXs27ePmJgYmjdvjtls1upjCSGEECKTUVRVVbUO8V/kypWLyZMn07NnT7y9vQkICGDEiBFA6myRp6cnEydOpF+/fkRGRpInTx6WLl1Kp06dALh9+zY+Pj5s2bKFRo0aPff7RkVFYTKZiIyMfKU3q026cQNUFZuCBV/ZPkXmFHQvFgBfZwuEnoGC1QEIjQ0lMjESv1x+WsYTQohs6Xl/fmepGaR/MpvNrFixgtjYWKpXr05QUBChoaE0bNjQOsbW1pbatWtz4MABAI4fP05ycnKaMd7e3vj7+1vHPE1iYiJRUVFpHunh3nezudKoMTd69iLql+2oycnp8j5Ce+M2n6f+1D1snT8aFjaGJa3h1jFmnZxFh40dGPH7CG5G3dQ6phBC5EhZriCdPn0aJycnbG1tee+991i3bh2lSpUiNDQUAE9PzzTjPT09rc+FhoZiY2ODm5vbU8c8zYQJEzCZTNaHj4/PK/xUqVRVxRIXC4pC7IEDBH/wAZfefJOw6dNJDg5+5e8ntJOUYkFVVcwWleu3w0hW9XD1Nyw/1CPp6m+oqGwJ2kLL9S358uCXhMWFaR1ZCCFylCxXkPz8/Dh16hSHDh3i/fffp3v37pw7d876vKIoacarqvrYtkc9z5iRI0cSGRlpfdy8+ep/s1cUhfwzZ1Jkxw5y9+uH3t0d89173P9+LpfrN+BGv35E//obqqyXyvJsDDrm96jCuv41OFB4MG8mfcOqlDdQVYVJV88QGBxCTZ0zKWoKKy+upNnaZkw9PpXIxEitowshRI6Q5dcg1a9fnyJFijBixAiKFCnCiRMnqFChgvX5Vq1a4erqyuLFi/n111+pV68eDx48SDOLVK5cOVq3bs3YsWOf+33Taw3SP6lJSUT/+hvhgSuIO3jIut3g5YVrh/a4tm+P8ZEZM5E1Hb32gGk7LhJy9QwfGNbQUncQnaJy1M6OGfkKc8oSA4Cz0Zke/j3oVrIbDkYHjVMLIUTWk+3XIP1NVVUSExPx9fXFy8uLHTt2WJ9LSkpiz5491KhRA4BKlSphNBrTjAkJCeHMmTPWMZmJYmODS+NGFFy4kCLbtpKrZ0/0rq6khIZyb+YsLr9Zj5sDBxKzdy+qxaJ1XPEfVCmUi+V9XmN87zb8mO8zGiVNZLO5KlUSElhy5Rwz79yjuM6B6ORoZp6cSZO1Tfjx/I8kmZO0ji6EENlSlppB+uSTT2jSpAk+Pj5ER0ezYsUKvv76a7Zt20aDBg2YOHEiEyZMYOHChRQrVozx48eze/duLly4gLOzMwDvv/8+mzZtYtGiReTKlYuhQ4dy//59jh8/jl6vf+4sGTGD9CSWxESit+8gIjCQuGPHrNuN+fPj2rEjrm3bYHB3z7A84tVTVZX9l+8zZccFEm+e4kPDahroT2ABtjg5M9vTm5uWeAC8Hb3pX74/zQs3R697/r+/QgiRUz3vz+8sVZB69erFrl27CAkJwWQyUbZsWUaMGEGDBg2A1B8sY8eOZe7cuYSHh1OtWjW+++47/P39rftISEhg2LBhLF++nPj4eOrVq8fs2bNfeNG1VgXpnxIvXyY8cCWRP/+M5e+z6oxGnOvXw61TJxyqVXvm2iqReamqyu6Ld5m24yJK8HE+Mqymtv5PkoG1JhNz3T24a0kEoLCpMIMqDKJegXryPRdCiH+RLQtSZpIZCtLfLPHxRG3dRkRgIPF//GHdblOoEK4dO2Jq0xrDI2fuiaxDVVV2ng9j6o6LOIQeZYhhFTX054hXFJa7urHAzY0oNfVyEP65/fmg0ge8lvc1jVMLIUTmJAUpnWWmgvRPCX/9RXhgIFEbNmKJTb0QoWJjg3OjRrh17oR9xYoyw5BFWSwq28+FMm3HJXLdPcRHhlVU0V0kSqewyC03y0zOxKupZzhWy1uNDyp8QJk8ZTROLYQQmYsUpHSWWQvS3yyxsURu3kzEikAS/nEZBJuiRXDr1BlTq5boM2Fu8WwWi8rm0yFM33GB/A8O8pFhFeV0V7mn0zEvtzsrnRxIIXXR/ps+bzKowiCKuhXVOLUQQmQOUpDSWWYvSP8Uf/oM4YEriNq8BTU+dXGvYmeHS9OmuHXqiF3ZsjKrlAWZLSob/gjm2x0XKRqxj48Mqymlu06wQc/s3HnY5GCLBRWdoqN54eb0L9+ffE75tI4thBCakoKUzrJSQfqbOTqayA0biFgRSOKlS9bttiVL4tapEy7Nm6N3ctQwoXgZKWYL604GM3PXBUpH/s6HhtUU1wVzxWhgprsHu+wMABh0BjoU70Dfsn1xt5czHYUQOZMUpHSWFQvS31RVJf7kKSICVxC1dRtqUuq1dHQODri0aJE6q1SqlMYpxYtKNltYffwW3+38i4oxuwkwrKGwLpQzNjZ8mycPh2xSLwNgb7CnW8lu9PDvgYtN1vq7K4QQ/5UUpHSWlQvSP5kjIohYv56IwJUkBQVZt9uVLYtbp464NGmCzkGu2JyVJKaYWXn0JnN+vUCNuF18oF+Lj+4uh+1sme7uwRlj6uFUFxsXevr3pEvJLtgb7DVOLYQQGUMKUjrLLgXpb6qqEnfkKBGBgUTt2AHJqaeN65ydMbVsiWunjtgVL65xSvEiEpLN/HTkBnN//Ys3E3Yw0LCOvMoDfnWwZ6Z7Hq48vK5kHvs89Cvbj7bF22LUGbUNLYQQ6UwKUjrLbgXpn1Lu3ydy3TrCA1eS/I+b8tpXrIhb5044N2qEztZWw4TiRcQnmVl26Drzd5+nUeIvDDD8TG4lgs1OjnyXOze3H95wKL9TfgZUGEBT36bolCx/FyIhhHgiKUjpLDsXpL+pFguxBw8SsSKQ6F9/BXPqNXb0JhOmNm1w7dgR28K+GqcUzys2MYXFB6+xZM95midt5X3DBpyVaFY7O/G/XLm4/7ATFXMrxuAKg6mdv7ac3SiEyHakIKWznFCQ/in5ThiRa9cQvnIVKSEh1u0O1aqlzirVq4diY6NhQvG8ohOSWbT/Gsv2nqNd8mb6GjZho4vjRxdnFrq5Ev2wE5XPU57BFQdTxauKtoGFEOIVkoKUznJaQfqbajYTs3cvESsCifn9d7CkXpBQnzs3rm3b4tqxAzYveF87oY3I+GTm7wti5b6zdDZvoKd+K6o+kQUmZ5abTCQ8LEo1vWsyuOJgSuWWMxuFEFmfFKR0llML0j8l375NxOrVRKxaTcrdu6kbFQXHmjVx69wJpzp1UAwGbUOKZ4qIS+J/v19l3YEzdLP8TA/9L8QZkpnramKNszMpD4tSw4INGVhhIL4mOawqhMi6pCClMylI/09NTiZ6924iVgQSu3+/dbvBwwPX9u1x7dAeY968GiYUz+N+TCJzf7/KpoN/0EPdwDv67dw1qnznZmKLoyOqAnpFT6uirXi/3Pt4OXppHVkIIV6YFKR0JgXpyZJu3CBi1Soi1qzF/OBB6kadDqfatXHt1BGn119H0eu1DSn+VVh0At/vvsovh0/Rm/V00e/iuo3CTDcTux1Tr4llo7OhU4lO9C7Tm1x2uTROLIQQz08KUjqTgvTv1KQkonfuJDxwJXGHD1u3G7zz4tahA6Z27TB6eGiYUDxLaGQCs3dfZveRk7ynrKWDfg9n7fR86+bKMXs7ABwMDnQv3Z13Sr2Dk42TxomFEOLZpCClMylIzy/xahARK1cSuW4d5sjI1I0GA8516+LauROO1auj6OS6O5lVcEQ83/12mYNHj9Fft5Y2+r0cdrDlWzdXztumnrnoautK7zK96VyiM7Z6uUaWECLzkoKUzqQgvThLYiLRv/xC+IpA4k+csG43FiiAW8cOmNq2xZBLDtdkVjcfxDHz10scP3GMQfrVtNAdZJejHTPdXLlmk3oFbk8HT94v9z6tirbCoJMF+kKIzEcKUjqTgvTfJFy8SETgSiJ//hlLTEzqRqMRlwYNcO3cCYcqVeQihZlU0L1YZu66xNk/DjNYv5pG+iNsdHJktpuJ0IdnLRZ0KcjACgNpWLChXJVbCJGpSEFKZ1KQXg1LXBxRW7cSviKQhNOnrdttChfGrVNHTK1aoXd11S6geKrLYTF8u+sSV04f4EP9at4wnGClszPzXF0If7gQv2SukgyqMIha+WpJ4RVCZApSkNKZFKRXL/7s2dRZpU2bUOPiAFBsbXFp3BjXTp2wr1BefshmQhdCo/l210WCz+zjI8NqKhtOs8TkzGKTC7EP15ZV9KhIQKUAKnhU0DitECKnk4KUzqQgpR9zTAxRmzYRviKQxL/+sm63LV4c104dMbVsid7ZWcOE4knO3Y5i2s6LPDj/O0MMqyhp/Iv5ri785OJM0sNiWzt/bQZVGIRfLj+N0wohciopSOlMClL6U1WVhD//JDxwJVFbtqAmJACg2Nvj0qwpbp06Y1/GX+OU4lGnb0UybedF4i/+xhDDKvIbr/C9q4n1zo6YFQUFhca+jRlYfiAFXApoHVcIkcNIQUpnUpAyljkqisifNxAeuIKky1es2+1KlcK1cydMzZqhc3TUMKF41Ikb4UzbfgHd1V/5yLAKk80NvnMzsc0p9ftkUPS0KdaW98q9h4eDXBNLCJExpCClMylI2lBVlfgTJwhfEUj0tm2oyckA6BwdcWnZArdOnbArUULjlOKfjgQ9YNr2Czhe38FHhtUodreZ4ebKPgd7AGz1NnQp0ZWe/j1xtXPVNqwQItuTgpTOpCBpLyU8nMh164kIDCTp+nXrdvty5XDt3BmXJo3R2dlpmFD804Er95i+/S9y39zOh4bVRNvf49tcJk4+/B45GR3pUfpd3i71Ng5GB43TCiGyKylI6UwKUuahqipxhw+nzirt3AkpKQDoXFwwtW6FW6dO2BYponFKAanfq32X7zHtl/Pkv72NDwxrCHaMYIabKxceXpU7l10u+pbtS4fiHbDR22icWAiR3UhBSmdSkDKnlLt3iVi7joiVK0kODrZud6hcGddOnXBu1BCdjfzQ1Zqqquy+eJdvt5+nWOgmBurXcdY5llluJm4aU6/K7e2Yl/fL96dF4RbodXKDYyHEqyEFKZ1JQcrcVIuF2P37CV8RSMxvv4HFAoDezQ1Tmza4deyATaFC2oYUqKrKzvNhzNh+ljJ3N/GeYR2HXJKY6+pC2MOrchc2+TKowmDqFagn18ESQvxnUpDSmRSkrCM5NJSI1WuIWL2alNBQ63aH6q/h1qkzzvXeRHk4ayG0YbGo/HI2lFk7zlD5/kZ6G39mp8nMfJMLkQ+vyu2fuzSDK35Ade/qGqcVQmRlUpDSmRSkrEdNSSHm998JDwwk9ve98PCvvt7dHdd27XDt0AGb/Pk0TpmzWSwqm06HMGfHaWqG/8zbxg1scNWx1ORM/MOrclfzqsrgih9QNk9ZjdMKIbIiKUjpTApS1pZ0K5iI1auIWL0G8717qRsVBcfXa+HWuTNOb7yBYpC70WvFbFHZ8Ecw/9vxJ3Uj19PBZjMr3QwEujiT/PAw25s+bzKowiCKuhXVOK0QIiuRgpTOpCBlD2pyMtG//kZE4ApiDxy0bjd4euLaoQOu7dth9PLSMGHOlmK2sPZkMPN3nqJJzFqa2v7CUjdbNjg5Ynl4Ve4WhZvTv8IA8jnJ7J8Q4tmkIKUzKUjZT9L164SvXEnk2nWYw8NTN+p0ONWti1unjjjWrImil7OptJCUYmH18Vss3nWClnFrqG23kwW5HNjhmHq9JIOip4NfR/qW7Yu7vbvGaYUQmZkUpHQmBSn7siQlEb19BxErVhB37Jh1uzFfvtRZpXZtMeTJo2HCnCsxxUzg0Zss//U4bePXUNn+N77P7chB+9SrctvrbOhWujs9/HvgYiP/LoUQj5OClM6kIOUMiVeuEB4YSOT6n7FERaVuNBhwrlcPt86dcKhWDeXh4mGRcRKSzSw/fIPA347ROXEVxR33MjuXM3/a2QLgYnCkZ9k+dCnZBXuDvcZphRCZiRSkdCYFKWexJCQQtXUbEYGBxJ86Zd1uLFgAt46dMLVtg8HNTbuAOVR8kpmlh66xbvcRuiUF4uF8hNm5nLn88GKg7jYm3qswiLbF2mLUy6UchBBSkNKdFKScK+HCBSICA4n8eQOW2FgAFKMR50aNcOvcCftKleSChhksNjGFxQevsXnPQd5JDsTOdII5biaCjalnIua396R/pQ9o6ttUrsotRA73vD+/s/SxgQkTJqAoCgEBAdZtqqoyZswYvL29sbe3p06dOpw9ezbN6xITExk0aBDu7u44OjrSsmVLbt26lcHpRVZl5+eH1+efU+z3PXh9+QV2pUujJicTtWkT17u9zdXmLXiwZCnmyEito+YYjrYG+tcpyooRnblTdxrzYsfR+3pBRt4LJ3eKmVvxd/hk3ye0X9+S3Td3I78XCiGeJcvOIB09epSOHTvi4uJC3bp1mT59OgATJ05k3LhxLFq0iOLFi/PVV1/x+++/c+HCBZydnQF4//332bhxI4sWLSJ37twMGTKEBw8ecPz4cfTPeZaSzCCJf4o/fYaIlYFEbtqMGh8PgGJri0vTprh16ohduXIyq5SBIuOSmb/vKnv276WH+hP33S6ywORCtD71d8JybiX4oOpwqnhV0TipECKjZetDbDExMVSsWJHZs2fz1VdfUb58eaZPn46qqnh7exMQEMCIESOA1NkiT09PJk6cSL9+/YiMjCRPnjwsXbqUTp06AXD79m18fHzYsmULjRo1eq4MUpDEk5ijo4ncuJGIFYEkXrxo3W5bogRunTri0qIFeicnDRPmLOGxSfxv71UOH9hNd+UngnIF8aOLMwkPF9bXyFORwdWGUzp3aY2TCiEySrY+xDZgwACaNWtG/fr102wPCgoiNDSUhg0bWrfZ2tpSu3ZtDhw4AMDx48dJTk5OM8bb2xt/f3/rmCdJTEwkKioqzUOIR+mdncnVpQu+P6+n4E/LMbVqhWJrS+JffxE69guu1KtP+E8/oZrNWkfNEdwcbRjRuAT/G/4uZ6t9z/57w/jsuiudo6IxqCoH7p6g86bOTDs2jRRLitZxhRCZSJYrSCtWrODEiRNMmDDhsedCH96I1NPTM812T09P63OhoaHY2Njg9sgZR/8c8yQTJkzAZDJZHz4+Pv/1o4hsTFEUHCpUwHvi1xTbsxvPkR9jU6gQ5shIQsd+QVD7DsQdP651zBzD3cmWT5qW5LvhfThZ6X/8GTqYL2/Y0zwmdZH9grML6PNLT+7F39M4qRAis8hSBenmzZt88MEHLFu2DDs7u6eOe3Sth6qqz1z/8awxI0eOJDIy0vq4efPmi4UXOZbe1ZVc3btTeNNGPD/9FJ2LC4nnz3O9azeChw0n+U6Y1hFzDA9nO0a3KM3wvu8ywTAe19sNmHTnHg4WC8fCTtLh5zYcCz327B0JIbK9LFWQjh8/TlhYGJUqVcJgMGAwGNizZw8zZszAYDBYZ44enQkKCwuzPufl5UVSUhLhf99K4gljnsTW1hYXF5c0DyFehGIwkOvtbhTZthXXDu1BUYjauJGrTZpw/4cfUJOStI6YY1Qq6MamD2pzoVhvFoUP4bvgOIomJXEvMYLev/Rk4ZmFcqabEDlclipI9erV4/Tp05w6dcr6qFy5Ml27duXUqVMULlwYLy8vduzYYX1NUlISe/bsoUaNGgBUqlQJo9GYZkxISAhnzpyxjhEiPRly5SLvl19SaGUgduXKYomLI+ybKVxt2YqYvXu1jpdjuDna8MM7lanbuA3948Yx8GYuWkTHYkZl6vGpfPDrIKKSZK2hEDlVljyL7Z/q1KljPYsNUk/znzBhAgsXLqRYsWKMHz+e3bt3P3aa/6ZNm1i0aBG5cuVi6NCh3L9/X07zFxlOtViIXP8zYVOmYL5/HwCnevXw/HgENrLOLcMcvfaAD348Rsf45eR13cFEdzeSFQUfBy+m1ptJiVwltI4ohHhFsvVZbP9m+PDhBAQE0L9/fypXrkxwcDDbt2+3liOAadOm0bp1azp27EjNmjVxcHBg48aNz12OhHhVFJ0O17ZtKLJtK7m6dwe9nphdu7jarDl3Z8zA8vCaSiJ9VSmUi40f1OZE4f5sejCQWcHR5EtO4WZcKF03vcXaS2u1jiiEyGBZfgZJKzKDJNJD4uXLhI4bR9zBQwAYvPPiOXwEzo0ayoUmM4DFojJnzxWWbT/IeNtvWe0Zwe8OqTe7bV24JZ9W/ww7w9NPEBFCZH7Z+kKRmYEUJJFeVFUlevsO7kz8mpTbIQA4vPYaXp9+gm2xYhqnyxkOXb3Ph8uP8k7CEoy59zLTzYRFUfBzKczUejMp4FJA64hCiJckBSmdSUES6c0SH8/9efO4/8P81DPc9HpydeuK+8CB6P9xyFikj3sxiQSsOIXd1V/o4vwDYz2deKDX46S346vXv6ZewXpaRxRCvAQpSOlMCpLIKEk3b3Ln64nE7NoFgD53bjw++ghTm9Youmy3jDBTMVtUZv16mVW79vOl3XQWesVy8uE12HqUfIfBlQMw6owapxRCvAgpSOlMCpLIaDF793Fn3DiSrl0DwK5cWbxGjcK+TBltg+UABy7fY8hPR+mVuIBwjyMsMaX+m6+Y25/Jb36Lh4OHxgmFEM9LClI6k4IktKAmJfFg6VLufTcbS1wcKAqmdm3x+OgjDLlyaR0vWwuLTuCDn06R69pmGpsWM97DmRidjtxGZya/+S1VvKpoHVEI8Rxy7Gn+QmRnio0NuXv1ovDWrbi0bAGqSuTqNVxp1JgHS5aipsgNV9OLh7Mdy3pXo0jdt5kW+TnjbukonpjE/eRoev/Six/+nIdFtWgdUwjxisgM0kuSGSSRGcSdOEHol1+ReP48ALbFiuE5ahSO1apqnCx723vpLiN+Osx7yf/joudpfnZ2AqBO3hp8VXsSJluTxgmFEE8jh9jSmRQkkVmoZjMRq1Zxd9p0zJGRADg3aYzn8OEY8+bVOF32dScqgUE/nSTf9XVUzRXIN7mdSdIp5LNzZ2r97yiVu5TWEYUQTyCH2ITIIRS9HrfOnSm8bSuub3UGnY7ordu40rQZ977/HktiotYRsyVPFzuW965G3jd6suD+J4wPNpMvOYXghHu8vbkLqy6skhveCpGFyQzSS5IZJJFZJZw7R+hX44g/cQIAY4ECeI78GOe6dTVOln39diGMT1ccZJBlNgc8L7Pb0QGAlgUbMarWl9gb7DVOKIT4mxxiS2dSkERmpqoqUZs2ETZpMil37wLgWPsNvEaOxKZQIW3DZVO3I+IZtPwExYJXUzj3Wr7L5YxFUSjmlJ+p9edQyFRI64hCCOQQmxA5mqIomFq0oPDWreTu3QuMRmL3/M7VFi0JmzIVS2ys1hGzHW9Xe1b0q46pZl9+vjucr24nkzvFzKWYW3Te0JYd17ZrHVEI8QJkBuklyQySyEoSrwZxZ8IEYvfuBcDg6YnHsGG4NGsqN8FNB7vO3+HzwAMMZgZbvW5x3D716ttvF+/Eh9VGyNW3hdCQHGJLZ1KQRFajqioxv/3GnfETSL51CwCHypXx/GwUdn5+GqfLfoIj4hn443HK3v4JJ4/NLHFNvX9eBdfiTK4/G09HT40TCpEzySE2IUQaiqLg/OabFN68CffBg1Ds7Ig7doygNm0J/eJLzBERWkfMVvK52hPYrwbG6gM4EBrA56EJOJstnIy4SMd1LTl0+6DWEYUQ/0JmkF6SzCCJrC45OJg7kyYT/csvAOhdXcnz4Ye4tm+HotdrnC57+eVsKF+u2sdgZTor897lgq0NOmBA2X70Lt8fnSK/qwqRUeQQWzqTgiSyi9iDBwkdN46ky1cAsCtdGs9Rn+JQoYLGybKXmw/iGPjjMareWUKC5y7Wu6Reffv1PBWZUG+GXH1biAwiBSmdSUES2YmanEz48uXcnTkLS0wMAKZWrfAYOgRDnjwap8s+ElPMTNjyF+cPbqVJ7u+ZlduWRJ0ObxsTUxvMpbR7aa0jCpHtSUFKZ1KQRHaUcu8eYVOnEbl2LQA6R0fcBw4kV7euKEY58+pV2Xo6hImrf6efYSpL80Zy02jEiMLHVUbQoWQXObNQiHQkBSmdSUES2Vn8H38Q+tU4Ek6fBsCmSBG8Pv0Exxo1NE6WfVy/H8ugH49S6958bnkd4LeHV99unq82n9WehIPRQeOEQmRPUpDSmRQkkd2pFguRa9cSNnUa5gcPAHBu0ACPESOwyZ9P43TZQ0KymXGbzxN0ZAPV3eczL5c9ZkWhqL0HUxv9gK/JV+uIQmQ7UpDSmRQkkVOYo6K4O3MW4cuXg9mMYmtL7j59yN27Fzo7O63jZQsb/7jNtLV7eNf2GxZ4xnPPoMdB0TO25lc0LtJc63hCZCtSkNKZFCSR0yRcuMidr74i7uhRAIz58uHx8Qic69eXNTOvQNC9WAYtO0Ld8O85m/cERx9efbtr4ZYMqTEGo17WgAnxKkhBSmdSkEROpKoq0Vu3cmfSZFJCQwFwrFEDz1GfYlu4sMbpsr6EZDNjN57jzrE1FPdYxo9u9gCUcyrIN41/wMvRS+OEQmR9UpDSmRQkkZNZ4uK4N/d/PFiwADU5GQwGcr39Nu4D+qN3ctI6Xpa3/mQws9btoovDFH7wSCFar8NNZ8PXdb+lRv5aWscTIkuTgpTOpCAJAUnXr3NnwtfE7N4NgD6POx5DhmBq2RJFJ1eH/i8uh8UQsOww9aJmctD7POdtbVBUeL/UO/SrMkSuvi3ES5KClM6kIAnx/2L27CF0/HiSr98AwL58eTw/G4V9abnw4X8Rn2Rm9IYzRJ0MJLfXSja4pB5yq+laggmN/oebnZvGCYXIeqQgpTMpSEKkZUlK4sGixdz7/nvUuDhQFFw7dCDPhwEY3OQH+X+x+vgt5q3fTmuXaSxwt5Cg0+Gld2Bqw7mU8SivdTwhshQpSOlMCpIQT5YcGkrY5G+I2rwZAJ3JRJ7Bg3Dr1AnFYNA4XdZ18U40AcsO0ih2Gju8g7huNGIAhpcfTOeyveVMQiGekxSkdCYFSYh/F3f0KKFfjSPxwgUAbEuUwGvUpzhUrqxxsqwrLimFUevPkPznEpS8G/nNKfVSAE08qjCm/iy5+rYQz0EKUjqTgiTEs6kpKYQHBnL32xlYoqIAcGnWDI/hwzB6emqcLmtSVZVVx26x6Oct1HebwdLcCimKQmGjK9OaLKSwW1GtIwqRqT3vz285DUIIkW4Ug4FcXbtS5JdtuHbsCIpC1ObNXGnSlHvz5mFJStI6YpajKAodq/gwdeBb7FS/oXuwJx4pKVxNjqDzhrZs/WuV1hGFyBZkBuklyQySEC8u/sxZ7nz1FfGnTgFgU7Agnp9+gtMbb2gbLIuKSUzh07V/oj+/gAjv7Ry1twWgc/56DKszCRu9jcYJhch85BBbOpOCJMTLUS0WIjdsIOybKZjv3QPAqW5dPEd+jE2BAhqny3pUVeWnIzdZsXEDVdy/Y6Vb6kL4MnaeTGm6hLzO3honFCJzkYKUzqQgCfHfmGNiuDfrOx4sWwYpKSg2NuTq+S7uffuic5DFxi/q7O1Ihi/by5vmiaz1vE+UXo8rer5+YzI1fRtoHU+ITEMKUjqTgiTEq5F45Qp3xo0j9sBBAAx58+I5fBjOjRvLqesvKDohmY/X/InjxTlcy7fXevXtfkXb8l6Nz9Hr9FpHFEJzUpDSmRQkIV4dVVWJ3rGDsK8nknz7NgAO1arh+ekn2BUvrnG6rEVVVZYdus76LWsp6vE/trgYAajhVIivmy7GzT6XxgmF0Fa2PIttzJgxKIqS5uHl9f93t1ZVlTFjxuDt7Y29vT116tTh7NmzafaRmJjIoEGDcHd3x9HRkZYtW3Lr1q2M/ihCiH9QFAWXhg0pvHkT7gMGoNjaEnf4MEFt2hI6bjzmh5cIEM+mKApvVy/EmH69OBs3kW6hjthbLByIuUaHVQ344/ZhrSMKkSVkqYIEULp0aUJCQqyP06dPW5+bNGkSU6dOZdasWRw9ehQvLy8aNGhAdHS0dUxAQADr1q1jxYoV7Nu3j5iYGJo3b47ZbNbi4wgh/kFnb0+eQQMpvHkzzg3qg9lM+NKlXGnchIg1a1AtFq0jZhll8pv4cXBTruWdyZs3KlAoKZk7ahI9tvfmxyNTkYMHQvy7LHWIbcyYMaxfv55TD08R/idVVfH29iYgIIARI0YAqbNFnp6eTJw4kX79+hEZGUmePHlYunQpnTp1AuD27dv4+PiwZcsWGjVq9NxZ5BCbEOkvZv9+7owbT9LVqwDYlS2L16hPsS9bVuNkWYeqqiw6cI1t2wJx91rE706ph9wauZZibNMFOBodNU4oRMbKlofYAC5duoS3tze+vr507tyZqw//wxkUFERoaCgNGza0jrW1taV27docOHAAgOPHj5OcnJxmjLe3N/7+/tYxT5OYmEhUVFSahxAifTnVrEnh9evwGD4cnaMjCX/+ybVOnbn73Xcym/ScFEXh3Zq+jOz7HteixtHhri0GVeWXiHO8s6ox4QnhWkcUIlPKUgWpWrVqLFmyhF9++YV58+YRGhpKjRo1uH//PqGhoQB4PnL7Ak9PT+tzoaGh2NjY4PbIncX/OeZpJkyYgMlksj58fHxe4ScTQjyNYmND7p7vUnjrFlxatgBV5d7MWQR/EIAlNlbreFlGeR9Xln/Qkuu5Z9HkVgncU8xcTI6g79pWRCZGah1PiEwnSxWkJk2a0K5dO8qUKUP9+vXZ/PBu4YsXL7aOefS0YFVVn3mq8POMGTlyJJGRkdbHzZs3X/JTCCFehtHDg3yTJpF33FcoRiPRO3ZwrfNbJN24oXW0LMPkYOT7d6oSXmgklW9WJXeKmb+Sw+mztqWUJCEekaUK0qMcHR0pU6YMly5dsp7N9uhMUFhYmHVWycvLi6SkJMLDw5865mlsbW1xcXFJ8xBCZDzXdu0osGQx+jzuJF66RFCHjsQ+4xC5+H9GvY4Zb1Ugusggqt2qTC6zmfNJD3hvbSuik6KfvQMhcogsXZASExM5f/48efPmxdfXFy8vL3bs2GF9PikpiT179lCjRg0AKlWqhNFoTDMmJCSEM2fOWMcIITI/hwoV8F29GruyZbFERnKjdx/uL1okZ2Y9J6Nex8wuFYgoPJjXblbE1WzmTNJ93lvbipikGK3jCZEpZKmCNHToUPbs2UNQUBCHDx+mffv2REVF0b17dxRFISAggPHjx7Nu3TrOnDlDjx49cHBwoEuXLgCYTCZ69erFkCFD2LVrFydPnqRbt27WQ3ZCiKzD6OlJwaVLMLVpAxYLYV9PJOTjj7EkJGgdLUsw6nXMfKsi4b4B1LxZHpPZzJ+Jd+m/rjVxyXFaxxNCc1mqIN26dYu33noLPz8/2rZti42NDYcOHaJgwYIADB8+nICAAPr370/lypUJDg5m+/btODs7W/cxbdo0WrduTceOHalZsyYODg5s3LgRvV4uwS9EVqOztSXv+HF4fvIJ6PVE/ryB693eJvkZJ12IVDYGHbO6VOS+70e8casszmYLJxPuSEkSgix2HaTMRK6DJETmEnvoEMEBH2KOiEDv7k7+Gd/iULGi1rGyhKQUCwOWn8Dj+iR+zX+WGJ2OqvbezGq7HnuDvdbxhHilsu11kIQQ4kkcX3uNQqtXYevnh/nePa5370F44EqtY2UJNgYd33WpyB2fYbwZXBJHi4Uj8bcZvK4dCSlyyFLkTFKQhBDZhk3+/BT6aTnOjRtDcjKho0cTMmYMalKS1tEyPRuDjtndKnEn/3DqB/vhYLFwKO4mAevbkWhO1DqeEBlOCpIQIlvROTiQb9pU8gQEgKIQsSKQ6z17knLvntbRMj0bg47vulUiJN/HNAwuhr3Fwv7YG3y4vj1JZimZImeRgiSEyHYURcH9vX7knzMbnZMT8ceOE9S+A/FnzmodLdOzNeiZ/XYlgvN9QqPbRbGzWNgbc40hP3cg2ZysdTwhMowUJCFEtuVcpw6FVgZiU6gQKaGhXO/alciNm7SOlenZGvTMebsSt/J+QpPbhbG1WNgdfZVhGzqRbJGSJHIGKUhCiGzNtnBhCq0MxLH2G6iJidweNow7kyajms1aR8vUUktSZW7kHUWzkELYWFR2RV1ixIa3SLGkaB1PiHQnBUkIke3pXVzwmT2b3P36AfBgwQJu9u2HOVLuP/Zv7Ix6vn+7Mtc8P6dpSAGMqsqOyAt8srGLlCSR7UlBEkLkCIpej8eHAeSbNhXF3p7Y/fsJ6tCRxEuXtI6WqdkZ9cx9pzI3PEfTPCQ/BlVla8R5Rm16G7NFZuFE9iUFSQiRo7g0aUKhn5Zj9PYm+cYNrnXqTPTOnVrHytT+LknXPMbSIsQbg6qyOfwMn29+R0qSyLakIAkhchy7EiUotGY1DtWqYYmL49bAQdyd9R2qxaJ1tEzLzqjnf+9U5lqesbQI9UKvqmx48Cdjt/TAosqfm8h+pCAJIXIkg5sbBX6Yh9vbbwNwb9Ysbg0ejDkmVuNkmZedUc//ulflmvuXtAz1RKeqrLt/ii+29JSSJLIdKUhCiBxLMRrx+vQT8o4bh2I0ErNzF9ff6kzS9etaR8u0/r8kfUXLOx7oVJU1944zfmsf5NaeIjuRgiSEyPFc27Wl4NIlGPLkIfHSZYI6dCRm336tY2Va1pKU6ytahrmjqCqBd48w8Zd+UpJEtiEFSQghAPvy5Sm0ejX25cphiYriZt++3F+wUH7gP0VqSapGkNs4WoXlBuDHOweZvL2//JmJbEEKkhBCPGT09KDA0iWY2rUFi4WwSZO4PWIElgS5o/2T2Nvomdf9Na66jqdVmCsAS0P3MW3HIClJIsuTgiSEEP+gs7Eh71df4TlqFOj1RG3YyPWu3UgOCdE6WqZkb6Pnhx6vcc30NS3DTAAsDNnDjF0BUpJEliYFSQghHqEoCrm6daXA/PnoXV1JOHuWoPYdiDt2TOtomZK9jZ55PV7jmstEWtx1AeCH4F+Z/etQjZMJ8fKkIAkhxFM4vlaNQqtXY1uiBOb797ne413CV6zQOlamZG+jZ9671bju/DXN7zoD8P2t7cz5dZjGyYR4OVKQhBDiX9jkz0eh5T/i3KQxpKQQOmYsIaPHoCYlaR0t03GwMTDv3erccJ5Is3tOAMy+uY0fdo/UOJkQL04KkhBCPIPOwYF8U6eS56OPQFGICAzk+rs9Sbl3T+tomY61JDlOpOk9RwC+vb6Jhb+P0jiZEC9GCpIQQjwHRVFw79sHn+/noHN2Jv74cYLadyD+9Bmto2U6DjYGfuhZgxuOk2hy3x6AqUE/s2TvGG2DCfECpCAJIcQLcKpdm0KBgdj4+pISGsr1bt2I3LBB61iZjoONgR/ercEt+8k0emAHwOSra/hx/5caJxPi+UhBEkKIF2Rb2JdCKwNxqlMHNTGR28NHcOfriagpKVpHy1QcbQ3M61mTYLtJNHxYkr6+vJIVB8ZrnEyIZ5OCJIQQL0Hv7Ez+2d+R+71+ADxYtIibffthjojQNlgmk1qSXifYdhINwm0AGHfpJ1YdmqRxMiH+nRQkIYR4SYpOh0dAAPmmT0Oxtyf2wAGCOnQk4eJFraNlKk62Bn7o9TohNpOp97AkfXFhKesOT9E4mRBPJwVJCCH+I5fGjSn003KM+fKRfPMm1zq/RdSOHVrHylScbA3M6/UGoTaTqBthBGD0+YVsOPqtxsmEeDIpSEII8QrYlShBodWrcHjtNdS4OIIHDebujJmoFovW0TINJ1sD83q+wR3DJOpEGFEVhVFn57Hp2EytownxGClIQgjxihjc3Cjwwzzc3nkbgHuzZ3Nr0GDMMbEaJ8s8nO2M/NCrNncNE3kj0oCqKHx6Zi7bjs/ROpoQaUhBEkKIV0gxGPD65BPyjh+PYmNDzK5dXOvciaTr17WOlmk42xmZ16sO93UTqRWlx6IofHz6O7af/J/W0YSwkoIkhBDpwLVtGwouW4rBw4Oky1cI6tCRmL37tI6VaTjbGflf77o8YCI1o3SYFYURf8xg16n5WkcTApCCJIQQ6ca+bFkKrV6FfblyWKKiuNmvH/fnz0dVVa2jZQoudkbm9XmTCCZRPVpHiqIw9NQ0fvtzkdbRhJCCJIQQ6cno4UGBpUswtW8HFgthk7/h9rDhWOLjtY6WKbjYGflfnzeJUr/mtYcl6aMT3/D7mWVaRxM5nBQkIYRIZzobG/J++SWen40Cg4GoTZu41rUrybdvax0tU3CxMzK3d32iLROoEqOQoih8eOxr9p/9SetoIgeTgiSEEBlAURRyde1Kgfnz0bu5kXjuPEHtOxB39KjW0TIFk72RuX0aEG+eQOUYSFIUPjg6joPnVmodTeRQUpCEECIDOVariu/qVdiWLIn5wQOuv9uT8J9+knVJpJak7/s0JN48noqxkKgoDD7yBUf+WqN1NJEDSUESQogMZsyXj0LLf8SlaRNISSF07BeEfj4aNSlJ62iaM9kbmdu7MQnJ46kQCwmKwoBDozl2Yb3W0UQOIwVJCCE0oLO3x3vKFPIM+QgUhYhVq7jevQcpd+9qHU1zJgcj/+vTmMTkLykXl1qS+h8YxclLm7SOJnKQLFeQgoOD6datG7lz58bBwYHy5ctz/Phx6/OqqjJmzBi8vb2xt7enTp06nD17Ns0+EhMTGTRoEO7u7jg6OtKyZUtu3bqV0R9FCJHDKYqCe58++Mz9Hp2zM/EnTxLUvgPxp09rHU1zJgcjc/s0JTnxC8rEqcTrFN7b9zGnLm/WOprIIbJUQQoPD6dmzZoYjUa2bt3KuXPnmDJlCq6urtYxkyZNYurUqcyaNYujR4/i5eVFgwYNiI6Oto4JCAhg3bp1rFixgn379hETE0Pz5s0xm80afCohRE7n9MYbFFoZiE3hwqTcucP1rt2IWL9e61iac3WwYW7fZlgSx+IfrxKnU3h/7whOX9mmdTSRAyhqFloZ+PHHH7N//3727t37xOdVVcXb25uAgABGjBgBpM4WeXp6MnHiRPr160dkZCR58uRh6dKldOrUCYDbt2/j4+PDli1baNSo0XNliYqKwmQyERkZiYuLy6v5gEKIHM0cE8PtYcOJ+e03AHJ1747HsKEoBoPGybQVEZfEe3M3oNqP4Zy9grNFZV6d6ZT2ra91NJEFPe/P7yw1g7RhwwYqV65Mhw4d8PDwoEKFCsybN8/6fFBQEKGhoTRs2NC6zdbWltq1a3PgwAEAjh8/TnJycpox3t7e+Pv7W8c8SWJiIlFRUWkeQgjxKumdnMj/3Sxyv/8eAA8WL+bW4A9Qk5M1TqYtVwcb5vRtiRI/mhLxKtE6hX67A7h550+to4lsLEsVpKtXrzJnzhyKFSvGL7/8wnvvvcfgwYNZsmQJAKGhoQB4enqmeZ2np6f1udDQUGxsbHBzc3vqmCeZMGECJpPJ+vDx8XmVH00IIQBQdDo8PviAfN9+m3qz219/JXj4cNQcvgTAzdGGOX1bQdynFEuwEKlTCNj2LvGJ0c9+sRAv4T8VpOTkZG7evMmFCxd48ODBq8r0VBaLhYoVKzJ+/HgqVKhAv3796NOnD3PmzEkzTlGUNF+rqvrYtkc9a8zIkSOJjIy0Pm7evPnyH0QIIZ7BpVFD8s+cAUYj0Vu3EfLpKFSLRetYmnJztOGb7i1JCeuNW4qZiyQxZn1HuYaUSBcvXJBiYmKYO3cuderUwWQyUahQIUqVKkWePHkoWLAgffr04Wg6XRk2b968lCpVKs22kiVLcuPGDQC8vLwAHpsJCgsLs84qeXl5kZSURHh4+FPHPImtrS0uLi5pHkIIkZ6catcm3zffgF5P5Pr1hH7xRY4vAwVzOzKkUzcKhNRGr6psSbjFj7+N0DqWyIZeqCBNmzaNQoUKMW/ePN58803Wrl3LqVOnuHDhAgcPHmT06NGkpKTQoEEDGjduzKVLl15p2Jo1a3LhwoU02y5evEjBggUB8PX1xcvLix07dlifT0pKYs+ePdSoUQOASpUqYTQa04wJCQnhzJkz1jFCCJFZuDRqiPfXE1KvlbQikLCJk3J8SapdPA81ag2hxj1vAL65sYWj51drnEpkO+oLaN++vfrnn38+c1xCQoL63XffqfPmzXuR3T/TkSNHVIPBoI4bN069dOmS+uOPP6oODg7qsmXLrGO+/vpr1WQyqWvXrlVPnz6tvvXWW2revHnVqKgo65j33ntPzZ8/v7pz5071xIkT6ptvvqmWK1dOTUlJee4skZGRKqBGRka+0s8ohBBP8mDlSvWcXwn1nF8JNezbb7WOozmLxaL2X3JIfXdmedV/kb/6xgJ/NeTeBa1jiSzgeX9+Z6nT/AE2bdrEyJEjuXTpEr6+vnz00Uf06dPH+ryqqowdO5a5c+cSHh5OtWrV+O677/D397eOSUhIYNiwYSxfvpz4+Hjq1avH7NmzX2jhtZzmL4TIaA+WLOXO+PEA5PnwQ9z79dU4kbZiE1N4e9bPmJ0/56qtjjLYsajLXmyMdlpHE5nY8/78znIFKbOQgiSE0MK9efO4O2UqAJ6fjCTXO+9onEhb1+7F8uH3MwnzXkqUXkd7p6KMbrdO61giE3ven9//+epj586d48aNGyQ9cpPFli1b/tddCyGEeIR7nz6o8Qncmz2bO+MnoNjZ4daxo9axNFPI3ZHBHXqyaPVFTuY7wuqYy/jvHUu710drHU1kcS9dkK5evUqbNm04ffo0iqJYFw3+faq83LZDCCHSh/uggVji43mwcCGho8egs7PDlIN/Ka3r58G5Gp/gcKIP+9zvMe7KKornrUqZok20jiaysJe+DtIHH3yAr68vd+7cwcHBgbNnz/L7779TuXJldu/e/QojCiGE+CdFUfAYPgzXtzqDqnL745FEbftF61ia6l+nCIr7OCrE6EhWFD7cO4L7kTe0jiWysJcuSAcPHuSLL74gT5486HQ6dDodtWrVYsKECQwePPhVZhRCCPEIRVHw+uwzTG3agMVC8NChROfgX04VRWFS56rEJXxM/iQzd3QqQzd0IsWcs2/TIl7eSxcks9mMk5MTAO7u7ty+fRuAggULPnatIiGEEK+eotOR96svcWnaBFJSCB78AbEHD2odSzNOtgYmd2+JY1gnHCwWjllimLYxZy9iFy/vpQuSv78/f/6ZeqPAatWqMWnSJPbv388XX3xB4cKFX1lAIYQQT6fo9XhPnIhTvXqoSUnc7D+AuOPHtY6lGV93R/q3e4/SoeUAWBJ5hq2HvtE4lciKXrogjRo1CsvD+wJ99dVXXL9+nddff50tW7YwY8aMVxZQCCHEv1OMRvJNm4pjzZqo8fHc7NuP+NOntY6lmTdLeFKhyhhqPDAB8Pn5RVy4tlvbUCLLeaXXQXrw4AFubm7PvDFsdiDXQRJCZDaWh+Uo7uhRdCYTBZcsxs7PT+tYmrBYVAYs2U9EfH/OOKjkt+hY0XE7Jsen33NT5AzP+/P7hWeQ4uLiGDBgAPny5cPDw4MuXbpw7949AHLlypUjypEQQmRGOnt78s+Zg325clgiI7nxbk8Sr17VOpYmdDqFyW+9hjluKF7JZm7pLHy8rj0Wi1yCRjyfFy5Io0ePZtGiRTRr1ozOnTuzY8cO3n///fTIJoQQ4gXpnRzxmfc/bEuVxPzgATd6vEvSjZx5uruTrYEJ77Ql153W2FpU9pkjmLOlz7NfKAQvcYitSJEijBs3js6dOwNw5MgRatasSUJCAnq9Pl1CZkZyiE0IkZmlhIdz/e23Sbp8BaO3NwWXLcXo7a11LE3sPHeHnzb050jeiwDM8O9P3Uryi31OlW6H2G7evMnrr79u/bpq1aoYDAbraf5CCCG0Z3Bzo8CCBdgULEjy7dtcf/ddksPCtI6lifqlPClbaQLVIxwB+OTP77gWfETjVCKze+GCZDabsbGxSbPNYDCQkpLyykIJIYT474weHhRYtBCjtzfJ129wo2dPUh480DqWJgbVK4bO5WtKxEOMTuGD7X2Jjc+Zfxbi+bzwITadTkeTJk2wtbW1btu4cSNvvvkmjo6O1m1r1659dSkzITnEJoTIKpJu3uR6126khIVhW7IkBRctRG8yaR0rw0UnJNP7u0XccZ3GfYOe+sY8TH1rl5xclMOk2yG27t274+Hhgclksj66deuGt7d3mm1CCCEyBxsfHwosWog+Vy4Sz5/nRt++mGNitY6V4ZztjIx7+y287zTBoKrsTL7Lou2DtI4lMqlXeh2knERmkIQQWU3ChQtcf6c7lshIHKpUwed/c9HZ22sdK8NtPxvKqs19OOR5DZ2q8n3F4VQvK7ckySnSbQZJCCFE1mTn50eBH35A5+RE3NGj3Bo4CEtSktaxMlzD0l6UKDeJKlF2WBSFYccncftOzr3yuHiy/zSDtGvXLnbt2kVYWJj1tiN/W7BgwX8Ol5nJDJIQIquKO3GCG716o8bH4/Tmm+T/djqK0ah1rAxlsagMWLST0OQALtvpKKEaWfrWHuxsnbWOJtJZus8gjR07loYNG7Jr1y7u3btHeHh4mocQQojMyaFiRXxmf4diY0PMr79ye8QIVHPOusK0TqcwsUsd7KP742q28JeSzBfrOyKrTsTfXnoGKW/evEyaNIm33377VWfKEmQGSQiR1cXs2cPNgYMgORlTmzbkHfcVii5nrby4dCeaLxaM5M+8u7EoCp/mb0LnepO0jiXSUbrPICUlJVGjRo2XfbkQQgiNOdWuTb5vvgG9nsh16wj98sscN4NSzNOZri1GUfVePgAm3tzCqfOrNU4lMoOXLki9e/dm+fLlrzKLEEKIDObSqCHeX08ARSHipxWETZqc40pSY38vSvhPpWK0kRRF4cODY7h7/5LWsYTGXugQ20cffWT9/xaLhcWLF1O2bFnKli2L8ZEFflOnTn11KTMhOcQmhMhOwleuJPTz0QC49+9PnsE56/pAZovKwAVbuKEO54aNjnKqHQu77sVotNM6mnjFnvfn9wsVpLp16z7XOEVR+PXXX593t1mSFCQhRHbzYMlS7owfD0Cejz7CvW8fjRNlrMj4ZPrPmsHV3AuI0evo7FiET9uv1zqWeMXSpSCJ/ycFSQiRHd2bN4+7U1KPAHh+8gm53slZJ+JcvBPNVws/4mTeQwCMK9yelq+P1jiVeJXSZZH2jRs3XihEcHDwC40XQgihLfc+fXDv/z4Ad8aPJ3zVKo0TZazins681ewLqt3PA8AXl1dx7vJWjVMJLbxQQapSpQp9+vThyJEjTx0TGRnJvHnz8Pf3z/Y3rBVCiOzIfdAgcr37LgChn48mcuNGjRNlrCZl8uJXcjplY/Uk6hQCfh9OeOSLTRCIrO+FDrE9ePCA8ePHs2DBAoxGI5UrV8bb2xs7OzvCw8M5d+4cZ8+epXLlyowaNYomTZqkZ3ZNySE2IUR2pqoqoV98QcRPK0CvJ9/Uqbg0aqh1rAxjtqgMmP8zQcqn3DbqqIYjc7vuRW/IWVccz47SdQ1SQkICW7ZsYe/evVy7do34+Hjc3d2pUKECjRo1wt/f/z+FzwqkIAkhsjvVYiHk01FErlsHRiP5Z87AuU4drWNlmMi4ZAbMnsyF3D+SoNPxrktpPmqzQutY4j+SRdrpTAqSECInUM1mbg8bRtSWrSg2NvjM/R7H6tW1jpVhLoRG8/Xi/hzzOgXAVL/uNHhtqLahxH+S7lfSFkIIkf0pej3eEyfiVK8ealISN/sPIO7ECa1jZRg/L2faN5lE1XBXAEadX8SVa7s1zSQyhhQkIYQQ/0oxGsk3bSqONWuixsdzs09f4k+f1jpWhmlWNi/Fi86gVJxCnE5h8K+DiY65o3Uskc6kIAkhhHgmnY0N+WfNxKFKFSyxsdzo3YeECxe0jpVhhjYtj6t+FB4pFm7oVUaua4fFYtY6lkhHUpCEEEI8F529PfnnzMG+XDkskZHc6NmLxKtXtY6VIfQ6hYndWpMvvD02FpU9lkj+t7mX1rFEOvrPBSk4OFguCCmEEDmE3skRn3n/w7ZUScz373Ojx7skveBFhLMqVwcbRnYdQtl7pQCYff8Ye4/N1jiVSC8vXZD279+Pr68vBQoUoECBAnh6ejJixAiioqJeZT4hhBCZjN7FhQLz52NTtAgpYWHc6PEuySEhWsfKECXzutC2wTQqRzqhKgojTs/mZvDTL54ssq6XLkj9+vWjdOnSHD16lD///JPJkyeza9cuKlWqxL17915lRiGEEJmMwc2NAgsWYFOwIMm3b3Ojx7uk3L2rdawM0aJ8Pvx8v6VoAkTrFAb/0oe4+HCtY4lX7KUL0pUrV5g2bRoVK1akdOnSvPPOOxw9epTy5cszePDgV5kxjUKFCqEoymOPAQMGAKlXfx0zZgze3t7Y29tTp04dzp49m2YfiYmJDBo0CHd3dxwdHWnZsiW3bt1Kt8xCCJEdGT08KLBoIUZvb5KuX+dGz56khOeMojCsWRU8GU6uFAuX9RZGr22LarFoHUu8Qi9dkEqWLEloaGiabYqi8MUXX7AxHe/bc/ToUUJCQqyPHTt2ANChQwcAJk2axNSpU5k1axZHjx7Fy8uLBg0aEB0dbd1HQEAA69atY8WKFezbt4+YmBiaN2+O2SxnJAghxIsw5s1LgUULMXh4kHjpMjd69cKcA5Za6HUKE7p1olB4cwyqyraUeyzdPkjrWOIVeumC1KNHD/r27cuNRxbnRUZGYjKZ/nOwp8mTJw9eXl7Wx6ZNmyhSpAi1a9dGVVWmT5/Op59+Stu2bfH392fx4sXExcWxfPlya7758+czZcoU6tevT4UKFVi2bBmnT59m586d6ZZbCCGyK5sCBSiwaCH6XLlIPHeem336Yo6J1TpWunNztGFEl0+pcK8IAFND93D0jyUapxKvyksXpICAAC5cuEDx4sXp0qULkyZNYsKECfTq1YvJkye/yoxPlZSUxLJly+jZsyeKohAUFERoaCgNG/7/DRVtbW2pXbs2Bw4cAOD48eMkJyenGePt7Y2/v791zJMkJiYSFRWV5iGEECKVbeHCFFi4AJ3JRPwffxAcEJAjDjmV8nah5ZuzKB9lj1lRGHp8EuERQVrHEq/ASxek0NBQtm7dyhdffAHAokWL+Pzzz7l06RJff/013bp1Y9KkSWzbtu2VhX3U+vXriYiIoEePHtZMAJ6enmnGeXp6Wp8LDQ3FxsYGNze3p455kgkTJmAymawPHx+fV/hJhBAi67Pz86PAD/NQ7OyI3beP+//7n9aRMkTrij4Uyz+VAokqD/QKE7f01jqSeAVeuiB5eHjQqFEjhg8fzvLlyzl37hzR0dHs37+fgQMH4urqyoYNG+jcufOrzJvG/PnzadKkCd7e3mm2K4qS5mtVVR/b9qhnjRk5ciSRkZHWx82bN18+uBBCZFP2Zcrg9fnnANydMZPYIznjFPhhzaqTK6otiqqyOTmMAydyRjnMzl7plbTt7OyoUqUKffr0YdasWezbt4+IiIhX+RZW169fZ+fOnfTu/f9N3cvLC+CxmaCwsDDrrJKXlxdJSUmEP3KmxT/HPImtrS0uLi5pHkIIIR7n2rYNptatwWLh9pChpNy/r3WkdGdvo+e91oOpGJF6dGLsqZly6n8Wl2VvNbJw4UI8PDxo1qyZdZuvry9eXl7WM9sgdZ3Snj17qFGjBgCVKlXCaDSmGRMSEsKZM2esY4QQQvw3Xp9/hk2RIqTcvcvtYcNzxHqkmkXdyes1Bo9kC7f18N1mOdSWlWXJgmSxWFi4cCHdu3fHYDBYtyuKQkBAAOPHj2fdunWcOXOGHj164ODgQJcuXQAwmUz06tWLIUOGsGvXLk6ePEm3bt0oU6YM9evX1+ojCSFEtqJzcCD/9Gmp65EOHMgx65E+bvkG+R/UAWBZzAXOXtigbSDx0rJkQdq5cyc3btygZ8+ejz03fPhwAgIC6N+/P5UrVyY4OJjt27fj7OxsHTNt2jRat25Nx44dqVmzJg4ODmzcuBG9Xp+RH0MIIbI122LFctx6JJODkU5NRlEu2haLojB6/+ekpCRqHUu8BEVVVVXrEFlRVFQUJpOJyMhIWY8khBD/4vbHI4lcvx5Dnjz4rl+HIXdurSOlK1VV+WDhGo4zmii9jg/dX6Nns3laxxIPPe/P7yw5gySEECLryGnrkRRF4dP2zSl+vywAs8MOcjP4sMapxIuSgiSEECJd5cT1SJ4udtSvNZ6ScToSdQqjdwzK9sUwu5GCJIQQIt3lxPVIb1UrhJv6PrYWlaNKPD/v+VzrSOIFSEESQgiRIVzbtsHUps3/Xx/p3j2tI6UrnU7h445vU+ZBQQC+ubae+w+uaJxKPC8pSEIIITKM12ejsCn6cD3S8OGoZrPWkdKVr7sjVcpPpFCiSqROYcKWXlpHEs9JCpIQQogMk7oeaTqKvT2xBw7miPVIfeqUwiPuLXSqyi/m+/x+dKbWkcRzkIIkhBAiQ9kWLfr/65FmziL2cPZej2TU6/iww0AqRqRe3uDL03OJi83ehxezAylIQgghMpxrm9bW9UjBQ4dk+/VI/vlM+BUZj2eyhVC9wvTNcqgts5OCJIQQQhN/r0cy372XI9YjfdDoNQpGNQBgRdwV/jy/WuNE4t9IQRJCCKGJnLYeyd5GT69Wo6gQZY+qKHx+8EuSk+O1jiWeQgqSEEIIzeS09Ug1irhT0P1zTGYLV/QW5m99X+tI4imkIAkhhNBUTluPNLRVI/zCKwEw78Exrt3Yp3Ei8SRSkIQQQmguJ61HMjkYad9gAqVi9SQpCp/vCsBiyb6fN6uSgiSEEEJzOW09UpOy+chn9yF2FgsndYms/XWk1pHEI6QgCSGEyBRy2nqkEe07UTa8CABTb27h3r0LGicS/yQFSQghRKaRk9YjebrYUb/6NxROgGidwldb+mgdSfyDFCQhhBCZitfnn2FbrGiOWI/U+bVi5Df3QK+q7FLD+fXQVK0jiYekIAkhhMhUdPb25Js2zboe6d7cuVpHSjeKojCs43tUiPAA4KtzC4iJuaNxKgFSkIQQQmRCtkWL4jU6dT3SvVnfEXvosMaJ0k8hd0eq+X9D3mQLd/UKUzb11DqSQAqSEEKITMq1dWtMbdumrkcaNjRbr0fqXbc8vnHNAViTcJ1TZ37SOJGQgiSEECLT8vpsVI5Yj2TQ6xjU7hMqRDmm3obk8ASSkmK1jpWjSUESQgiRaeWk9Uj++UyU9hmHW4qFIIPK3M39tI6Uo0lBEkIIkanlpPVIHzSrQ8mo1wBYGHmKq0G/aZwo55KCJIQQItPLKeuR7Ix6ujf/mtKxBpIVhc9+G4LFnKJ1rBxJCpIQQogsIaesR6pRLA/F3UbgYLHwpz6ZwJ1DtY6UI0lBEkIIkSXkpPVIQ1q3o2yEHwDf3t7JnbAzGifKeaQgCSGEyDJyynokk72RNvWmUyQBYnUKX2yVBdsZTQqSEEKILCXNeqShQ0m5e1frSOmiadkCFDX0xaCq/E4U2/d9rXWkHEUKkhBCiCzHuh7p3j2Cs/F6pOEd+1AxIi8A4y8uIyoqWONEOYcUJCGEEFmOzt6efNOno9jbE3fwEPe+/17rSOnCw9mOBlWnkS/Jwn29wqSNchuSjCIFSQghRJZkW6TII+uRDmmcKH10ql6a4intAPg55TZH/1iscaKcQQqSEEKILMu1dWtM7dqCqhI8dFi2XI+kKApDOo6gYqQzAKOPfUNiYpTGqbI/KUhCCCGyNK9R2X89UsHcjlQvMZHcKRZuGuC7jb21jpTtSUESQgiRpeWU9Ui969WkdOwbACyNOcfFK79onCh7k4IkhBAiy8sJ65EMeh3vtx1PmRgbUhSFz3Z/jDklWetY2ZYUJCGEENlCTliP5J/fjQren+NosXDOkMLS7R9oHSnbkoIkhBAi28gJ65EGNW9OuSh/AObc2UNoyCltA2VTWaogpaSkMGrUKHx9fbG3t6dw4cJ88cUXWCwW6xhVVRkzZgze3t7Y29tTp04dzp49m2Y/iYmJDBo0CHd3dxwdHWnZsiW3bt3K6I8jhBDiFcsJ65HsjHp6NP2WYvEKcTodn297D/UfPwfFq5GlCtLEiRP5/vvvmTVrFufPn2fSpElMnjyZmTNnWsdMmjSJqVOnMmvWLI4ePYqXlxcNGjQgOjraOiYgIIB169axYsUK9u3bR0xMDM2bN8ecDX/TEEKInCYnrEeqXsyLsi6DMKoqB3WxbN77ldaRsh1FVVVV6xDPq3nz5nh6ejJ//nzrtnbt2uHg4MDSpUtRVRVvb28CAgIYMWIEkDpb5OnpycSJE+nXrx+RkZHkyZOHpUuX0qlTJwBu376Nj48PW7ZsoVGjRs+VJSoqCpPJRGRkJC4uLq/+wwohhPhPbn/6KZFr1qJ3d6fwurUY8uTROtIrFZWQzJC5LTjkGoyb2cLGtlswuRbUOlam97w/v7PUDFKtWrXYtWsXFy9eBOCPP/5g3759NG3aFICgoCBCQ0Np2LCh9TW2trbUrl2bAwcOAHD8+HGSk5PTjPH29sbf39865kkSExOJiopK8xBCCJF5pa5HKpa6HmlY9luP5GJnpG3t7/BJUgnX6xgvtyF5pbJUQRoxYgRvvfUWJUqUwGg0UqFCBQICAnjrrbcACA0NBcDT0zPN6zw9Pa3PhYaGYmNjg5ub21PHPMmECRMwmUzWh4+Pz6v8aEIIIV4xnb09+b6djuLgQNyhQ9ybk/3WIzUpX4Qyui4oqsoWSxgHj8/TOlK2kaUKUmBgIMuWLWP58uWcOHGCxYsX880337B4cdr70iiKkuZrVVUf2/aoZ40ZOXIkkZGR1sfNmzdf/oMIIYTIELaFC5N3zGgA7n2XPdcjDen4EZWiU3/pH3tqBgnx4Ronyh6yVEEaNmwYH3/8MZ07d6ZMmTK8/fbbfPjhh0yYMAEALy8vgMdmgsLCwqyzSl5eXiQlJREeHv7UMU9ia2uLi4tLmocQQojMz9SyJab27bLt9ZE8nO1oWGEa7ikWgg0wfUMvrSNlC1mqIMXFxaHTpY2s1+utp/n7+vri5eXFjh07rM8nJSWxZ88eatSoAUClSpUwGo1pxoSEhHDmzBnrGCGEENmL16efZuv1SJ1rVqJ8Un0AVsRf5PzFjRonyvqyVEFq0aIF48aNY/PmzVy7do1169YxdepU2rRpA6QeWgsICGD8+PGsW7eOM2fO0KNHDxwcHOjSpQsAJpOJXr16MWTIEHbt2sXJkyfp1q0bZcqUoX79+lp+PCGEEOkku69HUhSFDztOoGyMLWZF4bO9ozCnJGkdK0vLUgVp5syZtG/fnv79+1OyZEmGDh1Kv379+PLLL61jhg8fTkBAAP3796dy5coEBwezfft2nJ2drWOmTZtG69at6dixIzVr1sTBwYGNGzei1+u1+FhCCCEyQHZfj1QgtwNvFPkKJ7OFCwYLC7b01zpSlpalroOUmch1kIQQImu6PWoUkavXZMvrI6WYLQTMeYc9zn9gZ1FZ13AB+fNV1TpWppItr4MkhBBC/FfZeT2SQa/j/dYz8YvXkaBT+PyXAXIbkpckBUkIIUSO8th6pNlztI70SpXO78ZreYZiY1E5qk9g3W+faR0pS5KCJIQQIsdJsx5p9mxiDx7UONGrNbBlF6pEFwJg2vX1hD+4om2gLEgKkhBCiBwpzfWRhg3PVtdHsjPqeafRHAokqkTodXy5Ua6N9KKkIAkhhMix0qxHGjosW61HquHnQxX7Hiiqyg7us+fwLK0jZSlSkIQQQuRYadYjHT6c7dYjfdThA6pEuwMw7sz3xMXd1zhR1iEFSQghRI5mW7gweceOAbLfeiQXOyPta87CI9lCiEHhm/Xvah0py5CCJIQQIscztWiBa4f22XI9UpOK/lShGQBrkq7y57m1GifKGqQgCSGEEIDnp59iW7x4tlyPNKTTl5SPsceiKIw+MIbk5HitI2V6UpCEEEIIQGdnR77p07LleqQ8zrY08Z+Mi9nCZaPK3I3vaR0p05OCJIQQQjyUndcjvfXGG1RNrAbAosjj3LixX+NEmZsUJCGEEOIfsut6JEVR+LDDDErE6UnUKYzaMVhuQ/IvpCAJIYQQj8iu65EKuDtRr8Cn2FpUThqSWLF9hNaRMi0pSEIIIcQjHluP9N1srSO9Mn2atKdabFEAZt3ewv17FzVOlDlJQRJCCCGeIM16pDlziD1wQNtAr4hep/B+y7kUSoQovY4xG3tqHSlTkoIkhBBCPMWj65GSw8K0jvRK+Bfw5A2399CpKrt1kezYN1XrSJmOFCQhhBDiX1jXI92/z8333iM5JETrSK/EoNbvUTXGE4CJFxaQEB+ucaLMRQqSyFYKFSrE9OnTrV8risL69euf+/VjxoyhfPnyrzyXECLrSl2PNB29qyuJ584T1L4DcceOaR3rP7Mz6un+5vfkSbFwx6Dww9YArSNlKlKQxGMOHDiAXq+ncePGjz137do1FEXBYDAQHByc5rmQkBAMBgOKonDt2jXr9jVr1lCtWjVMJhPOzs6ULl2aIUOGPFeWvn37otfrWbFixUt9lpCQEJo0afJSr/0vXrSYCSEyN9vCvhRavQpbPz/M9+9zvce7hL/kf5cyk1qlilEx5TUAlkccIzLimraBMhEpSOIxCxYsYNCgQezbt48bN248cYy3tzdLlixJs23x4sXky5cvzbadO3fSuXNn2rdvz5EjRzh+/Djjxo0jKSnpmTni4uIIDAxk2LBhzJ8//6U+i5eXF7a2ti/1WiGE+Ceb/Pkp9NNynJs0hpQUQseMJeTz0ajP8d+zzKxPy8kUSFSJ1uuYvnmQ1nEyDSlIIo3Y2FhWrlzJ+++/T/PmzVm0aNETx3Xv3p2FCxem2bZo0SK6d++eZtumTZuoVasWw4YNw8/Pj+LFi9O6dWtmzpz5zCyrVq2iVKlSjBw5kv3796eZlQIICwujRYsW2Nvb4+vry48//vjYPh6dyRkxYgTFixfHwcGBwoUL89lnn5GcnPzY6+bOnYuPjw8ODg506NCBiIgI63NHjx6lQYMGuLu7YzKZqF27NidOnLA+X6hQIQDatGmDoijWr4UQWZ/OwYF8U6eS56OPQFGIWLmS6917ZOmLSfrlzUUl25YAbEgK4vbtrH/48FWQgpQBVFUlLilFk4eqqi+UNTAwED8/P/z8/OjWrRsLFy584j5atmxJeHg4+/btA2Dfvn08ePCAFi1apBnn5eXF2bNnOXPmzAv/uc2fP59u3bphMplo2rTpY4WsR48eXLt2jV9//ZXVq1cze/Zswp5xhomzszOLFi3i3LlzfPvtt8ybN49p06alGXP58mVWrlzJxo0b2bZtG6dOnWLAgAHW56Ojo+nevTt79+7l0KFDFCtWjKZNmxIdHQ2kFiiAhQsXEhISYv1aCJE9KIqCe98++Hw/B52zM/EnTxLUvgPxp09rHe2lDWg9Cr94PUk6hcnbn28JRHZn0DpAThCfbKbU579o8t7nvmiEg83zf5v/LiUAjRs3JiYmhl27dlG/fv0044xGI926dWPBggXUqlWLBQsW0K1bN4xGY5pxgwYNYu/evZQpU4aCBQvy2muv0bBhQ7p27fqvh74uXbrEoUOHWLt2LQDdunVj8ODBjB49Gp1Ox8WLF9m6dSuHDh2iWrVq1uwlS5b81883atQo6/8vVKgQQ4YMITAwkOHDh1u3JyQksHjxYvLnzw/AzJkzadasGVOmTMHLy4s333wzzT7nzp2Lm5sbe/bsoXnz5uTJkwcAV1dXvLy8/jWPECLrcqpdm0IrA7k1YCBJV69yvWs3vMaOxbVNa62jvTBPkwOv5e7Nhbi57OI+Z//aROkSzbWOpSmZQRJWFy5c4MiRI3Tu3BkAg8FAp06dWLBgwRPH9+rVi1WrVhEaGsqqVavo2fPxi405OjqyefNmLl++zKhRo3BycmLIkCFUrVqVuLi4p2aZP38+jRo1wt3dHYCmTZsSGxvLzp07ATh//jwGg4HKlStbX1OiRAlcXV3/9TOuXr2aWrVq4eXlhZOTE5999tlj66wKFChgLUcA1atXx2KxcOHCBSD10N57771H8eLFMZlMmEwmYmJinrpeSwiRfdn6+lJoZSBOdeuiJiURMnIkoePHoz7h0H1m917L9ygXa4+qKEzZ/4XWcTQnM0gZwN6o59wXjTR77+c1f/58UlJS0iy0VlUVo9FIeHg4bm5uacb7+/tTokQJ3nrrLUqWLIm/vz+nTp164r6LFClCkSJF6N27N59++inFixcnMDCQd99997GxZrOZJUuWEBoaisFgSLN9/vz5NGzY0HrYT1GU5/58hw4donPnzowdO5ZGjRphMplYsWIFU6ZM+dfX/f0ef/9vjx49uHv3LtOnT6dgwYLY2tpSvXr151p4LoTIfvROTuT/bhb3Zn3HvdmzCV+ylMQLF8k3fRqGR/67mZk52Rp4s8hwzoaM4aghnr1H/sfrVftqHUszUpAygKIoL3SYSwspKSksWbKEKVOm0LBhwzTPtWvXjh9//JGBAwc+9rqePXvSv39/5syZ89zvVahQIRwcHIiNjX3i81u2bCE6OpqTJ0+i1/9/wfvrr7/o2rUr9+/fp2TJkqSkpHDs2DGqVq0KpM6A/XMx9aP2799PwYIF+fTTT63brl+//ti4GzducPv2bby9vQE4ePAgOp2O4sWLA7B3715mz55N06ZNAbh58yb37t1Lsw+j0Yg5m9zcUgjxbIpOR57Bg7At4cftj0cSd/gw19p3IP93s7ArUULreM/t7fptOfD9TA47PeDbP7+jVuXeKLqcebApZ35q8ZhNmzYRHh5Or1698Pf3T/No3779U0+z79OnD3fv3qV3795PfH7MmDEMHz6c3bt3ExQUxMmTJ+nZsyfJyck0aNDgia+ZP38+zZo1o1y5cmlytGvXjjx58rBs2TL8/Pxo3Lgxffr04fDhwxw/fpzevXtjb2//1M9YtGhRbty4wYoVK7hy5QozZsxg3bp1j42zs7Oje/fu/PHHH+zdu5fBgwfTsWNH63qiokWLsnTpUs6fP8/hw4fp2rXrY+9bqFAhdu3aRWhoKOHhcnVaIXIKl4YNKbTiJ4w+PiQHB3Ot81tEbdmidaznZtTraF5pHA4WCxeMFtb/lnMPtUlBEkBqKalfvz4mk+mx59q1a8epU6fSnMr+N4PBgLu7e5pDYf9Uu3Ztrl69yjvvvEOJEiVo0qQJoaGhbN++HT8/v8fG37lzh82bN9OuXbvHnlMUhbZt21rL2sKFC/Hx8aF27dq0bduWvn374uHh8dTP2KpVKz788EMGDhxI+fLlOXDgAJ999tlj44oWLUrbtm1p2rQpDRs2xN/fn9mz//9O3gsWLCA8PJwKFSrw9ttvM3jw4Mfed8qUKezYsQMfHx8qVKjw1ExCiOzHrnhxfFetxLFmTdSEBII/GkLYlKmoWWRWuVW1mlSK8wVg7rXVJCc/fb1odqaoL3oeuAAgKioKk8lEZGQkLi4uWscRQgiRyagpKYRNncaDhye6OL7xOvm++QZ9FviZcfDCBUbsa0u4Qccg15r0bfW91pFemef9+S0zSEIIIUQ6UAwGPIcPw3vyJBRbW2J/38u1Dh1JvHJF62jPVN3Pj6opqbPfy+7vJTYmVONEGU8KkhBCCJGOTC1aUHD5jxjy5iXp+nWudexE9K+/ah3rmfq2mIZ3kkq4XsfMjY+fpJPdSUESQggh0pl96dL4rl6FQ+XKWGJjudV/AHdnz0a1WLSO9lTFvfPwmjH1IsFrE85z9+45jRNlLClIQgghRAYw5M5NgYULcOvSBYB7M2YS/EEA5pgnX/IkMxjQZgJFEhTidTombxmsdZwMJQVJCCGEyCCK0YjX55+R96svUYxGonfs4PpbnUnKpFfi9zDZU8utKwDb1VAuXd2tbaAMJAVJCCGEyGCu7dtTYMliDHnykHjpMkEdOhKzb7/WsZ7o/VZD8I8zYlYUvvltpNZxMowUJCGEEEIDDhUqUGj1auzKlcUSGcnNvn25P38Bme3qO462BuoXCkBRVQ4YYjh8arnWkTKEFCQhhBBCI0ZPDwouWYKpbVuwWAibPJnbw4ZjiY/XOloa3Rt2o1Jc6jWDph+bnKkXl78qWa4gRUdHExAQQMGCBbG3t6dGjRocPXrU+ryqqowZMwZvb2/s7e2pU6cOZ8+eTbOPxMREBg0ahLu7O46OjrRs2ZJbt25l9EcRQggh0NnaknfcV3iOGgV6PVGbNnGta1eSb9/WOpqVQa+jdYUvsbGonDGmsGXvN1pHSndZriD17t2bHTt2sHTpUk6fPk3Dhg2pX78+wcHBAEyaNImpU6cya9Ysjh49ipeXFw0aNCA6Otq6j4CAANatW8eKFSvYt28fMTExNG/eXG4umgldu3YNRVE4depUhr7P7t27URTlX29++6g6deoQEBCQLvmEENmboijk6taVAgsWoHdzI/HceYLadyDuHxMAWmv52ptUjc8LwPeXlmJOSdI4UfrKUgUpPj6eNWvWMGnSJN544w2KFi3KmDFj8PX1Zc6cOaiqyvTp0/n0009p27Yt/v7+LF68mLi4OJYvTz1mGhkZyfz585kyZQr169enQoUKLFu2jNOnT7Nz506NP6H2evTogaIoKIqC0WikcOHCDB06lNjYzHsaanqoUaMGISEhT7w3XXp6mWImhMg+HKtVxXf1KmxLlcT84AHX3+3Jgx9/zBTrkhRF4e2603A2W7hmhGXbPtY6UrrKUgUpJSUFs9mMnZ1dmu329vbs27ePoKAgQkNDadiwofU5W1tbateuzYEDBwA4fvw4ycnJacZ4e3vj7+9vHfMkiYmJREVFpXlkV40bNyYkJISrV6/y1VdfMXv2bIYOHap1rAxlY2ODl5cXiqJoHUUIkcMY8+Wj0I8/4tKsGaSkcOfLrwj57DMsSdrP2NQo6U/15JIALL7zCwnx4RonSj9ZqiA5OztTvXp1vvzyS27fvo3ZbGbZsmUcPnyYkJAQQkNT7xXj6emZ5nWenp7W50JDQ7GxscHNze2pY55kwoQJmEwm68PHx+f5g6sqJMVq83iJ3zpsbW3x8vLCx8eHLl260LVrV9avX88ff/xB3bp1cXZ2xsXFhUqVKnHs2DHr6w4cOMAbb7yBvb09Pj4+DB48OM3Mk6IorF+/Ps17ubq6smjRIuvXR44coUKFCtjZ2VG5cmVOnjz5WL49e/ZQtWpVbG1tyZs3Lx9//DEpKSnW57dt20atWrVwdXUld+7cNG/enCuP3PvoWe/z6EzO/fv3eeutt8ifPz8ODg6UKVOGn3766bFsKSkpDBw40Preo0aNSvOb37Jly6hcuTLOzs54eXnRpUsXwsLCgNTDfHXr1gXAzc0NRVHo0aPHE75DQojsTmdvj/c3k/EYNhR0OiJXr+HGO91JfvjfCy31az6DPCkW7hp0fLdxkNZx0o1B6wAvaunSpfTs2ZN8+fKh1+upWLEiXbp04cSJE9Yxj/7Wr6rqM2cCnjVm5MiRfPTRR9avo6Kinr8kJcfBeO/nG/uqfXIbbBz/0y7s7e1JTk6ma9euVKhQgTlz5qDX6zl16hRGoxGA06dP06hRI7788kvmz5/P3bt3GThwIAMHDmThwoXP9T6xsbE0b96cN998k2XLlhEUFMQHH3yQZkxwcDBNmzalR48eLFmyhL/++os+ffpgZ2fHmDFjrPv56KOPKFOmDLGxsXz++ee0adOGU6dOodPpnut9HpWQkEClSpUYMWIELi4ubN68mbfffpvChQtTrVo167jFixfTq1cvDh8+zLFjx+jbty8FCxakT58+ACQlJfHll1/i5+dHWFgYH374IT169GDLli34+PiwZs0a2rVrx4ULF3BxccHe3v55v01CiGxGURRy9+qFbXE/gocMIf7UKa61a0/+WTOxL1dOs1zF83lTS1eLdRxgTcxJeoZfw82tkGZ50kuWK0hFihRhz549xMbGEhUVRd68eenUqRO+vr54eXkBqbNEefPmtb4mLCzMOqvk5eVFUlIS4eHhaWaRwsLCqFGjxlPf19bWFltb23T6VJnXkSNHWL58OfXq1WPr1q0MGzaMEiVKAFCsWDHruMmTJ9OlSxfrIuVixYoxY8YMateuzZw5cx47LPokP/74I2azmQULFuDg4EDp0qW5desW77//vnXM7Nmz8fHxYdasWSiKQokSJbh9+zYjRozg888/R6fT0a5duzT7nT9/Ph4eHpw7dw5/f//nep9H5cuXL81hxkGDBrFt2zZWrVqVpiD5+Pgwbdo0FEXBz8+P06dPM23aNGtB6tmzp3Vs4cKFmTFjBlWrViUmJgYnJydy5coFgIeHB66urs/8MxNCZH9Or9fCd9VKbg4YQNLlK1zv9jZeY8bg2q6tZpkGtP2G44E1uGGrY8rGgXz1zibNsqSXLFeQ/ubo6IijoyPh4eH88ssvTJo0yVqSduzYQYUKFYDU39j37NnDxIkTAahUqRJGo5EdO3bQsWNHAEJCQjhz5gyTJk1Kn7BGh9SZHC0YHV74JZs2bcLJyYmUlBSSk5Np1aoVM2fOZPbs2fTu3ZulS5dSv359OnToQJEiRYDUtV2XL1/mxx9/tO5HVVUsFgtBQUGULFnyme97/vx5ypUrh4PD/2euXr36Y2OqV6+eZravZs2axMTEcOvWLQoUKMCVK1f47LPPOHToEPfu3cPy8HodN27cwN/f/7ne51Fms5mvv/6awMBAgoODSUxMJDExEUfHtLNzr732Wpps1atXZ8qUKZjNZvR6PSdPnmTMmDGcOnWKBw8epMlWqlSpZ/4ZCSFyJpuCBSm0IpDbH48gZucuQj79lITz5/EcMRzl4Ux+RvI0OVPXpQ2LE9ex1XyNPreOUjB/lQzPkZ6y1BokgF9++YVt27YRFBTEjh07qFu3Ln5+frz77rsoikJAQADjx49n3bp1nDlzhh49euDg4ECXhzcHNJlM9OrViyFDhrBr1y5OnjxJt27dKFOmDPXr10+f0IqSephLi8dLLDKuW7cup06d4sKFCyQkJLB27Vo8PDwYM2YMZ8+epVmzZvz666+UKlWKdevWAWCxWOjXrx+nTp2yPv744w8uXbpkLVGKojx2JkZycrL1/z/PWRpPOhT69+v+3t6iRQvu37/PvHnzOHz4MIcPHwZSy/Lzvs+jpkyZwrRp0xg+fDi//vorp06dolGjRtZ9Po/Y2FgaNmyIk5MTy5Yt4+jRo9Y/vxfZjxAiZ9I7OZJ/xgzcBw4EIHzZMm706k3Kgwea5Hm/9ShKxOtJ0il8s32IJhnSU5abQYqMjGTkyJHcunWLXLly0a5dO8aNG2ddCzN8+HDi4+Pp378/4eHhVKtWje3bt+Ps7Gzdx7Rp0zAYDHTs2JH4+Hjq1avHokWL0Ov1Wn2sTMXR0ZGiRYs+8bnixYtTvHhxPvzwQ9566y0WLlxImzZtqFixImfPnn3q6wDy5MlDSEiI9etLly4RFxdn/bpUqVIsXbqU+Ph469qbQ4cOpdlHqVKlWLNmTZqidODAAZydncmXLx/379/n/PnzzJ07l9dffx2Affv2PbaPZ73Po/bu3UurVq3o1q0bkFoIL1269NjM2KP7OXToEMWKFUOv1/PXX39x7949vv76a+v6tX8ucofUs+cAuSaXEOKJFJ2OPAMHYFeyBLeHDSfuyBGC2rfHZ9Ys7DJ4FtrRzoZG+d/nr/uz2KN7wMmzG6hQumWGZkhXqngpkZGRKqBGRkZqHeWV6t69u9qqVavHtsfFxakDBgxQf/vtN/XatWvqvn371CJFiqjDhw9XVVVV//jjD9Xe3l7t37+/evLkSfXixYvqzz//rA4cONC6j86dO6slS5ZUjx8/rh49elR98803VaPRqC5cuFBVVVWNjo5W3d3d1bfeeks9e/asunnzZrVo0aIqoJ48eVJVVVW9deuW6uDgoA4YMEA9f/68un79etXd3V0dPXq0qqqqajab1dy5c6vdunVTL126pO7atUutUqWKCqjr1q177vf57bffVEANDw9XVVVVAwICVB8fH3X//v3quXPn1N69e6suLi5p/qxq166tOjk5qR9++KH6119/qcuXL1cdHR3V77//XlVVVQ0LC1NtbGzUYcOGqVeuXFF//vlntXjx4o99PkVR1EWLFqlhYWFqdHT0f/6eCiGyp4RLl9RLDRuq5/xKqOfLlVcjNm7K8AzJKWb17dlVVf9F/uo7/6uU4e//Mp7357cUpJeU0wpSYmKi2rlzZ9XHx0e1sbFRvb291YEDB6rx8fHWMUeOHFEbNGigOjk5qY6OjmrZsmXVcePGWZ8PDg5WGzZsqDo6OqrFihVTt2zZoppMJmtBUlVVPXjwoFquXDnVxsZGLV++vLpmzZo0BUJVVXX37t1qlSpVVBsbG9XLy0sdMWKEmpycbH1+x44dasmSJVVbW1u1bNmy6u7du9MUpOd5n0cL0v3799VWrVqpTk5OqoeHhzpq1Cj1nXfeeawg9e/fX33vvfdUFxcX1c3NTf34449Vi8ViHbN8+XK1UKFCqq2trVq9enV1w4YNj32+L774QvXy8lIVRVG7d+/+XN83IUTOlBIZqV7v3Uc951dCPedXQr0zebJqSUnJ0Azr9m5Qyy8srfov8le37/8uQ9/7ZTzvz29FVTPB5TmzoKioKEwmE5GRkbi4uGgdRwghRA6lms3cnT6d+/N+AMCxVi3yTfkGfQbdCUBVVd77vi4HHO5TLEnHml4nUXSZd4nz8/78zryfQAghhBDPpOj1eAwZQr6pU1Ds7Ijdt4+gjh1JvHQpY95fUXjnjW9wsFi4ZGPhp+2fZ8j7pjcpSEIIIUQ24NK0KYV+Wo7R25vk6ze41qkz0Rl0j9GapStTIyn1jOXFt9aTnJj1798pBUkIIYTIJuxKlqTQ6lU4VK2KJS6OWwMHETZtOmoGnBn7XtOZuKVYuG1UmLvxw3R/v/QmBUkIIYTIRgy5clFg/g+4vf02APfnzk29XtK9e+n6vn4+BXlDqQjA2sj9JCZk7Zu6S0ESQgghshnFaMTr00/w/uYbFAcH4g4dIqhtO+KOH0/X9+3b/BtyP7yR7fwtI9L1vdKbFCQhhBAimzI1b4bvqpXYFClCSlgY19/pzv2Fi17qjgLPo4CHJzUpD8Ca8L1Zei2SFCQhhBAiG7MtUgTflYG4NGsGZjNhEycSPPgDzNHR6fJ+fVp8Q64UC2EGhfmbs+4skhQkIYQQIpvTOTri/c1kPD//DIxGonfsIKh9exIuXHjl71XIIy81KAvAmvDdJCfHPeMVmZMUJCGEECIHUBSFXF26UOjHZRi881ovBRCxbv0rf6++zb/BLcVCqEFhwaaRr3z/GUEKksgWxowZQ/ny5a1f9+jRg9atW//ra+rUqUNAQEC65hJCiMzGvmxZfNeswfH111ETEggZOZKQzz7Dkpj4yt7D1zMfNfAHYO39XaQkJ7yyfWcUKUgijR49eqAoCoqiYDAYKFCgAO+//z7h4eFaR/tXQ4cOZdeuXVrHEEKILMHg5obP3O9xHzwIFIWIVau59tZbJN28+creo2+TbzCZU6+LtGjLp69svxlFCpJ4TOPGjQkJCeHatWv88MMPbNy4kf79+2uWx2w2Y7FY/nWMk5MTuXPnzqBEQgiR9Sk6HXn696fA/B/Qu7mReO48QW3bEf3rr69k/4W9fahpKQHAmru/YE5JeiX7zShSkDKAqqrEJcdp8niZUzltbW3x8vIif/78NGzYkE6dOrF9+3br8wsXLqRkyZLY2dlRokQJZs+ebX2uevXqfPzxx2n2d/fuXYxGI7/99hsASUlJDB8+nHz58uHo6Ei1atXYvXu3dfyiRYtwdXVl06ZNlCpVCltbW65fv87u3bupWrUqjo6OuLq6UrNmTa5fvw48fojtb2PHjsXDwwMXFxf69etHUtLT/4E+K5cQQmRHjjVq4LtuLfbly2OJjuZW/wGETZmCmpLyn/fdp+lUXMwWbhkVFm8d9QrSZhyD1gFygviUeKotr6bJex/uchgHo8NLv/7q1ats27YNo9EIwLx58xg9ejSzZs2iQoUKnDx5kj59+uDo6Ej37t3p2rUrkydPZsKECSiKAkBgYCCenp7Url0bgHfffZdr166xYsUKvL29WbduHY0bN+b06dMUK1YMgLi4OCZMmMAPP/xA7ty5yZUrFxUqVKBPnz789NNPJCUlceTIEet7PMmuXbuws7Pjt99+49q1a7z77ru4u7szbty4J45/nlxCCJEdGb28KLhkMWFTpvBg8RLuz/uB+FN/kG/qFAx58rz0fot6F6SmpThb9ZdZfWcL3VO+Qm+weYXJ04/MIInHbNq0CScnJ+zt7SlSpAjnzp1jxIjUa1l8+eWXTJkyhbZt2+Lr60vbtm358MMPmTt3LgCdOnXi9u3b7Nu3z7q/5cuX06VLF3Q6HVeuXOGnn35i1apVvP766xQpUoShQ4dSq1YtFi5caH1NcnIys2fPpkaNGvj5+WE2m4mMjKR58+YUKVKEkiVL0r17dwoUKPDUz2FjY8OCBQsoXbo0zZo144svvmDGjBlPPFz3vLmEECK7Umxs8Bw5knzTp6FzcCDu6FGutm1L7JEj/2m/vRt9g5PZwk2jwrJtY15N2AwgM0gZwN5gz+EuhzV77xdVt25d5syZQ1xcHD/88AMXL15k0KBB3L17l5s3b9KrVy/69OljHZ+SkoLJZAIgT548NGjQgB9//JHXX3+doKAgDh48yJw5cwA4ceIEqqpSvHjxNO+ZmJiYZg2RjY0NZcuWtX6dK1cuevToQaNGjWjQoAH169enY8eO5M2b96mfo1y5cjg4/P/sWfXq1YmJieHmzZsULFgwzdjnzSWEENmdS+PG2Bb3I/iDwSReusyNd3vi8WEAuXr1+tdZ+6cp7lOEmuai/KK/yqrQjbxt/gKdPvPXj8yfMBtQFOU/HebKaI6OjhQtWhSAGTNmULduXcaOHcvAgQOB1MNs1aqlPWSo1+ut/79r16588MEHzJw5k+XLl1O6dGnKlSsHgMViQa/Xc/z48TSvgdSF1n+zt7d/7B/iwoULGTx4MNu2bSMwMJBRo0axY8cOXnvttRf6fE/6B/68uYQQIiewLexLocBAQseOJfLnDYR9M4W4Eyfx/noCeheXF95fn8bfsH9Ha64bdfy4bQxvN/sqHVK/WnKITTzT6NGj+eabbzCbzeTLl4+rV69StGjRNA9fX1/r+NatW5OQkMC2bdtYvnw53bp1sz5XoUIFzGYzYWFhj+3Dy8vrmVkqVKjAyJEjOXDgAP7+/ixfvvypY//44w/i4+OtXx86dAgnJyfy58//xP3+l1xCCJHd6BwcyPv113iNHYtiNBLz668EtWtPwrlzL7wvP59i1DQXBmDV7Z+xmP/7AvD0JgVJPFOdOnUoXbo048ePZ8yYMUyYMIFvv/2Wixcvcvr0aRYuXMjUqVOt4x0dHWnVqhWfffYZ58+fp0uXLtbnihcvTteuXXnnnXdYu3YtQUFBHD16lIkTJ7Jly5anZggKCmLkyJEcPHiQ69evs337di5evEjJkiWf+pqkpCR69erFuXPn2Lp1K6NHj2bgwIHodI//tX/ZXEIIkZ0pioJbp44U/OknjPnykXzzJtc6v0XE6tUvvK/eDSfjYLEQZAM/bX/yyTKZiRQk8Vw++ugj5s2bR6NGjfjhhx9YtGgRZcqUoXbt2ixatCjNDBKkHmb7448/eP311x9bSL1w4ULeeecdhgwZgp+fHy1btuTw4cP4+Pg89f0dHBz466+/aNeuHcWLF6dv374MHDiQfv36PfU19erVo1ixYrzxxht07NiRFi1aMGbMmKeOf5lcQgiRE9j7l8Z3zWqc6tRBTUoiZNRn3P7kUyz/mKV/lhIFS1AzpRAAK2+tQX3G9e20pqgvc6EcQVRUFCaTicjISFxe4nisEEIIkdWoFgv35/3A3W+/BYsFWz8/8n87HZtChZ7r9eeDztF9dwfidTo+8ezEW40z/tpIz/vzW2aQhBBCCPFcFJ0O9359KbBgAfrcuUm8cIGg9h2I+sfFhP9NSd9S1ExOPaqw8ubKTD2LJAVJCCGEEC/E8bVq+K5di32lSlhiYgge/AF3Jk5CTU5+5mt71Z+EnUXlso3Kyp2TMiDty5GCJIQQQogXZvT0oOCiheTq2ROABwsXcr3HuyTfCfvX1/kXLkPNlHwArLz+U6adRZKCJIQQQoiXohiNeA4fRr6ZM9A5ORF//DhBbdsSe+jfL47c682J2FpULtpYWL1rSgalfTFSkIQQQgjxn7g0aIDv6lXY+vlhvn+fGz17cu/7uU+dHSpTpDw1klPvhBB4bVmmnEWSgiSEEEKI/8ymUCEKBa7A1LYtWCzcnT6dW+/3xxwR8cTxvetOwMaicsHGwrrdMzI27HOQgiSEEEKIV0JnZ4f3+HHkHfcViq0tMXv2ENSuPfGnzzw2tmyxytRI9gRgxeVFmW4WSQqSEEIIIV4p13btKLTiJ4w+PiQHB3O9SxfCVwTy6KUXe9b+CqOqct7WzM97ZmuU9smkIAkhhBDilbMrWTL16tv16qEmJxM6ZgwhH3+MJS7OOqaCX3VqJOUBYMWl+VpFfSIpSOI/URSF9evX/+uYHj160Lp16+fe57Vr11AUhVOnTgGwe/duFEUh4inHsTNKZsmRmT3P34esrlChQkyfPt369Yt+5jFjxlC+fPlXnkuIzEjv4kL+WTPxGDYU9Hoif97AtU6dSLwaZB3T4/UvMagqZ21T2LDnew3TpiUFSVi9aJEBCAkJoUmTJsDjxeZv3377LYsWLXo1IV9SWFgY/fr1o0CBAtja2uLl5UWjRo04ePCgprke9TLfg/9Ki1Jz4MAB9Ho9jRs3fuy5v/8eGQwGgoOD0zwXEhKCwWBAURSuXbtm3b5mzRqqVauGyWTC2dmZ0qVLM2TIkOfK0rdvX/R6PStWrHipz/LPfwMZKSeUUZE9KIpC7l69KLhoIfo87iReusy19u2J2rYNgMola1E9KTcAKy78T8uoaUhBEv+Jl5cXtra2/zrGZDLh6uqaMYGeol27dvzxxx8sXryYixcvsmHDBurUqcODBw80zZVezGYzlky24PGfFixYwKBBg9i3bx83btx44hhvb2+WLFmSZtvixYvJly9fmm07d+6kc+fOtG/fniNHjnD8+HHGjRtHUlLSM3PExcURGBjIsGHDmD//5ab3n+ffgBACHKpUofDatThUrYolLo7ggA8JHT8eNSmJnrVSZ5FO2yazee8PWkcFpCBlCFVVscTFafL4L/cirlOnDoMHD2b48OHkypULLy8vxowZk2bMP3+L9fX1BaBChQooikKdOnWAx2dFtm3bRq1atXB1dSV37tw0b96cK1euPFem2NhYXFxcWL16dZrtGzduxNHRkejo6MdeExERwb59+5g4cSJ169alYMGCVK1alZEjR9KsWTPgybNfERERKIrC7t270+xv//79lCtXDjs7O6pVq8bp06etz12/fp0WLVrg5uaGo6MjpUuXZsuWLUBqaenVqxe+vr7Y29vj5+fHt99+a33tmDFjWLx4MT///DOKoljf+0mH9k6dOpVmFmXRokW4urqyadMmSpUqha2tLdevX+fo0aM0aNAAd3d3TCYTtWvX5sSJE9b9FHp4g8k2bdqgKIr167//TCtVqoSdnR2FCxdm7NixpKSkWJ+/dOkSb7zxBnZ2dpQqVYodO3Y8/Rv3D7GxsaxcuZL333+f5s2bP3V2sXv37ixcuDDNtkWLFtG9e/c02zZt2kStWrUYNmwYfn5+FC9enNatWzNz5sxnZlm1ahWlSpVi5MiR7N+/P82sFKTOPLZo0QJ7e3t8fX358ccfH9vHozM5I0aMoHjx4jg4OFC4cGE+++wzkp9w+4W5c+fi4+ODg4MDHTp0SPP9/S/fNyEyM0OePBRYMJ/cffoAEL5kKdff6U65XMV5LTEXAMvPz9EyopVB6wA5gRofz4WKlTR5b78Tx1EcHF769YsXL+ajjz7i8OHDHDx4kB49elCzZk0aNGjw2NgjR45QtWpVdu7cSenSpbGxsXniPmNjY/noo48oU6YMsbGxfP7557Rp04ZTp06h0/17Z3d0dKRz584sXLiQ9u3bW7f//bWzs/Njr3FycsLJyYn169fz2muv/eff9ocNG8a3336Ll5cXn3zyCS1btuTixYsYjUYGDBhAUlISv//+O46Ojpw7dw4nJycALBYL+fPnZ+XKlbi7u3PgwAH69u1L3rx56dixI0OHDuX8+fNERUVZi0GuXLk4cODAc+WKi4tjwoQJ/PDDD+TOnRsPDw+CgoLo3r07M2akXmNkypQpNG3alEuXLuHs7MzRo0fx8PBg4cKFNG7cGL1eD8Avv/xCt27dmDFjBq+//jpXrlyhb9++AIwePRqLxULbtm1xd3fn0KFDREVFERAQ8Fw5AwMD8fPzw8/Pj27dujFo0CA+++wzFEVJM65ly5Z8//337Nu3j1q1arFv3z4ePHhAixYt+PLLL63jvLy8WL58OWfOnMHf3/+5Mvxt/vz5dOvWDZPJRNOmTVm4cCFjx461Pt+jRw9u3rzJr7/+io2NDYMHDyYs7N9vo+Ds7MyiRYvw9vbm9OnT9OnTB2dnZ4YPH24dc/nyZVauXMnGjRuJioqiV69eDBgwwFrAoqOjX+r7JkRWoBgMeAz5CPsK5bk94mPiT50iqE1beg3sysHkOfxpm8TW/YtoUrOHtkHVTGTPnj1q8+bN1bx586qAum7dujTPWywWdfTo0WrevHlVOzs7tXbt2uqZM2fSjElISFAHDhyo5s6dW3VwcFBbtGih3rx5M82YBw8eqN26dVNdXFxUFxcXtVu3bmp4ePgLZY2MjFQBNTIy8pljzbGx6jm/Epo8zLGxz/2ZunfvrrZq1cr6de3atdVatWqlGVOlShV1xIgR1q//+X0KCgpS/6+9+46K6tr+AP4FZmhPQqjSR5coIihRsOAz8qKIiAWD8fFSDCBgjI+gxviWveTZQoItxgoSNRpiVIxCRDQC8oIVJIIhYyNiAYkjTUGk7N8f/LjLaYImgDL7s9Ys5d59z5yzh2H2nHvuDAC6cOHCU9tVVFJSQgAoNzdXZTupqakEQHiMzpw5Qzo6OnT79m0iIvrjjz9ILBZTWlqa2vvYt28fmZiYkL6+Pg0ePJjmzp1Lv/zyi7BfVd9LS0sJAKWmpsr1Iz4+XoiRyWRkYGBA3333HRER9e7dm5YsWaK2H4qmTZtGEyZMEH5WlSvF8RMRXbhwgQBQQUEBERHFxcURAMrJyXnq/dXV1ZGRkREdPnxY2Kbqufb666/TihUr5Lbt2rWLrK2tiYjo6NGjpKOjI/fcOnLkiMq2FA0ePJjWrl1LRES1tbVkbm5Ox44dE/Y/+VjMmDGDQkJCiIgoJCSEZs6cqTT2Bw8ekJ+fHwEgiURCgYGBFBsbS48ePXpqPy5fvkxisZj++OMPIiJKSEgge3t7qq+vJyIiqVRKAOj06dPCMfn5+QSA1qxZ89T8PSkqKorc3d2FnxcvXqwyd9ra2lRUVKSyjZY+boy9bGoKC+n6mwGNr1k9nSkmpC/1jnOh9za7N3/wc2rp6/cLNYP08OFDuLm5ISQkBBMmTFDaHxUVhdWrV+Prr79Gjx49sGzZMowYMQJSqVSYOZgxYwYOHz6M+Ph4mJmZYdasWRgzZgyysrKEd1nvvPMObt26heT/XyA2ZcoUTJo0CYcPH26VcWkZGMApO6tV2m7Jff8Zffr0kfvZ2tq62XfQzbl27RoWLlyI06dP4969e8JamcLCwhbNAAwYMAAuLi7YuXMn5syZg127dsHBwQFDhw5Ve8yECRMwevRoZGRk4NSpU0hOTkZUVBRiYmIQHBz8TP339PQU/m9qagonJyfk5+cDACIjI/Hhhx8iJSUF3t7emDBhglwON2/ejJiYGNy4cQPV1dV4/PjxX3ZFk66urtLjVVJSgkWLFuHEiRO4e/cu6uvrUVVVpXbdT5OsrCycO3cOy5cvF7bV19fj0aNHqKqqQn5+PhwcHGBnZyfsfzIv6kilUpw9exYHDhwAAIhEIgQGBmL79u3w9vZWig8NDYWnpydWrFiB77//HqdOnZI7zQc0ziomJSXh2rVrSE1NxenTpzFr1iysW7cOp06dgqGaGdTY2FiMHDkS5ubmAAA/Pz+Ehobi+PHj8PHxQX5+PkQiETw8PIRjevbs2ex6un379mHt2rW4evUqHjx4gLq6OrzyyityMapy19DQAKlUCisrq+d+3Bh72eja20Py7R7cXbYcZd9/j8GZ1TAsBtaPfYTkzF3wHTyp3fr2Qq1BGjVqFJYtW4aAgAClfUSEtWvXYv78+QgICICrqyt27NiBqqoq7NmzBwBQXl6O2NhYREdHw9vbG3379sU333yD3NxcHD9+HACQn5+P5ORkxMTEwNPTE56enti2bRsSExMhlUpbZVxaWlrQNjRsl5viaYtnJRaLlcbyZxf/jh07FjKZDNu2bcOZM2dw5kzjlxq2ZFFtk7CwMOE0VFxcHEJCQpodq76+PkaMGIFFixYhMzMTwcHBWLx4MQAIp/boiTVbqtaNqNN032FhYbh+/TomTZqE3NxceHh4CGth9u7di5kzZ2Ly5MlISUlBTk4OQkJCmh13S/tmYGCglIPg4GBkZWVh7dq1yMzMRE5ODszMzJq9z4aGBixduhQ5OTnCLTc3F1euXIG+vr7KtW0t+V2LjY1FXV0dbG1tIRKJIBKJsGnTJhw4cAClpaVK8a6urujZsyfefvttODs7P7WA7tatG8LCwhATE4Ps7Gz8+uuv+O6771TG1tfXY+fOnUhKShL6YWhoiPv37wuLtZvG+CzPodOnT+Nf//oXRo0ahcTERFy4cAHz589vNt9N99H07/M+boy9jLT19GD9309hvXIltPT18dp1ICquHmnH1rRvv9r13p9BQUEBiouL4ePjI2zT09ODl5eXsEYjKysLtbW1cjE2NjZwdXUVYk6dOgVjY2MMHDhQiBk0aBCMjY2futajpqYGFRUVcjcmr2nNUX19vdoYmUyG/Px8LFiwAMOHD4ezs7PKF8bmvPfeeygsLMT69etx6dIlpYW7LdGrVy88fPgQAGBh0fhBZUVFRcJ+xY8raHL69Gnh/6Wlpbh8+TJ69uwpbLO3t8fUqVNx4MABzJo1C9u2bQMAZGRkYPDgwZg2bRr69u0LR0dHpcXpurq6Svl7lr4pysjIQGRkJPz8/ODi4gI9PT3cu3dPLkYsFivdZ79+/SCVSuHo6Kh009bWRq9evVBYWIg7d+4IxzT3kQl1dXXYuXMnoqOj5QqvX375BRKJROUCaACYPHky0tLSMHny5BaNGWhcxGxoaCg8vop+/PFHVFZW4sKFC3J9+f7773Hw4EHIZDI4Ozujrq4O58+fF46TSqVP/Rysn3/+GRKJBPPnz4eHhwe6d++OGzduKMWpyp22tjZ69OgB4PkfN8ZeZq++OR5dvotHvZUFzCuAd7+rRsba+e3WnxfqFNvTFBcXAwA6d+4st71z587CH6Di4mLo6urCxMREKabp+OLiYlhaWiq1b2lpKcSosnLlSrnFm0yZpaUlDAwMkJycDDs7O+jr68PY2FguxsTEBGZmZti6dSusra1RWFiIOXPmPPN9mZiYICAgALNnz4aPj4/c6QpFMpkMEydOxOTJk9GnTx8YGRnh/PnziIqKgr+/P4DG2ZdBgwZh1apV6NKlC+7du4cFCxaobO/TTz+FmZkZOnfujPnz58Pc3Fy4Sm/GjBkYNWoUevTogdLSUpw4cQLOzs4AAEdHR+zcuRNHjx5F165dsWvXLpw7d064+g9ofGE/evQopFIpzMzMYGxsDEdHR9jb22PJkiVYtmwZrly5gujo6BblydHREbt27YKHhwcqKiowe/ZsGCicdu3SpQt++ukn/P3vf4eenh5MTEywaNEijBkzBvb29pg4cSK0tbVx8eJF5ObmYtmyZfD29oaTkxPef/99REdHo6KiAvPnP/0PWWJiIkpLSxEaGqr0e/HWW28hNjYWERERSseFh4dj4sSJak9tLVmyBFVVVfDz84NEIkFZWRnWr1+P2tpalRcTAI0zWaNHj4abm5vcdhcXF8yYMQPffPMNpk+fDl9fX4SHh2Pr1q0QiUSYMWOGUv6e5OjoiMLCQsTHx6N///5ISkpCQkKCUpy+vj6CgoLwxRdfoKKiApGRkfjnP/8JKysroZ3nedwYe9npOznBOfFHJL49GA6/16KwU1XzB7WSl2YGqYnidDcRNTsFrhijKr65dubOnYvy8nLhdvPmzWfseccnEomwfv16bNmyBTY2NkLx8SRtbW3Ex8cjKysLrq6umDlzJj7//PPnur/Q0FA8fvy42ZmFTp06YeDAgVizZg2GDh0KV1dXLFy4EOHh4diwYYMQt337dtTW1sLDwwPTp0/HsmXLVLa3atUqTJ8+He7u7igqKsKhQ4fkZs/+/e9/w9nZGb6+vnBycsLGjY3fLzR16lQEBAQgMDAQAwcOhEwmw7Rp0+TaDg8Ph5OTEzw8PGBhYYGff/4ZYrEY3377LX777Te4ubnhs88+U9s3Rdu3b0dpaSn69u2LSZMmITIyUukNQnR0NI4dOwZ7e3v07dsXADBy5EgkJibi2LFj6N+/PwYNGoTVq1dDIpEAaHwcExISUFNTgwEDBiAsLExuvZIqsbGx8Pb2ViqOgMY1Yjk5OXKXsjcRiUQwNzeHSKT6/ZyXlxeuX7+O999/Hz179sSoUaNQXFyMlJQUODk5KcXfvXsXSUlJKtc5amlpISAgQDjNFhcXB3t7e3h5eSEgIABTpkxR+Qarib+/P2bOnImIiAi89tpryMzMxMKFC5XiHB0dERAQAD8/P/j4+MDV1VX4PQGe/3FjrCPQ6dQJPb/cBdvdu/BuWPudZtMiVYsJXgBaWlpISEgQ3plfv34d3bp1Q3Z2ttwfA39/f7z66qvYsWMHTpw4geHDh+P+/fty76bc3Nwwfvx4LF26FNu3b8fHH3+sNE3+6quvYs2aNQgJCWlR/yoqKmBsbIzy8nKlBZisbezevRvTp0/HnTt31H6kAGOMMfaklr5+vzQzSF27doWVlZXch9E9fvwY6enpGDx4MADA3d0dYrFYLqaoqAh5eXlCjKenJ8rLy3H27Fkh5syZMygvLxdi2IutqqoKly5dwsqVK/HBBx9wccQYY+wv90KtQXrw4AGuXr0q/FxQUICcnByYmprCwcEBM2bMwIoVK9C9e3d0794dK1asgKGhId555x0AjV9pERoailmzZsHMzAympqb45JNP0Lt3b+ES4qZTH+Hh4diyZQuAxsv8x4wZo3I6nr14oqKisHz5cgwdOhRz585t7+4wxhjrgF6oU2xpaWl44403lLYHBQXh66+/BhFh6dKl2LJlC0pLSzFw4EB89dVXcpf+Pnr0CLNnz8aePXtQXV2N4cOHY+PGjbC3txdi7t+/j8jISBw6dAhA4yf2btiw4Zm+L4xPsTHGGGMvn5a+fr9QBdLLhAskxhhj7OXT4dYgMcYYY4y1FS6QGGOMMcYUcIHEGGOMMaaACyTGGGOMMQVcIDHGGGOMKeACiTHGGGNMARdIjDHGGGMKuEBijDHGGFPABRJjjDHGmIIX6rvYXiZNH0BeUVHRzj1hjDHGWEs1vW4390UiXCA9p8rKSgCQ+443xhhjjL0cKisrYWxsrHY/fxfbc2poaMCdO3dgZGQELS2t9u7OM6uoqIC9vT1u3rzJ3yWngHOjHudGNc6Lepwb9Tg36rVmbogIlZWVsLGxgba2+pVGPIP0nLS1tWFnZ9fe3fjTXnnlFX5iqsG5UY9zoxrnRT3OjXqcG/VaKzdPmzlqwou0GWOMMcYUcIHEGGOMMaaACyQNpaenh8WLF0NPT6+9u/LC4dyox7lRjfOiHudGPc6Nei9CbniRNmOMMcaYAp5BYowxxhhTwAUSY4wxxpgCLpAYY4wxxhRwgcQYY4wxpoALpA5i5cqV6N+/P4yMjGBpaYnx48dDKpWqjf/ggw+gpaWFtWvXym2vqanBRx99BHNzc/ztb3/DuHHjcOvWrVbufetqSW6Cg4OhpaUldxs0aJBcjKbmBgDy8/Mxbtw4GBsbw8jICIMGDUJhYaGwX1Nzo/g703T7/PPPhRhNzc2DBw8QEREBOzs7GBgYwNnZGZs2bZKL0dTc3L17F8HBwbCxsYGhoSF8fX1x5coVuZiOmJtNmzahT58+woc/enp64siRI8J+IsKSJUtgY2MDAwMD/OMf/8ClS5fk2mjTvBDrEEaOHElxcXGUl5dHOTk5NHr0aHJwcKAHDx4oxSYkJJCbmxvZ2NjQmjVr5PZNnTqVbG1t6dixY5SdnU1vvPEGubm5UV1dXRuN5K/XktwEBQWRr68vFRUVCTeZTCbXjqbm5urVq2RqakqzZ8+m7OxsunbtGiUmJtLdu3eFGE3NzZO/L0VFRbR9+3bS0tKia9euCTGampuwsDDq1q0bpaamUkFBAW3ZsoV0dHTo4MGDQowm5qahoYEGDRpEr7/+Op09e5Z+++03mjJlilL+OmJuDh06RElJSSSVSkkqldK8efNILBZTXl4eERGtWrWKjIyMaP/+/ZSbm0uBgYFkbW1NFRUVQhttmRcukDqokpISAkDp6ely22/dukW2traUl5dHEolErkAqKysjsVhM8fHxwrbbt2+TtrY2JScnt1XXW52q3AQFBZG/v7/aYzQ5N4GBgfTee++pPUaTc6PI39+fhg0bJvysyblxcXGhTz/9VC6uX79+tGDBAiLS3NxIpVICIBQFRER1dXVkampK27ZtIyLNyQ0RkYmJCcXExFBDQwNZWVnRqlWrhH2PHj0iY2Nj2rx5MxG1fV74FFsHVV5eDgAwNTUVtjU0NGDSpEmYPXs2XFxclI7JyspCbW0tfHx8hG02NjZwdXVFZmZm63e6jajKDQCkpaXB0tISPXr0QHh4OEpKSoR9mpqbhoYGJCUloUePHhg5ciQsLS0xcOBAHDx4UDhGU3Oj6O7du0hKSkJoaKiwTZNzM2TIEBw6dAi3b98GESE1NRWXL1/GyJEjAWhubmpqagAA+vr6QoyOjg50dXXxv//9D4Bm5Ka+vh7x8fF4+PAhPD09UVBQgOLiYrkx6+npwcvLSxhzW+eFC6QOiIjw8ccfY8iQIXB1dRW2f/bZZxCJRIiMjFR5XHFxMXR1dWFiYiK3vXPnziguLm7VPrcVdbkZNWoUdu/ejRMnTiA6Ohrnzp3DsGHDhD9mmpqbkpISPHjwAKtWrYKvry9SUlLw5ptvIiAgAOnp6QA0NzeKduzYASMjIwQEBAjbNDk369evR69evWBnZwddXV34+vpi48aNGDJkCADNzU3Pnj0hkUgwd+5clJaW4vHjx1i1ahWKi4tRVFQEoGPnJjc3F506dYKenh6mTp2KhIQE9OrVSxhX586d5eKfHHNb50X0l7fI2l1ERAQuXrwovBsBGivvdevWITs7G1paWs/UHhE98zEvKlW5AYDAwEDh/66urvDw8IBEIkFSUpLcC56ijp6bhoYGAIC/vz9mzpwJAHjttdeQmZmJzZs3w8vLS217HT03irZv3453331XbmZAHU3Izfr163H69GkcOnQIEokEJ0+exLRp02BtbQ1vb2+17XX03IjFYuzfvx+hoaEwNTWFjo4OvL29MWrUqGbb6wi5cXJyQk5ODsrKyrB//34EBQUJb7YAKI2vJWNurbzwDFIH89FHH+HQoUNITU2FnZ2dsD0jIwMlJSVwcHCASCSCSCTCjRs3MGvWLHTp0gUAYGVlhcePH6O0tFSuzZKSEqWq/mWkLjeqWFtbQyKRCFeWaGpuzM3NIRKJ0KtXL7l4Z2dn4So2Tc3NkzIyMiCVShEWFia3XVNzU11djXnz5mH16tUYO3Ys+vTpg4iICAQGBuKLL74AoLm5AQB3d3ehSCgqKkJycjJkMhm6du0KoGPnRldXF46OjvDw8MDKlSvh5uaGdevWwcrKCgCUZoKeHHNb54ULpA6CiBAREYEDBw7gxIkTwhOtyaRJk3Dx4kXk5OQINxsbG8yePRtHjx4F0PikFYvFOHbsmHBcUVER8vLyMHjw4DYdz1+pudyoIpPJcPPmTVhbWwPQ3Nzo6uqif//+SpcpX758GRKJBIDm5uZJsbGxcHd3h5ubm9x2Tc1NbW0tamtroa0t/xKjo6MjzEpqam6eZGxsDAsLC1y5cgXnz5+Hv78/gI6bG1WICDU1NejatSusrKzkxvz48WOkp6cLY27zvPzly75Zu/jwww/J2NiY0tLS5C47rqqqUnuM4lVsRI2XUNrZ2dHx48cpOzubhg0b9tJfWtpcbiorK2nWrFmUmZlJBQUFlJqaSp6enmRra6t0eamm5YaI6MCBAyQWi2nr1q105coV+vLLL0lHR4cyMjKEGE3NDRFReXk5GRoa0qZNm1S2o6m58fLyIhcXF0pNTaXr169TXFwc6evr08aNG4UYTc3N3r17KTU1la5du0YHDx4kiURCAQEBcu10xNzMnTuXTp48SQUFBXTx4kWaN28eaWtrU0pKChE1XuZvbGxMBw4coNzcXHr77bdVXubfVnnhAqmDAKDyFhcXp/YYVQVSdXU1RUREkKmpKRkYGNCYMWOosLCwdTvfyprLTVVVFfn4+JCFhQWJxWJycHCgoKAgpXFrYm6axMbGkqOjI+nr65Obm5vcZ9kQaXZutmzZQgYGBlRWVqayHU3NTVFREQUHB5ONjQ3p6+uTk5MTRUdHU0NDgxCjqblZt24d2dnZCX9vFixYQDU1NXLtdMTcTJ48mSQSCenq6pKFhQUNHz5cKI6IGj8javHixWRlZUV6eno0dOhQys3NlWujLfOiRUT0189LMcYYY4y9vHgNEmOMMcaYAi6QGGOMMcYUcIHEGGOMMaaACyTGGGOMMQVcIDHGGGOMKeACiTHGGGNMARdIjDHGGGMKuEBijDHGGFPABRJjjDHGmAIukBhjjDHGFHCBxBhjT5DJZLC0tMTvv//+TMe99dZbWL16det0ijHW5rhAYox1SMnJydDS0nrq7ciRI0rHrVy5EmPHjkWXLl2EbcHBwRg/frxc3L59+6Cvr4+oqCgAwKJFi7B8+XJUVFS05rAYY22ECyTGWIfk5eWFoqIi4WZmZoZ58+bJbRsxYoTcMdXV1YiNjUVYWNhT246JicG7776LDRs24D//+Q8AoE+fPujSpQt2797damNijLUdLpAYYx2SgYEBrKysYGVlhfr6eshkMgwZMkTYZmVlBZFIJHfMkSNHIBKJ4OnpqbbdqKgoREREYM+ePUqF1Lhx4/Dtt9+2yngYY22LCyTGWId34cIFAIC7u/tT406ePAkPDw+1++fMmYP//ve/SExMxIQJE5T2DxgwAGfPnkVNTc2f6zBjrN2Jmg9hjLGXW3Z2NmxtbWFpafnUuN9//x02NjYq9x05cgQ//PADfvrpJwwbNkxljK2tLWpqalBcXAyJRPKn+80Yaz88g8QY6/Cys7PRr1+/ZuOqq6uhr6+vcl/TGqNFixahsrJSZYyBgQEAoKqq6vk7yxh7IXCBxBjr8LKzs5s9vQYA5ubmKC0tVbnP1tYW6enpKCoqgq+vr8oi6f79+wAACwuLP9dhxli74wKJMdahyWQy3Lx5s0UzSH379sWvv/6qdr+DgwPS09NRUlICHx8fpUv68/LyYGdnB3Nz8z/db8ZY++ICiTHWoWVlZQFAiwqkkSNH4tKlS2pnkQDAzs4OaWlpkMlk8PHxQXl5ubAvIyMDPj4+f77TjLF2xwUSY6xDu3DhAiwtLWFra9tsbO/eveHh4YG9e/c+Na7pdFtZWRlGjBiBsrIyPHr0CAkJCQgPD/+rus4Ya0daRETt3QnGGHtR/Pjjj/jkk0+Ql5cHbe2Wv4f86quv8MMPPyAlJaUVe8cYayt8mT9jjD3Bz88PV65cwe3bt2Fvb9/i48RiMb788stW7BljrC3xDBJjjDHGmAJeg8QYY4wxpoALJMYYY4wxBVwgMcYYY4wp4AKJMcYYY0wBF0iMMcYYYwq4QGKMMcYYU8AFEmOMMcaYAi6QGGOMMcYUcIHEGGOMMabg/wBIkuXgj+BTzQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 156, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ax.plot(subsaturated,1e-2*pa,label='Initially Subsaturated AMS Adiabat')\n", + "ax.legend(frameon=False)\n", + "fig" + ] + }, + { + "cell_type": "markdown", + "id": "6cfecb6a-512c-47f8-ae30-ac89387ffd2c", + "metadata": {}, + "source": [ + "# Entraining plumes\n", + "The moist adiabat assumes the rising parcel does not interact with its surrounding environment. Entraining plume models relax this assumption by including the effect of turbulent air exchange between the parcel and its environment.\n", + "\n", + "## Singh and O'Gorman (2013)\n", + "One example of an entraining plume model is [Singh and O'Gorman (2013)](https://agupubs-onlinelibrary-wiley-com.cuucar.idm.oclc.org/doi/10.1002/grl.50796). This model is referred to as the zero-buoyancy plume model because it assumes the temperature of the rising parcel is equal to the surrounding air at a given height (i.e., the parcel and environment have equal buoyancy ignoring the density differences due to differences in moisture).\n", + "\n", + "The model requires as inputs the vertical profile of the entrainment rate and the relative humidity of the surrounding environment. In the paper, they assume \n", + "1. the entrainment rate $\\epsilon$ decreases inversely with height $z$, i.e.\n", + "$$ \\epsilon(z) = \\hat{\\epsilon} /z $$\n", + "2. the environmental relative humidity is vertically uniform.\n", + "\n", + "### Technical note on implementation in MetPy\n", + "Since moist_lapse integrates in pressure instead of height, the entrainment profile is inversely proportional to the pseudoheight $z_p$, i.e. $\\epsilon(p)=\\hat{\\epsilon}/z_p$ where\n", + "$$z_p=-H\\log(p/p_0)$$\n", + "where $H=RT_0/g$ is a scale height and $p_0$ is a reference pressure. Here, $T_0$ and $p_0$ correspond to the initial temperature and pressure of the parcel at LCL." + ] + }, + { + "cell_type": "markdown", + "id": "50d945a9-7b11-4c57-8f60-d1639eeff2f8", + "metadata": {}, + "source": [ + "### Example\n", + "To compute the Singh and O'Gorman (2013) entraining plume, we specify the input parameters and call moist_lapse or parcel_profile with the corresponding lapse_type:" + ] + }, + { + "cell_type": "code", + "execution_count": 157, + "id": "94c9edc3-7e7d-475e-9b27-a8279f38457d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[300.0 293.39145714174094 286.3882695305332 275.20220057684895 267.5215457380874 257.905238007138 245.05808843180128 227.34697936485384] kelvin\n" + ] + } + ], + "source": [ + "ep0=0.75\n", + "rh0=0.8\n", + "so13=parcel_profile(pa,t1,td,lapse_type='so13',params={'ep0':ep0,'rh0':rh0})\n", + "print(so13)" + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "id": "07e57407-01e5-4fcc-b8a1-614ab52ee203", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGyCAYAAAAf/ztNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAADAbklEQVR4nOzdd3gU1dvG8e9syab3RkgIvYbei9J7FZCuIEUEBSIoiKCA0lFBRaw0KWIFaSJIL1Kl9xIglUAS0uvuvH8E83uDooBJJhuez3XtpczO7twLgdw5Z+aMoqqqihBCCCGEyKHTOoAQQgghRGEjBUkIIYQQ4j5SkIQQQggh7iMFSQghhBDiPlKQhBBCCCHuIwVJCCGEEOI+UpCEEEIIIe5j0DqAtbJYLERERODk5ISiKFrHEUIIIcRDUFWVxMRE/Pz80OkePE4kBekxRUREEBAQoHUMIYQQQjyG0NBQ/P39H/i8FKTH5OTkBGT/Bjs7O2ucRgghhBAPIyEhgYCAgJzv4w8iBekx/Tmt5uzsLAVJCCGEsDL/dnqMnKQthBBCCHEfKUhCCCGEEPeRgiSEEEIIcR8pSEIIIYQQ95GCJIQQQghxHylIQgghhBD3kYIkhBBCCHEfKUhCCCGEEPeRgiSEEEIIcR8pSEIIIYQQ97GqgvTpp59SrVq1nNt7NGzYkF9++SXneVVVmTp1Kn5+ftjZ2dGsWTPOnj2b6z3S09MZNWoUnp6eODg40KVLF8LCwgr6owghhBCiELOqguTv78/s2bM5evQoR48epUWLFnTt2jWnBM2dO5cPPviAhQsXcuTIEXx9fWndujWJiYk57xEcHMzatWtZs2YN+/btIykpiU6dOmE2m7X6WEIIIYQoZBRVVVWtQ/wX7u7uzJs3j8GDB+Pn50dwcDATJkwAskeLfHx8mDNnDsOHDyc+Ph4vLy9WrFhB7969AYiIiCAgIIDNmzfTtm3bhz5uQkICLi4uxMfH5+nNauNvp6JaVFx97PPsPQsT1Wwm+eBBHBo1+tcbBQrtXbudBEBpy02wcQC3QLIsWRyMPEhjv8byZyiEsDoP+/3bqkaQ/j+z2cyaNWtITk6mYcOGhISEEBUVRZs2bXL2MZlMNG3alAMHDgBw7NgxMjMzc+3j5+dHUFBQzj4Pkp6eTkJCQq5HfjiyMYRVUw6y8ZOThJ6Pxcr7618k/rad0CFDCenSlbvr1qFmZmodSTyAqqpMWnuG9gt2Ebl8EOon9WDnLL49u4IRv41g5PaR3Ey4qXVMIYTIF1ZXkE6fPo2joyMmk4mXXnqJtWvXUrlyZaKiogDw8fHJtb+Pj0/Oc1FRUdjY2ODm5vbAfR5k1qxZuLi45DwCAgLy8FNlU1WVzIzsqb4bp2NY/+EJ1rx7mHP7IsjKKBpTgObYGHT29qRfvkzkGxO50qYtMcuWYU5K1jqauE9Khhlbow57cyI3knQoWWmwezZp+97DqOjZF76Pbj93Y+HxhaRmpWodVwgh8pTVFaQKFSpw4sQJDh48yIgRIxg4cCDnzp3Lef7+IX9VVf91GuBh9pk4cSLx8fE5j9DQ0Mf/EA+gKArth1el/7QGVG3uj8GkJzYimZ0rL7B84gEOrrtKUlx6nh+3ILn17UvZXTvxGjsWvacnWZGRRM+ew5UWLYhesICsO3e0jijucTAZWPpCPT4Y1JI3nWbxcsZowlUPhtwK46eboTRSbcm0ZPL5qc955udn2Hlzp9aRhRAiz1j9OUitWrWiTJkyTJgwgTJlyvDHH39Qs2bNnOe7du2Kq6sry5cvZ8eOHbRs2ZLY2Nhco0jVq1enW7duTJs27aGPm1/nIP1/6SmZnD8QyakdYSTGpgGg0ymUqe1N9RYB+JTKn+MWFEt6OvE//0zs4iVk3LgBgGJjg8szz+Ax+AVsAgM1Tij+lJFlYdmBEL7YfpbnzGt5Sb8BGyWTbQ4OzPUtzi1L9tdnU/+mTKg3gQCnvB9hFUKIvFDkz0H6k6qqpKenU6pUKXx9fdm2bVvOcxkZGezevZtGjRoBULt2bYxGY659IiMjOXPmTM4+hYnJ3kiNViUY8G4D2g0PolhZFywWlctHbvHDnKP8OPcol4/ewmK2aB31sehMJtx69aL05k0U//gjbKtXQ83I4O6333K1XXvCxgSTevq01jEFYGPQ8eLTZdj8WhvCqgfTMmMeW8x1aZOczPprlxmSlIFB0bE7bDfd1nXj0xOfkpaVpnVsIYR4bFY1gvTmm2/Svn17AgICSExMZM2aNcyePZstW7bQunVr5syZw6xZs1i6dCnlypVj5syZ7Nq1i4sXL+Lk5ATAiBEj2LhxI8uWLcPd3Z3XXnuNmJgYjh07hl6vf+gsBTGC9Hdu30zk5I5QLh+5hcWc/Ufn6GaiajN/Kjfxw9bBWGBZ8pqqqqQePUrMV4tJ2r07Z7t9/fp4DB2CQ5MmctVUIXEy9C5TN5zFPmwvUwxfU14XzjWjgZnFAjikzz5fzt/Rn4n1J/K0/9MapxVCiP952O/fVlWQhgwZwvbt24mMjMTFxYVq1aoxYcIEWrduDWR/g502bRqff/45cXFx1K9fn08++YSgoKCc90hLS+P1119n9erVpKam0rJlSxYtWvTIJ11rVZD+lByfzpk94ZzdE05qYvaVYAYbHRUbFKNaC3/cfB0KPFNeSrt4idglS4jftAmysgAwVaiAx9AhOLdrh2K03iJYVFgsKj+fDGfupjO0Td3EWMMPOCkp/OpgzzyfYkSr2V+XzQOaM6HeBIo7Ftc4sRBCFNGCVJhoXZD+lJVp5vKRaE7uCCUmLClne4kq7lRvEUBAZXerHnXJjIwkdtly4r7/HjUlBQCDXzE8Bg3CtWdPdPZFc70oa5KcnsUnO6/w496TjFG+oY9+F6k6+MzDk5VO9mShYtKbGFZ1GIOCBmHSm7SOLIR4gklBymeFpSD9SVVVIi7d5eSOUEJO3YF7f6puvvZUaxFAhfq+GE0PP4VY2Jjj44n7Zg2xK1ZgjokBQO/iglv/frj174/Bw0PjhOJGTDLTN50n8vzvTDMup7buMleNBmb4+HHk3oBfCacSTKw/kSbFm2gbVgjxxJKClM8KW0H6/+Jvp3B6ZzjnDkSQmZZ9PojJ3kCVp/wIauqPk7utxgkfnyU9nfi164hZuoTMG9mLFComE649uuM+aBA2JUponFDsvXybaevPUiXmV940rsZbucsvDva85+3DbbK/HluVaMX4uuMp5lhM47RCiCeNFKR8VpgL0p8yUrOylwnYGUrCnewrihSdQplaXlRvEYBvaReNEz4+1Wwm8bftxHz1FWl/Xumm0+HUtg0eQ4ZiF1RF24BPuEyzhRW/3+Dz304yMOtHhug3k6kz86m7G6ucnTCjYmew48VqLzKw8kCMejmnTAhRMKQg5TNrKEh/slhUbpy+w8kdoYRfvJuz3bukM9Vb+lOmljd6vXWu+KCqKimHjxCz+CuS9+zN2W7fsAEeQ4bi0Fju+aalmKR03tt6iYNHDzFJv5JW+uNcNhqZ4e3NMZvsKd+SziV5s/6bNPRrqHFaIcSTQApSPrOmgvT/3QlL5OSOMC4djsKSlf1H7+BiQ1Azf6o85Yedo43GCR9f2sWLxCxeTMKmzWC+N7VYqRIeQ4bg3K4tisGgccIn15nweKZtOIvDzR28bVhBKV0UGx3sed/Lixgl++uwTWAbXq/7Or4OvhqnFUIUZVKQ8pm1FqQ/pSRkcHZvOKd3h5OakAGA3qijQn1fqrXwx8PPUeOEjy8zPJyY5cu5+/0PqKnZ9wgzFi+O+6BBuPboLle+aURVVTacimTeplO0T17HaMNaVF06i9xcWO3ijAWwM9gxovoIBlQaINNuQoh8IQUpn1l7QfqTOdPClWO3OLE9lDuh/1smIKCSG9VaBBBYxQNFZ51TVFlxcdxds4bYFSsxx8YCoHd1xa1/f9wG9Mdw302LRcFIycjis11X+WnPMYKVb+ip38NFGyMzPD05bsouRaVdSvNm/TepX6y+xmmFEEWNFKR8VlQK0p9UVSXySjyndoRy7cRt/vyqcPWxp1pzfyo08MXG1jqnqCxpacSvXUvMkqVk3rvJsGJri2uPHri/MAgbf3+NEz6ZQmNTmLn5PFFn9zLVuJyqumtscHTgfQ8P4u6dEte+ZHvG1RmHj4OPtmGFEEWGFKR8VtQK0v+XcCeV07vCOLc/kozU7FWsbewMVG5cjKrN/HH2tNM44eNRzWYSt24l5qvFpJ09m71Rp8O5XTs8hg7BtnJlbQM+oQ5cvcM7P5+haswmxhvWYNIn8rGbK985O2EB7A32jKwxkn6V+mHUybSbEOK/kYKUz4pyQfpTRloWFw9GcXJHKPHR2efyKAqUruFFtZYBFCvjYpVXiKmqSsqhQ8R8tZjkfftytjs0aoTH0CHYN2xolZ/LmmWZLXxz+Cafbz3OwMzvGKT/lcsmHTM8PThlyr5woKxrWd6s/yZ1fetqnFYIYc2kIOWzJ6Eg/Um1qNw4G8PJ7aGEXYjL2e5VwonqLQMoW9sbvcE6lwlIO3+emMVLSPjll5wr32wrV8Zj6BCc2rSRK98KWFxyBvN/u8Tvhw7wlv5rmuhP87OjA/M93Im7dy5cx9IdGVd7HF72XhqnFUJYIylI+exJKkj/X0x4Eqd2hnHxUBTmTAsA9s42BDUtTpWnimPvbJ3LBGSEhRO7bBl3f/gBNS17UU1jQADuLwzC9Zln0NlZ57SitboQlcC0n8/ieGMrbxlW4GKI4SM3F753ckJVwNHoyMs1XqZPxT4YdFJihRAPTwpSPntSC9KfUpMyOLs3gjO7wkiOv7dMgEFH+Xo+VGsRgKe/dS4TkBUXR9zq1cStXIU5Lnu0TO/mhtuA/rj16ydXvhUgVVXZciaKuRtP0iHpR142/EyISWW6pxtnTNk3vC3nVo7J9SdTy6eWxmmFENZCClI+e9IL0p/MWRau/hHNye2hRN9IzNlevIIr1VsEEFjVE50VLhNgSU3l7k8/Ebt0GZlhYQAodna49uyJ+8CB2PgX1zjhkyMt08wXe67x465DjGUVnfUH+MnJgQXubsTrsqd2u5Tpwqu1X8XTzlPjtEKIwk4KUj6TgpSbqqrcCkng5PZQrh6/jWrJ/rJy9rKjWnN/KjUqZpXLBKhZWSRu3cqdr74i/dz57I16Pc7t22df+VaxorYBnyARd1OZ9csFok7tYJpxOcUMoXzo5spPTo6oCjgZnXil5iv0qtBLpt2EEA8kBSmfSUF6sMTYtOxlAvZFkJ5yb5kAWz2VGvlRtbk/Ll7Wdz6Pqqqk/P579pVvBw7kbHdo0iT7yrf69eXKtwJyOCSWd34+RfXbPzPO8B1hthnM8HDj3L1pt4ruFZlUfxI1vGtoG1QIUShJQcpnUpD+XWa6mYuHoji1I5S4qJTsjQqUquZJ9ZYB+JVztcpSkXr2LLGLl5CwZQtYsk9Utw0Kyr7yrXVrFL1e44RFn9mi8u2RUL749SiDMr6hn34b65wd+NDNlYR7N15+puwzBNcOxt3WXeO0QojCRApSPpOC9PBUi8rN87Gc2h7KzXOxOds9/B2p3iKAcnW9MRitr1RkhIURu2Qpd3/66X9XvpUogcfgF3Dp1g2dra3GCYu++JRMFmy/xKGDe3hL9zUVjBdY4O7KWqfsiwScbJwYU3MMPcv3RK+zvq8xIUTek4KUz6QgPZ7YyOTsZQJ+jyTr3jIBdk5Ggp4uTpWni+PgYtI44aPLio0lbuUq4latwhwfD4De3R335wbg1rcveldXbQM+AS7fSuSdDWdxuraJScZV3LZNZIaHOxfuLTJZ2aMyk+tPpqpXVY2TCiG0JgUpn0lB+m/SkjM5ty+C07vCSIpLB0BnUChfJ3uZAK8SThonfHSWlBTu/vgTsUuXkhkRAYBib4/bs9lXvhn9/DROWLSpqsq2c7eYt/EEHRO/ZZh+A+udTXzs7kqiToeCQvdy3RlTawxutrJcgxBPKilI+UwKUt4wmy1cO36bUztCibqWkLPdr1z2MgElq1vfMgFqVhYJv2whZvFi0i9cyN5oMODSsQPug4dgW6G8tgGLuLRMM4v3hbB25wHGqiuoZzzKfHdX1t+bdnOxcWFM7TH0KNcDnWKdK8ALIR6fFKR8JgUp70WFxHNqRxhXj0VjubdMgJOHbfYyAY39MNlZ16XbqqqSvP8AMV99RcrBgznbHZ5+Co+hQ7GvW9cqT1K3FlHxaczZcoFbJ39liuFrku1uM8PDjUv3pt2CPIKY3GAyVTyraJxUCFGQpCDlMylI+ScpLp0zu8M4szec9OTsZQKMJj0VGxWjWjN/XH3sNU746FJPnyFmyWISf936vyvfqlXDY8gQnFq1lCvf8tGxG3FMX3+S6lE/MtrwA5td9Cx0cyH53rTbs+WfZXSt0biYXLSOKoQoAFKQ8pkUpPyXmWHm0qEoTu4IIy4yOXujAiWrelKthT/+FdysbgQm48YNYpYtI/6ntajp2ede2QQG4j54MC7duqIzWd9J6tbAYlH54VgYX2w5xOD0VbS02c0CD1c2OjoA4Gpy4dXaY+lWtptMuwlRxElBymdSkAqOqqqEnY/j5M5QbpyOydnu7udA9ZYBlK/rg8HGukZgsmJiiFu1ithVq7H8eeWbpyfuAwbg1rcPehcZzcgPCWmZfLz9MocP7OQt/TJU+xvM9HDjik32tFs1z2pMbjCZSh6VNE4qhMgvUpDymRQkbdy9lcKpHaGcPxhFVroZAFtHI1We8qNqU38cXK1rBMaSnMzdH38kZtkysiIiAdDZ2+PaqxfuA5/HWKyYxgmLpqu3k3h3w1lcrqxjvHE1v7mYWeTmQopOhw4dvSr0YlStUTjbyN9tIYoaKUj5TAqSttJTMjm3P5LTO8NIjM1epFGnUyhbx5vqLQPwDrSuPxM1M5OEX34h5qvFpF+6lL3RYMClY0fchwzGtrxc+ZYfdl6IZt6Go3SK/4YuNlv4yMOJX+5Nu7mbXBlb5zU6l+ks025CFCFSkPKZFKTCwWK2EHLyDid3hBJ5JT5ne7EyLlRrEUDpGp7o9NbzzU1VVZL37SPmq8WkHDqUs92xaVM8hg7Brk4dqzvvqrDLyLKw7EAIa7fvY6xlGc4OZ5np4c41GyMANb1qMKnBZCq4V9A4qRAiL0hBymdSkAqf6BsJnNoRxuWjt7CYs7+sHd1NVG3mT+XGftg6GDVO+GhST50iZvESErduhXt/Te2qV8d96BCcWrZE0VlP8bMG0YlpzNtykdvHN/KGYQW/uyXxqasLqTodOhT6VurHyzVexsnG+hYxFUL8jxSkfCYFqfBKjk/nzO5wzuwJJy0pEwCDjY6KDYtRrbk/br4OGid8NBnXrxOzdBnxa9eiZmQAYFOyJO5DBuPStSu6eycYi7xxMvQu09efoEbEt/Qx/cynHrb8em/azcPkxri6r9OpdCcZyRPCSklBymdSkAq/rEwzl4/c4uT2MGLCk3K2l6jiQfWW/gRUcreqb3JZd+4Qu2Ilcd98gyUhe9VxvZcn7s8/j1vv3ujl6zDPWCwq606E8+Xm3xmc9jXFHQ8zy8ON6/em3Wp51WRSw8mUd5Nzw4SwNlKQ8pkUJOuhqirhl+5ycnso10/fgXtf8W7FHKjewp/y9X0xWtEyAeakZO7+8D2xy5aTFRUFgM7BAdfevbOvfPPx0Thh0ZGUnsUnO69wZN9WJuiWcNIthi9cnUnV6dCjo1/l/oysPhJHG0etowohHpIUpHwmBck63Y1O4fTOMM4fiCTz3jIBJgcDVZoUp2qz4ji62Wqc8OGpGRnEb95M7OLFpF++kr3RaMSlc2c8Br+AqWxZbQMWIdfvJDNj41lcL3/PQNO3LPE0ss0he0V3L5Mbr9V7g/al2lvViKQQTyopSPlMCpJ1S0/N4sKBSE7tDCXhTvYyAYpOoWwtL6q1DMC3lPUs1KiqKkm7dxP71WJSjh7N2e7YvDkew4ZiX6uWhumKlj2XbvP+hiN0iltBOcddzPN04aYxe9qtrnctJjV8mzKuZTROKYT4J1KQ8pkUpKLBYlG5fuoOp3aEEn7pbs52n1LOVG8RQOlaXuitaJmA1BMnsq98++23/135VrMmHkOH4Ni8uVz5lgcyzRa+/v0GP/+2kzHmxVx1v8mXrs6k6XQY0DGg8nO8VGMEDkbruhhAiCeFFKR8JgWp6LkdmsipHaFcOnILS1b2XwsHVxNVmxWnSpPi2DpazzIB6ddCiF26lPh161Azs6/ksyldGo8hg3Hu3FmufMsDMUnpvPfrBe788TPDTCtZ5Wlmx71pN2+TG683eJO2gW1l2k2IQkYKUj6TglR0pSRkcGZPOGd2h5GaeG+ZAKOO8g18qd48AHc/6xkZyIyOJm7FSuLWrMGSmAiAwcsL94HP49q7N3onWdPnvzoTHs/M9cepEbaKGk6/MN/TkbB7024NvGszsdHblHYprXFKIcSfHvb7t1WPt8+aNQtFUQgODs7ZpqoqU6dOxc/PDzs7O5o1a8bZs2dzvS49PZ1Ro0bh6emJg4MDXbp0ISwsrIDTi8LK3tmGep1KMXBmY1oOqoRngCNZmRbO7Y3gm3cOsf6jE9w4E4NqKfw/Wxi9vfEeN5ayO3fgPX48Bh8fsm7fJvq997nSvAXR771H5q1orWNataDiLqx6qSkVe01joeV9Bt8syci4u9hYVA5GH6PHumdYcPQDUjJTtI4qhHgEVjuCdOTIEXr16oWzszPNmzdnwYIFAMyZM4cZM2awbNkyypcvz/Tp09mzZw8XL17E6d5PyyNGjGDDhg0sW7YMDw8Pxo0bR2xsLMeOHUOvf7jLvWUE6cmhqiqRV+5yckcYISdu/3lqD64+9lRr7k+FBr7Y2Bq0DfmQ1IwM4jduImbJYjKuXAVAMRpx7toFj8GDMZWWkY7/IiUji892XeXonk0MtVnKj16p7LG3A8DX5Mb4hm/RqkQrmXYTQkNFeootKSmJWrVqsWjRIqZPn06NGjVYsGABqqri5+dHcHAwEyZMALJHi3x8fJgzZw7Dhw8nPj4eLy8vVqxYQe/evQGIiIggICCAzZs307Zt24fKIAXpyZRwJ5VTu8I4vy+CjLR7ywTYG6jc2I+qzf1xcreOZQJUi4Wk3buJ+WoxqceO5Wx3bNkSj6FDsK9ZU8N01i80NoVZm87gemENDZ1/4hMPO8KN2SW6sVctJjZ5h0DnQI1TCvFkKtJTbC+//DIdO3akVatWubaHhIQQFRVFmzZtcraZTCaaNm3KgQMHADh27BiZmZm59vHz8yMoKChnn7+Tnp5OQkJCrod48jh72tGkZzkGzm7MU73L4exlR3pKFse33WTl5N858OMVMtKytI75rxSdDqfmzSm5aiWBq1fj2KolAEnbt3Ojbz/CXn2VrLg4jVNarwB3exY9V49OL7zJcsMn9LhRmRfj4jGqKvtv/0H3dd3Ycn2L1jGFEP/A6grSmjVr+OOPP5g1a9Zfnou6t6qwz30rCfv4+OQ8FxUVhY2NDW5ubg/c5+/MmjULFxeXnEdAQMB//SjCitnYGqjWPIAB0xrQcWQ1ildwxWJROb7tJqunHuLKsWisZXDWvlZNAhYupPTmTbj06A56PYm/bOFap87ZywWIx9aorCdrgttj6vA+O+PeYupNOxqmppKhZvH67tdZdmaZ1XydCPGksaqCFBoaypgxY1i5ciW2tg+eyrh/fl9V1X+d8/+3fSZOnEh8fHzOIzQ09NHCiyJJ0SmUrOZJt1dr0XFkNZw9bUm+m86vX55h/YcniItK1jriQzOVLo3fjBmUXLMGm7JlMMfEEPbKKMLHj8ccH691PKtl0Ot4vmFJZo/sw3vGGTwdFkT/+OwrCt8/9j6zDs3EbDFrnFIIcT+rKkjHjh0jOjqa2rVrYzAYMBgM7N69m48++giDwZAzcnT/SFB0dHTOc76+vmRkZBB33/TB/9/n75hMJpydnXM9hPj/SlbzpO/b9anbqRR6g46wC3Gsefcwv6+9mnNbE2tgVzWIUj/+iMewoaDTkbB+A9c6dyFp926to1m18j5O/PDK03znMw7Lrba8FpP9b9A3F9cwducYUrNSNU4ohPj/rKogtWzZktOnT3PixImcR506dejfvz8nTpygdOnS+Pr6sm3btpzXZGRksHv3bho1agRA7dq1MRqNufaJjIzkzJkzOfsI8bgMNnrqdSpF3yn1CAzywGJW+ePXG6yeepCrf1jPtJvOZMJ73DhKrl6FTcmSZEVHEzr8JSImTcJ8bz0l8ei8nWxZM7whIRWGceTOIGbfisPGorIjbDdDfxlIbFqs1hGFEPdY5VVs/1+zZs1yrmKD7Mv8Z82axdKlSylXrhwzZ85k165df7nMf+PGjSxbtgx3d3dee+01YmJi5DJ/kadUNfs2Jnu/u0xiTPb93kpUduep3uVx9bHXON3Ds6SlcXv+AmK//hpUFUOxYhSb/i6OjRtrHc1qmS0qszaf5/j+LYxy+pDJvg7E6/UE2Pvyaduv5Ao3IfJRkb6K7Z+MHz+e4OBgRo4cSZ06dQgPD2fr1q055Qhg/vz5dOvWjV69etG4cWPs7e3ZsGHDQ5cjIR6GoiiUqu5F3yn1qdOhJDqDws1zsXzz7iEOrrtKZoZ1TLvpbG3xmfgGgSu+xliiBFmRkYQOGUrk1KlYkq3nHKvCRK9TmNypMt26dOedpLeYFW6meGYWoSlRPLexDydvn9Q6ohBPPKsfQdKKjCCJR3U3OoW9317i5tnsaRRHdxNP9SpPqeqeVrNwoCUlhej33idu9WoAjMWLU2zmTBzq19M4mfXaceEWk1fv5l39XL4slsBZkwmTYmBO0/doGdhS63hCFDlFeqHIwkAKkngcqqoScvIOe7+7RFJsOgAlqnjwVO9yuHpbz7Rb8sGDRL45icyICADcBgzAe9xYdHZ2GiezTmcj4nlp6X5eTZ/PjmIh7La3QwEm1H2D/pX7ax1PiCJFClI+k4Ik/ovMDDPHfrnO8W03sWSp6AwKtdoEUqtdIEYb65jqNSclET13Hne/+w4AY2AJ/GbNwr5WLY2TWafI+FSGLD1MxztfEOuzn++cs08LeL5if8bVG49OKXJnRAihCSlI+UwKksgLd2+lsOfbS4Sey552c/Kw5ale5ShV3UvjZA8vae8+IidPJuvWLVAU3AcNwmvMaHT/sFaZ+HtJ6Vm8svoPfK98Q2mPH/nYwwWANv7NmdlsHia9SeOEQlg/KUj5TAqSyCuqqnLt+G32fX+ZpLjsabeSVT1o0qs8Ll7WMWVlTkjg1qzZxK9dC4BN6dL4zZ6FXbVqGiezPllmC1M3nCX08Aa6uH7GdG9nshSFWu6V+ajNF7iYXLSOKIRVk4KUz6QgibyWmW7m6ObrnPjtJhazit6go1a7QGq1KYHBSqbdEnfsJHLK25hv3wGdDo9hw/B8eSQ6Gxuto1kVVVVZvC+En37ZwiinD3jXx0SiXkdJ+2J82m4J/k7+WkcUwmpJQcpnUpBEfomLSmbPmkuEXcheadnZ05anepenZFVPjZM9nKy4OG7NmEnCxo0AmMqVo9jsWdhVqaJxMuuz5UwUs779jUk2c5jnl0WUwYC7wZFFbb+iiqf8fgrxOKQg5TMpSCI/qarK1T+yp92S796bdqvmyVO9yuHsaR3Tbgm/biVq2jTMsbFgMOA5fDieLw1HMRq1jmZVToTeZcyy3Yw1z2Wl3x0umGywUwzMa76ApgFNtY4nhNWRgpTPpCCJgpCRlsXRTdc5uT0Ui0VFb9RRu10gNduUwGAs/NNuWbGxRE17h8RffwXAVLkSfrNmY1uhvMbJrEtobArDlv5O77sfccjvLPvt7dABk+pPplfF3lrHE8KqSEHKZ1KQREGKjUhmz7cXCb94FwAXLzue6lOewCoe2gZ7CKqqkrB5M7feeRdzfDwYjXi9/DIeQ4egGAxax7Ma8amZjFx5lMrXl5JebBtrnRwBGFp5IKPqjJVlAIR4SFKQ8pkUJFHQVFXlytFo9v1wmZT4DABK1/Ci8bNlcfYo/NNuWbdvEzllKkk7dgBgW7UqfrNnYSpTRuNk1iMjy8LkdadJ/uM7Knmt4nP37LWSOgS05N2mc7HRy8nwQvwbKUj5TAqS0EpGWhZHNoZwckcYqkXFYNRRu0NJarYqgd5YuEcRVFUlYf16oqbPwJKYiGJjg9eYMbgPGogi90J8KKqqsmjXVXZsXU939495z8uBLEWhrnsVFrT9Amcb+fdIiH8iBSmfSUESWosJT2LPmktEXL4LgIu3HU/3KU+JyoV/2i3z1i0iJ79F8t69ANjVrInfrJnYlCypbTArsv5kBB9/v4URDnOY62sgWaejrH0xFrVfTjHHYlrHE6LQkoKUz6QgicJAVVUuH7nF/h+ukJKQPe1WpqYXjZ8th5N74V7JWlVV4n/8kVuzZmNJTkaxtcV77FjcBvRH0RXukbDC4uj1WF5fvoNR+ll8UiyFaIMBL4Mji9ovpaJ7Ra3jCVEoSUHKZ1KQRGGSkZrF4Y0hnNp5b9rNRkedDiWp0aoEekPhLhuZ4eFETJ5Myu8HAbCvW5diM2dgExCgcTLrcP1OMi8u3c/zKXP50S+UKzY22CsGPmjxMY39m2gdT4hCRwpSPpOCJAqjO2FJ7Flzkcgr8QC4+tjzdJ/yBFRy1zjZP1NVlbtr1nBr3nuoKSko9vb4jH8d1969URRF63iFXlxyBi99fYSGkQs543eUQ3a26IEpDabwTIWeWscTolCRgpTPpCCJwkpVVS4dimL/j1dITcwEoGxtbxr3LIujW+GedssIDSVy4pukHD0KgEOjhhSbPh2jn5/GyQq/9CwzE344he3p5VBsPZucHAAYUfkFRtR5VYqmEPdIQcpnUpBEYZeeksnhDSGc3hWGqoLBpKdux5JUbxFQqKfdVIuFuJUrif5gPmpaGjpHR3wmvoFL9+7yTf5fqKrK/N8uc3Lnd1TzXsIyt+yS1DWgFVOazcWok1XMhZCClM+kIAlrcScskd2rLxF1LXvazc03e9rNv2LhnnZLDwkhcuKbpJ44AYBD06cp9s47GH18tA1mBX44FsbynzbQ1e0DFnqaMCsKDd2r8EHbr3C0cdQ6nhCakoKUz6QgCWuiWlQuHoriwE//m3YrV8ebRj3K4ehm0jjdg6lmM7HLlnH7w49QMzLQOTvjO+lNnLt0kdGkf3Hg6h2mrNjKINtZfOhjIVWno4J9MT7psAIfBymZ4sklBSmfSUES1igtOZPD669xZk84qgpGk556nUtRtbk/en3hnXZLv3KFiIlvknb6NACOLVtSbNpUDJ6eGicr3K5EJ/Ly0t0MyJzB4mLxxBj0+Bgc+bTD15RzK6d1PCE0IQUpn0lBEtbs9s1Edn9zkVshCQC4+znwdJ/yFC/vpnGyB1Ozsoj56ituf7IIMjPRu7ri+/ZbOHfooHW0Qu1OUjovLT9Ii9tz2VL8KiE2RpwUA/NbLqJ+8YZaxxOiwElBymdSkIS1Uy0q53+P5Pe1V0lLyp52K1/Ph0Y9yuLgUnin3dIuXiTijYmknz8PgFO7dvi+/RYG98J9TpWW0jLNjP32OD4XF3HNfy9/2NpiQOGdBlPoXKGH1vGEKFBSkPKZFCRRVKQlZ3Lo52uc2RsOKhht9dTvXJqqzYqjK6TTbmpGBnc+/4I7n38OWVnoPTzwnToF59attY5WaFksKnN+vUDovq+x9fuebY7ZNzgeXWUwQ2sHyzld4okhBSmfSUESRU30jQR2f3OJ6OvZ024exR14uk8F/Mq5ahvsH6SePUvkG2+QfvkKAM6dO+M76U30rq7aBivEVh+6ydr131PT+1O+cc0uST0DWjOp2VwMOoPG6YTIf1KQ8pkUJFEUqRaVc/sjOLjuGmnJ2dNuFRr40qh7WeydbTRO9/csGRncWfgJMV99BRYLBi8vfN99B6dmzbSOVmjtvnSbOas20cFpNl94GlAVhafcq/BeuyXYG+21jidEvpKClM+kIImiLC0pk99/vsq5fRGggo2tnvpdSxP0dOGddks9eZKINyaSERICgEv37vhMfAO9k5PGyQqn85EJvLp0O9117/KlTzppOh2V7Xz5pPM3eNrJ1YGi6JKClM+kIIknwa2QBPasuUj0jUQAPPwdadqnPMXKumob7AEsaWnc/vAjYpctA1XF4OtLsenTcWzSWOtohdKthDReWraf1gnvssYvmji9nuJ6BxZ1Wk1p19JaxxMiX0hBymdSkMSTwmJRObcvgoPrrpKekgVAxYa+NHym8E67pRw7RsTEN8m8eRMA11698B4/Hr2jg8bJCp+UjCzGrD5GmRvvsbf4aW4ajThj4KPWn1Hbr77W8YTIc1KQ8pkUJPGkSU3K4ODaq5zbHwmAyd5A/S6lqfJ0cXS6wncFlCUlhegP5hO3ciUAxuLFKTZjBg4N5Jv+/cwWlXc3niPx6KdEFt/KaVsTRhVmNppGu/LdtY4nRJ6SgpTPpCCJJ1XUtXj2rLnE7ZvZ026eAY407VsB39IuGif7e8kHDxE5aRKZ4eEAuPXvj/e4sejs5WTk+y3dH8LOX77G2W8lux1sARhXZTADZRkAUYRIQcpnUpDEk8xiUTm7J5xD66/lTLtValSMhs+Uwc6p8E27mZOSiZ43j7vffguAsUQJ/GbNxL52bY2TFT6/nbvFx9/8SDWvD1nnkv1n2de/FROav4dep9c4nRD/nRSkfCYFSQhIScjg93VXuXDgf9NuDbqVoXITv0I57Za0bz+RkyeTFRUFioL7wIF4BY9BZ2urdbRC5XRYPBOXbaGp3XS+vndBWwu3KszusBQ7g5224YT4j6Qg5TMpSEL8T+TVePasucid0CQAvEo40bRvBXxKFb6/G+bERG7Nmk38Tz8BYFOqFH6zZ2FXvbrGyQqXiLupvLJ0N0+lT2GlTzIZOoVqtj583PU73G3lti7CeklBymdSkITIzWK2cGZPBIfWXyMjNQsUqNzYjwbdSmPnWPim3RJ37iTq7Slk3b4NOh0eQ4bgOeoVdDaFL6tWEtMyGb3qCBUjp7HBL5R4vZ4AvT2fdvqGQFkGQFgpKUj5TAqSEH8vJSGD33+6woWDUQCYHAw07FaGyo39UArZtJv57l2iZs4kYf0GAEzlylJs1mzsgqponKzwyDRbeHvdGZTT7/GH/xHCjQbc0PNR68+pIcsACCskBSmfSUES4p9FXLnLnm8uEROePe3mHehE034V8A4sfH9fErZtI2rqNMwxMaDX4zl8OJ4vDUeR0SQAVFXliz3XOPbbp8T7b+CcrQ0mFeY0nEbLCrIMgLAuUpDymRQkIf6dxWzh9O5wDq+/RkaaGRSo8lRxGnQtja2DUet4uWTFxhL1zrskbtkCgKlSJfxmz8K2QgWNkxUem09H8vV3K3AptpgDDjYoqsqEKkPoX/dVraMJ8dAe9vt34byp0gNMnToVRVFyPXx9fXOeV1WVqVOn4ufnh52dHc2aNePs2bO53iM9PZ1Ro0bh6emJg4MDXbp0ISwsrKA/ihBPBJ1eR/UWAfSb1oDy9X1AhbN7wln19kHO7Y9AtRSen88M7u74L5hP8fkfoHd1Jf38eUJ6Psudzz5DzcrSOl6h0KFqMcYPG0bUnYm0jzejKgqzzy1h3m/BWFSL1vGEyFNWVZAAqlSpQmRkZM7j9OnTOc/NnTuXDz74gIULF3LkyBF8fX1p3bo1iYmJOfsEBwezdu1a1qxZw759+0hKSqJTp06YzWYtPo4QTwQHFxOtX6jCM+Nq4u7nQFpyJjtXXODHecdyFpwsLJzbt6f0xg04tmwJmZncXvAh1/v0Jf3KFa2jFQq1Srix8JVeXE6fSc8YAwBfh2/n9fV9SDena5xOiLxjVVNsU6dOZd26dZw4ceIvz6mqip+fH8HBwUyYMAHIHi3y8fFhzpw5DB8+nPj4eLy8vFixYgW9e/cGICIigoCAADZv3kzbtm0fOotMsQnxeMxmC6d3hnF4YwiZ96bdgp4uTv0uhWvaTVVVEjZsIGr6DCwJCShGI15jRuP+wgsoelkwMT4lk1Erfqf83Un86BNHlqJQy+TFR91+wsXWVet4QjxQkZxiA7h8+TJ+fn6UKlWKPn36cO3aNQBCQkKIioqiTZs2OfuaTCaaNm3KgQMHADh27BiZmZm59vHz8yMoKChnnwdJT08nISEh10MI8ej0eh01WpWg/9QGlKubPe12Znc437xziKhr8VrHy6EoCi5dulB6wwYcmj6NmplJ9HvvEzr8JSwpKVrH05yLvZGvhjThbsmP6BheFiezhT/SbzPoxw4kZMi/j8L6WVVBql+/Pl9//TW//vorX375JVFRUTRq1IiYmBiiorIvKfbx8cn1Gh8fn5znoqKisLGxwc3N7YH7PMisWbNwcXHJeQQEBOThJxPiyePgaqLNkCp0e7Umrj72pMRnsPb9Pzi3L0LraLkYfbwJ+Owzis2YgWJnR/K+fdx8YTDmu3e1jqY5G4OOeb1q4FFvLrVDG+GVlcWVrETGre9DpiVT63hC/CdWVZDat29Pjx49qFq1Kq1atWLTpk0ALF++PGef+2+oqKrqv95k8WH2mThxIvHx8TmP0NDQx/wUQoj/r3gFN56dWIfSNb2wmFV2rrzA7tUXMWcVnpN+FUXBtUd3ApcuQefiQurJk9x47nkyb0VrHU1ziqIQ3KocHjWDqRdeEzuLhYPJoUz/9SWs6AwOIf7CqgrS/RwcHKhatSqXL1/OuZrt/pGg6OjonFElX19fMjIyiIuLe+A+D2IymXB2ds71EELkDRtbA+2GBVG/SylQ4MyecH5ecJyUhAyto+ViV6MGgSu+xuDlRfrly9zo14+MGze0jqU5RVF4q1NlYgNfpXNUMXSqyk/Rh1l8YLrW0YR4bFZdkNLT0zl//jzFihWjVKlS+Pr6sm3btpznMzIy2L17N40aNQKgdu3aGI3GXPtERkZy5syZnH2EENpQdAp1OpSiw4hq2NjqibwSz3czj3DreuE6n8W2fHkCv1mNsUQJMsPDud5/AGkXLmgdS3N6ncKHfWtx3OktetzJvqHth1e+Y8u51RonE+LxWFVBeu2119i9ezchISEcOnSInj17kpCQwMCBA7OHeYODmTlzJmvXruXMmTMMGjQIe3t7+vXrB4CLiwtDhgxh3LhxbN++nePHjzNgwICcKTshhPZKVfOk5xt1cPWxJ/luOmvf+4MLByO1jpWLjb8/JVetxFSxIuY7d7jx3POkHDumdSzN2dno+WJQAw6Y36bD3ezptUmHZ3EibL/GyYR4dFZVkMLCwujbty8VKlSge/fu2NjYcPDgQQIDAwEYP348wcHBjBw5kjp16hAeHs7WrVtxcnLKeY/58+fTrVs3evXqRePGjbG3t2fDhg3o5bJdIQoNN18Her5Rh5LVPDFnWdi+7Dx7v7uE2Vx4zksyeHkR+PVy7GrXxpKYyM0hQ0navVvrWJrzdDTxyeDmHI+bQMPkTDIUGL19JKF3r2kdTYhHYlXrIBUmsg6SEPlPtagc3hTC0U3XAShewZW2Q4Owcyo890izpKYSHvxqdjkyGPCbNROXzp21jqW5wyGxTF+8AlOJT7lgMlJSZ8fKZ7fKGklCc0V2HSQhxJND0SnU71ya9sOrYjTpCb94l+9nHS1Uq2/r7OzwX/gxzp07Q1YWEa+PJ3blKq1jaa5eKXeGPvssNqE98M3K4rolleCfe5JhLlwn3gvxIFKQhBCFXumaXvSYUBsXLzsSY9P4ad4xLh3557XLCpJiNOI3ZzZuAwYAcGv6dG4v/OSJv8y9S3U/Grd8gUphjXGwWDiadoupm1944n9fhHWQgiSEsAoefo70fKMOJaq4k5VpYdvic+z/8QqWQnJekqLT4TPpTTxHvQLAnYULuTVjJqqlcOTTyoimZXCoOoZWkaXRqyobYk/x2Z7JWscS4l9JQRJCWA1bByMdX65OrbbZF2ac2HaTjQtPkpZcOFZtVhQFr5dfxmdydgGIW7mSiAlvoGYWjnxaUBSFd7tWIdx3Et1uZ5/vsej6ejac+ErjZEL8MylIQgirotMpNHymDG2GVsFgoyP0fBzfzzpCTHiS1tFyuA/oj9+8uWAwkLBhA2GvjMKSmqp1LM0Y9Do+7l+HUzbT6BiX/W3n7RMfcvT6do2TCfFgUpCEEFapXB0feoyvg7OnLQl30vhh7jGuHCs8t/5w6dwZ/4Ufo5hMJO3ezc2hwzA/wTe5djQZ+PSFpziVMpnGSWayFBiz61VCYmSRTVE4SUESQlgtT39Hnn2jLv4V3chKN/Prl2c4uO4qFkvhOAnYqVkzSixZjM7JidRjx7jx/ECybt/WOpZmfJxtmT+4HWG3g6mSlkmCojJyU39iU+5oHU2Iv5CCJISwaraORjqPqk6NVgEAHNtyg82LTpGeUjjO+7GvXZvAFV+j9/Qk/cIFrvcfQEZYmNaxNFPB14mJA7pjCe9P8cwswtQMxqzrQbo5XetoQuQiBUkIYfV0eh2Ne5aj1QuV0Rt13DgTw/ezjxIbkax1NABsK1ak5KqVGIsXJ/PmTW707UfapUtax9JM47Ke9Or6AgFhLXEyWziRGcvk9f2wqE/2FX+icJGCJIQoMirU96XH67VxdDMRH53KD3OOcu1E4ZjSsgkMJHD1akzlypF1+zY3nnue1BMntI6lmZ61/anSZDSNIipjUFW2JFxi4fZxWscSIocUJCFEkeJVwolnJ9bFr5wrmelmfvnsNIc3XEMtBOclGX28CVzxNXbVq2OJj+fGC4NJ2vfk3sh1TMtyUH4SHW95AfBl+G+sPfqxxqmEyCYFSQhR5Ng729AluAZVm/sDcGTTdTZ/dpqM1CyNk4He1ZUSS5fg0LgxamoqoSNGkPDLL1rH0oSiKMzsXo2b7u/QITb7/nrvnPmc3y9v0DiZEFKQhBBFlF6v4+ne5WnxfCX0Bh3XT93hhzlHuXsrReto6OztCfh0EU7t20FmJuFjxxG35lutY2nCxqBj4XMNuKS+w1OJFrIUhbH73+RK9Emto4knnBQkIUSRVqlRMZ4ZVwsHVxNxUSl8P+sI109rf1m5YmND8ffew7V3b1BVoqZO5c5nnz+R9ylztjXyyeAWhN6dQFBqFkkKvPzLIO4kFZ777YknjxQkIUSR51PKmWcn1sG3tAsZaWY2LTrF0V+ua15GFL0e36lT8HhpOAC3Fywges5czXNpwc/VjlkvdCU9aigBGVlEkMWodd1JzdR+xE88maQgCSGeCA4uJrqNrUmVp4uDCod+vsavX5whI03b85IURcE7OBjvNyYAELtsGZFvTkLN0v58qYIWVNyF0X2fwyO8M65mM2fMiUz8uRdmi1nraOIJJAVJCPHE0Bt0NOtXgWb9K6DTK1w9fpsf5x4j/rb2oxQegwZRbNYs0OuJX7uWsDHBWNKfvMUTm1XwpkOHV6gWXgejqrI9+Qbzt47UOpZ4AklBEkI8cao8VZxuY2th72xDbEQy3886ys1zMVrHwvWZbvh//BGKjQ1J27cTOuxFzEmF5ya8BaVvvRIE1n2TVlHZVyEuv3WAb3+frXEq8aSRgiSEeCIVK+PCsxPr4lPKmfSULDZ+fJI/tt7Q/PwfpxYtCPjyS3QODqQcPszNgYPIio3VNJMWXmtTgfQS02kfYw/AzIsr2Xv+O41TiSeJFCQhxBPL0c3EM2NrUalRMVQVfv/pKtsWnyUzQ9tzXhzq16PE8uXo3dxIO3uWG/36kxkRoWmmgqbTKcztVZMIu1k8laBgURReO/QuFyMOax1NPCGkIAkhnmh6o47mz1Xk6T7l0ekULh+N5qd5x0i4k6ppLrugKgSuWoXBrxgZ169zvV9/0q9d0zRTQTMZ9Cwc2ISotLeonmomRYGRW4dxK/6m1tHEE0AKkhDiiacoClWb+dMluAZ2TkbuhCbx/ayjhF3QdmrLVLoUJVetwqZ0abKiorjRrz+pp89omqmgudrb8OGQjqTceYWSGVlEKxZe/rknKelP3rlZomBJQRJCiHuKl3fj2Yl18SrhRFpyJus/OsnJ7aGanpdkLFaMwFUrsa1aFfPdu9wcOJDkgwc1y6OFAHd7pgzsh0PEs7hnmbmopvL62u5y+b/IV1KQhBDi/3Fyt6X7a7UoX98H1aKy7/vLbF9+niwNz0syuLlRYulS7Bs2wJKSQuiwF0nYtk2zPFqoHuDK4J4jKRvxFCaLhT3pkczZ9ILmJ9WLoksKkhBC3Mdgo6fVoMo0ebYcik7h4sEo1r7/B4mxaZpl0js6EPD55zi1bo2amUn4mGDu/vijZnm00KaKL0+3nEjjW+VQVJVvYo+zau8UrWOJIkoKkhBC/A1FUajeMoDOo6tj62Ak+kYi3886QsTlOM0y6WxsKD7/A1x69gCLhchJk4lZvESzPFoY2KgkXlVm0CrGDYC5135ix6nlGqcSRZEUJCGE+AcBFd15dmIdPPwdSU3M5Of5Jzi9K0yzqR3FYKDYu+/iPmQwANHz5hH9/gdP1FTTmx0rk+41l6fjDaiKwoQ/5nH2xm6tY4kiRgqSEEL8C2dPO3q8XpuydbyxWFT2rLnEzpUXMGdaNMmjKAo+r7+O92vjAIj58kui3p6Can4yTlrW6RTe71uPeN10aqZYSFMUXtkxisjYK1pHE0WIFCQhhHgIRpOeNkOq0PCZMqDA+f2RrP3gD5Lvane/NI+hQ/F99x3Q6bj7/feEjx2HJSNDszwFydao58NBrUhJHE/pdDN3dCojN/QhMVW7KVBRtEhBEkKIh6QoCrXaBtL5leqY7A3cCkngu5lHiLoWr1kmt2efpfj8+ShGI4m//krYSyOwJCdrlqcgeTiamDe4J6bogXhmmblCOmPXPkOm+ckoiSJ/SUESQohHVKKKBz3fqIO7nwMpCRmsff8Pzu3T7lYgzm3bEPD5Zyj29iQfOMCNFwaTFfdkjKSU8nRgwnPDCIhsg63FwsHMGGas7/9EnZMl8ocUJCGEeAyu3vb0GF+b0jW9sJhVdq68wO7VFzFnaXNekkOjRgQuW4rexYW0U6e48dxzZN66pUmWglY70J3eXSZQJ7IqOlXlx4QLLN3xutaxhJWTgiSEEI/JxtZAu2FB1O9SGhQ4syecnxccJzlem/OS7KpVI3DVSgw+PmRcucqNvv3IuH5dkywFrWO1YtRsPJ2mt30AmB/2K1uPfapxKmHNpCAJIcR/oOgU6nQoSccR1bCx1RN5JZ7vZx3l1vUETfKYypal5OpV2AQGkhkRwfX+A0g7d06TLAVt2NNlcC37AU/dtQXgzdOfcPLqLxqnEtZKCpIQQuSBktU86flGHVx97Em+m87a9/7gwu+RmmQxFi9O4OpVmCpXwhwTw43nB5Jy5IgmWQqSoii83aUqOM+jVjKkKwqj9ownNPrJusGvyBtSkIQQIo+4+TrQ8406lKzmiTnLwvbl59n77SXM5oI/L8ng4UHg8uXY16mDJSmJm0OHkbhjZ4HnKGgGvY73+jfBnPU2ZdPNxOlg5ObniE++rXU0YWWkIAkhRB4y2Rno8FJV6nYsCcCpnWFs+PAEqYkFf+m53smJgK++xLFFC9T0dMJGjSL+558LPEdBs7cx8MELnbGJHYFPlpnrShbBP3UlM0su/xcPz+oKUnh4OAMGDMDDwwN7e3tq1KjBsWPHcp5XVZWpU6fi5+eHnZ0dzZo14+zZs7neIz09nVGjRuHp6YmDgwNdunQhLCysoD+KEKKIUnQK9TqXpv1LVTGa9IRfust3s45w+2ZigWfR2dri/9GHuHTtCmYzERPeIPbrrws8R0HzdrJlxuBBeEd1w8Fi4aglkalre8jl/+KhWVVBiouLo3HjxhiNRn755RfOnTvH+++/j6ura84+c+fO5YMPPmDhwoUcOXIEX19fWrduTWLi//5hCg4OZu3ataxZs4Z9+/aRlJREp06dMD8hy/QLIQpG6Rpe9JhQGxcvO5Ji0/lp3jEuHY4q8ByKwUCxWTNxH/g8ALdmzuL2Rx8V+bJQ1tuJ0X3HUSWyLnpVZX3KdT7/daTWsYSVUFQr+hvyxhtvsH//fvbu3fu3z6uqip+fH8HBwUyYMAHIHi3y8fFhzpw5DB8+nPj4eLy8vFixYgW9e/cGICIigoCAADZv3kzbtm0fKktCQgIuLi7Ex8fj7OycNx9QCFEkpSVnsm3JOW6ejQGgRqsAGj5TBp2+YH9GVVWVmM8+4/aHHwHg1q8fPpMnoeis6mflR7bueDhbt73IXp+bAMyq8DydGsg6SU+qh/3+bVV/K9avX0+dOnV49tln8fb2pmbNmnz55Zc5z4eEhBAVFUWbNm1ytplMJpo2bcqBAwcAOHbsGJmZmbn28fPzIygoKGefv5Oenk5CQkKuhxBCPAxbByMdX65GrXaBAJz4LZQtX5wp8EUlFUXBc8QIfKe8DYpC3OrVRL3zTpEfSepWsziVa8+nSZwjAG9fWM65kN80TiUKO6sqSNeuXePTTz+lXLly/Prrr7z00kuMHj2ar+/Np0dFZQ9d+/j45Hqdj49PznNRUVHY2Njg5ub2wH3+zqxZs3Bxccl5BAQE5OVHE0IUcTqdQsNuZWgztAp6g46Qk3f49cszmlzh5ta3L37z5oGicHfNt8StWFHgGQrayy3K4eS7gJrJOjIVhTd2v05axpNxzzrxeP5TQcrMzCQ0NJSLFy8SGxubV5keyGKxUKtWLWbOnEnNmjUZPnw4w4YN49NPc6+WqihKrl+rqvqXbff7t30mTpxIfHx8ziM0NPTxP4gQ4olVro4PHUZUzSlJW788q0lJcunUEe/x4wG4NXsOSXv2FHiGgqQoClOeqU1q0mg8ssyEKFl8uHmo1rFEIfbIBSkpKYnPP/+cZs2a4eLiQsmSJalcuTJeXl4EBgYybNgwjuTTgmTFihWjcuXKubZVqlSJmzez55V9fX0B/jISFB0dnTOq5OvrS0ZGBnH33cjx/+/zd0wmE87OzrkeQgjxOEpU8aD9S1XRGRSunbjNtq+0KUnugwbi+mxPsFgIf3UsaZcuFXiGguRgMvBmn+6UvlUPgJXxZzh0do3GqURh9UgFaf78+ZQsWZIvv/ySFi1a8NNPP3HixAkuXrzI77//zpQpU8jKyqJ169a0a9eOy5cv52nYxo0bc/HixVzbLl26RGBg9rx+qVKl8PX1Zdu2bTnPZ2RksHv3bho1agRA7dq1MRqNufaJjIzkzJkzOfsIIUR+CwzyoP3w7JJ09fhtti0u+JKkKAq+b72Ffb16WJKTCRsxkqyYmALNUNBqlnCjap2JNIzPvh3J5MMzSUi5o3EqURg90lVszz77LG+//TZVq1b9x/3S09NZvHgxNjY2DB2ad0OYR44coVGjRkybNo1evXpx+PBhhg0bxhdffEH//v0BmDNnDrNmzWLp0qWUK1eOmTNnsmvXLi5evIiTkxMAI0aMYOPGjSxbtgx3d3dee+01YmJiOHbsGHq9/qGyyFVsQoi8cP30HX757DQWs0rZ2t60Hly5wK9uM9+9S0jv3mTeuIldrVqUWLYUnY1NgWYoSJlmC4MWreOO3WQijHo62QYwq/dmrWOJAvKw37+t6jJ/gI0bNzJx4kQuX75MqVKlGDt2LMOGDct5XlVVpk2bxueff05cXBz169fnk08+ISgoKGeftLQ0Xn/9dVavXk1qaiotW7Zk0aJFj3TitRQkIUReCTl1hy2fZ5ekcnW8afVCwZek9GshXO/TB0tCAi5du1Bs9ux/PXfTml27ncTbX0zmdPHfsCgK71ceRpu6o7WOJQpAkS1IhYUUJCFEXgo5eZstX5zJLkl1fWg1qFKBl6TkAwe4OexFMJvxevVVPIe/WKDHL2grD95g3+8D2O9+FxeLytpu6/FyK611LJHPCqwgnTt3jps3b5KRkfseN126dPkvb1voSUESQuS1aydu8+sXZ7BY7pWkFyqj0xXsKE7cmjVETZ0GQPGPPsT5/60ZV9SoqsqIpTuIyhrNVZOOxno3Pu2/u0iPnIkCKEjXrl3jmWee4fTp0yiKkrPQ2J9fWEX9th1SkIQQ+eHa8dv8+mV2SSpf34eWAwu+JEXNmEncihUotrYErlyJXVCVAj1+QYpOTGPMwjlc8v2eDJ3CWyW70qvpdK1jiXyU7ytpjxkzhlKlSnHr1i3s7e05e/Yse/bsoU6dOuzatetx31YIIZ5opWt60WZYFRSdwqVDt9ix/DwWS8GeCeEzYTwOTz2FmpZG2MiRZN66VaDHL0jeTra80GU4dWOKAzDv2jpuRv6hcSpRGDx2Qfr9999555138PLyQqfTodPpaNKkCbNmzWL0aDnRTQghHleZmt60GZJdki4eimLn1wVbkhSDgeIfvI9N2TJkRUcTNvJlLKmpBXb8gtamii9uAe9SJRXSdAoTtw4ny5ypdSyhsccuSGazGUfH7PvaeHp6EhERAUBgYOBf1ioSQgjxaMrW/l9JunAwip0rzqMWYEnSOzkR8Nln6N3cSDt7logJb6BaCn4xy4IyqVstlIRhOFgsnCKNJVtHaR1JaOyxC1JQUBCnTp0CoH79+sydO5f9+/fzzjvvULq0XAUghBD/1Z/rIik6hQu/R7Fz5YUCLUk2/v74L/wYxWgkcetWbn/0UYEdu6A5mgy81nsAQdEVAfj01j7OXdv2L68SRdljF6TJkydjuffTxPTp07lx4wZPPfUUmzdv5qMi/JdICCEKUrk6PrR+oTKKAucPRLJrVcGWJPvatfF99x0AYj77nPj16wvs2AWtdqA7Faq9S60kPVmKwsTdr5MuN7R9YuXpOkixsbG4ubk9EZdIylVsQoiCdOlwFL8tPYeqQuUmfjTrVwGlAK9ui37/A2K+/BLFaKTE8uXY16pZYMcuSJlmC4MXruKm42xiDToGOFdmwjPfah1L5KF8u4otJSWFl19+meLFi+Pt7U2/fv24cyf7Pjbu7u5PRDkSQoiCVr6eLy0HZY8kndsXwa5vLhboSJLXq8E4tW6FmplJ2CuvkBEWXmDHLkhGvY4pfZ+h9O36AKxMOMehM6s0TiW08MgFacqUKSxbtoyOHTvSp08ftm3bxogRI/IjmxBCiP+nQv3skoQC5/ZGsHvNJQrqZgiKToffnDmYKlfCHBtL2IgRmJOSCuTYBa2styPNn36LevF2AEw6MpuE5GiNU4mC9sgF6aeffmLx4sV88cUXfPTRR2zatIl169YV+YUhhRCiMKhQ35eWAyuBAmf3hLOnAEuSzt6egE8/xeDlRfrly0SMew21iP7b/1zDkhjs3sYv08wtHcza8LzWkUQBe+SCFBoaylNPPZXz63r16mEwGHIu8xdCCJG/KjYoRsvns0vSmd3h7P32coGVJKOPD/6LFqHY2pK0ezfRc+cVyHELmqIovNO7Fd532qNTVTamh7Pt8AKtY4kC9MgFyWw2Y2Njk2ubwWAgKysrz0IJIYT4ZxUbFqPFcxVBgdO7wtj7XcGVJLuqQfjNng1A7PLlxH33XYEct6D5ONvSr+Nr1I9zB2Da2a+4HXtF41SioDzyVWw6nY727dtjMplytm3YsIEWLVrg4OCQs+2nn37Ku5SFkFzFJoQoDM7tj2DnigsAVGvhT5NnyxXYxTJ3Pv2U2x9+BAYDJb76CocG9QvkuAVtwjd7uZD4EtdMOproXFk0YI9ckGTF8u0qtoEDB+Lt7Y2Li0vOY8CAAfj5+eXaJoQQIv9VbuxH8wHZixue2hHG/u+vFNhIksdLL+HcuTNkZRE2ZgzpISEFctyCNvmZBjjH98PGorLPcpcfdk3SOpIoAHm6DtKTREaQhBCFydm94exalX2bp+qtAmjco2yBjHJY0tO5OXAQqSdOYFOyJCW/XYO+CP6QfDgkli9/7MdBr3BsLSo/tl1GCb86WscSjyHfRpCEEEIUPlWeKk7TfhUAOPlbKAd+ulogI0k6kwn/hR9j8CtGxvXrhI0JRs0sejd6rVfKnbIV51I554a2L8kNbYu4/zSCtH37drZv3050dHTObUf+tGTJkv8crjCTESQhRGF0Zk84u1dnjyTVbF2Cht3LFMhIUtrFS9zo2xdLSgquvXrhO21qkTtPJyPLwosLP+eCy0KSdTpGeTXkxQ5faB1LPKJ8H0GaNm0abdq0Yfv27dy5c4e4uLhcDyGEEAUv6OniPN2nPADHt93k4LqCGUmyrVAev/ffA0Xh7nffEff11/l+zIJmY9DxZt8BVLldBYBPow9w/upWjVOJ/PLYI0jFihVj7ty5PPfcc3mdySrICJIQojA7tTOMvd9eAqBWu0AadC1dICM6MUuXET1nDuh0BHy6CMemTfP9mAVt8Z4r7Dr9LCccsyhl0fN9/32YbBy1jiUeUr6PIGVkZNCoUaPHfbkQQoh8VK25P0/1LgfAH1tucGj9tQIZSXIfNBDXZ3uCxUL42HGkXbqU78csaC80KYOD/g3csyyE6Mws2DBI60giHzx2QRo6dCirV6/OyyxCCCHyULXmATR5NrskHfvlBoc3hOR7SVIUBd+33sK+Xj0sycmEvTSCrJiYfD1mQdPpFKb27UrpO9mDBCuTLnL49EqNU4m89khTbGPHjs35f4vFwvLly6lWrRrVqlXDaDTm2veDDz7Iu5SFkEyxCSGsxYnfbrL/h+wVoOt2LEm9zqXz/Zjmu3cJ6d2bzBs3satZkxLLlqL7fwsMFwUbToSzdk93jrik4GOGtb224+TorXUs8S8e9vv3IxWk5s2bP9R+iqKwY8eOh31bqyQFSQhhTXKVpE6lqNepVL4fM/1aCNf79MGSkIBzl874zZlT5K5sG79yKyfTXiXCqKOTTTFm9ZWTtgu7fClI4n+kIAkhrM3xrTc58FN2SarXuRR1O+Z/SUo+cICbw14Esxmv4GA8Xxqe78csSPGpmYxZOJnjXpuwKAofVHiB1g3G/vsLhWby5STtmzdvPlKI8PDwR9pfCCFE/qnZJntdJIDDG0I4uvl6vh/ToVEjfN+aDMDtBQtI+LVojbC42BkZ3n08deM8AZh2fgm3Yy5rnErkhUcqSHXr1mXYsGEcPnz4gfvEx8fz5ZdfEhQUVORvWCuEENamVptAGj6TXZIOrb/G0V+u5/sx3fr0we3ekjAREyaQeuZsvh+zIDUs40GZMvMola4Sr1N4a9Mg1PsWTxbW55Gm2GJjY5k5cyZLlizBaDRSp04d/Pz8sLW1JS4ujnPnznH27Fnq1KnD5MmTad++fX5m15RMsQkhrNmxLdc5uO4aAA26laZ2u5L5ejw1K4vQESNJ3rsXg7c3Jb//DqOPT74esyClZ5kZ8fE8TrquJEOn8HZAR55tMVvrWOJv5Os5SGlpaWzevJm9e/dy/fp1UlNT8fT0pGbNmrRt25agoKD/FN4aSEESQli7o5uvc2h9dklq+EwZarUNzNfjmRMTud63LxlXrmJbpQqBK1egs7PL12MWpAtRCby3qi+HPG9iZ1H5se0SAvzqaR1L3EdO0s5nUpCEEEXB0c0hHFofAkCj7mWp2aZEvh4vIyyM68/2whwXh1ObNhRfMB9FV3Tum/7lzgtsu9iL83Yq1Sw2fP3cQfQG47+/UBSYfF9JWwghhPWr06EU9TpnX8124KcrHN/2aBfjPCobf3/8F36MYjSSuHUrtz/6KF+PV9CGNK2AuzoaB4uFU7oMFv86QutI4jFJQRJCiCdc3Y6lqNuxJAAHfrzCid/ytyTZ166N77vvABDz2efEr1+fr8crSDqdwtt9+1MlpioAn94+yPnLv2icSjwOKUhCCCGo26kUdTqUBGD/D1c4uT00X4/n2q0bHi++CEDkpMmk/HE8X49XkPxc7ejcYh7Vk4xkKQoT9r5Benqi1rHEI5KCJIQQAkVRqNf5fyVp3/eXObUzf0uSV/AYnFq3Rs3MJOyVV8gIKzpr53WrFYCv01vZN7TVW+SGtlboPxek8PBwWRBSCCGKgD9LUu122Vez7f32Mqd2huXf8XQ6/ObMxrZyZcyxsYSNeAlzUlK+Ha+gvdWzE2XjngZgVdJFjpz6WuNE4lE8dkHav38/pUqVokSJEpQoUQIfHx8mTJhAQkJCXuYTQghRgBRFoX7X0jmX/O/99hKnd+VfSdLZ2+P/6SIMXl6kX75C+LhxqGZzvh2vILnYGxnc7V1qxzugKgpvHp1HYmKU1rHEQ3rsgjR8+HCqVKnCkSNHOHXqFPPmzWP79u3Url2bO3fu5GVGIYQQBUhRFBp0K51zyf+eNZc4szv/SpLRxwf/RYtQbG1J3r2H6Llz8+1YBa1xWU/K+s+hWKaFKD3M2DBA60jiIT12Qbp69Srz58+nVq1aVKlSheeff54jR45Qo0YNRo8enZcZcylZsiSKovzl8fLLLwOgqipTp07Fz88POzs7mjVrxtmzuZe1T09PZ9SoUXh6euLg4ECXLl0IC8u/v/xCCGFtFEWh4TNlqNk6uyTt/uYSZ/bk3+kUdlWD8JudvfJ07PKvifv2u3w7VkF7rXMTApO6olNVNmXeYtvv72kdSTyExy5IlSpVIioq91Choii88847bNiw4T8He5AjR44QGRmZ89i2bRsAzz77LABz587lgw8+YOHChRw5cgRfX19at25NYuL/riAIDg5m7dq1rFmzhn379pGUlESnTp0wF5FhXSGEyAuKotCwexlqtAoAYPfqi5zdm38lybldW7zGZP+AHfXuuyQfPJhvxypItkY9r/Z6g9p3vQCYdn4Zd2IuaZxK/JvHLkiDBg3ixRdf5ObN3OtlxMfH4+Li8p+DPYiXlxe+vr45j40bN1KmTBmaNm2KqqosWLCASZMm0b17d4KCgli+fDkpKSmsXr06J9/ixYt5//33adWqFTVr1mTlypWcPn2a3377Ld9yCyGENVIUhUY9ylK9ZXZJ2rXqIuf2ReTb8Txeegnnzp0hK4uw0WNIDwnJt2MVpMp+ztSruoCS6SrxeoXJG+WGtoXdYxek4OBgLl68SPny5enXrx9z585l1qxZDBkyhHnz5uVlxgfKyMhg5cqVDB48GEVRCAkJISoqijZt2uTsYzKZaNq0KQcOHADg2LFjZGZm5trHz8+PoKCgnH3+Tnp6OgkJCbkeQgjxJFAUhcY9y1KthT8AO1de4PyByHw7VrHp72JXowaWhATCRr6MJS0tX45V0IY1r4Z/5mCMqsp+Elm/Z4rWkcQ/eOyCFBUVxS+//MI772Svhrps2TLefvttLl++zOzZsxkwYABz585ly5YteRb2fuvWrePu3bsMGjQoJxOAz313iPbx8cl5LioqChsbG9zc3B64z9+ZNWsWLi4uOY+AgIA8/CRCCFG4KYpCk2fLUa35vZK04jyXj9zKl2PpTCb8F36MwdubjJAQbn/8cb4cp6DpdQpv9n2JmrHZ3z8+vLaWlNRYjVOJB3nsguTt7U3btm0ZP348q1ev5ty5cyQmJrJ//35eeeUVXF1dWb9+PX369MnLvLksXryY9u3b4+fnl2u7oii5fq2q6l+23e/f9pk4cSLx8fE5j9DQ/F1ATQghChtFUWjSqxyVn/JDVWHb0nNcO347X45l8PTEd9pUAGKXLiP11Kl8OU5BC3C3J6jSdHwzLdzWKyzdOkbrSOIB8nQlbVtbW+rWrcuwYcNYuHAh+/bt4+7du3l5iBw3btzgt99+Y+jQoTnbfH19Af4yEhQdHZ0zquTr60tGRgZxcXEP3OfvmEwmnJ2dcz2EEOJJoygKzfpWoEIDX1SLyq9fneH66fxZ2sWpefPs85EsFiInTcKSkZEvxyloL7aoTon4egAsjz3O7dsXNE4k/o7V3mpk6dKleHt707Fjx5xtpUqVwtfXN+fKNsg+T2n37t00atQIgNq1a2M0GnPtExkZyZkzZ3L2EUII8WCKTqHFcxUpW9sbi1lly+dnCL2QP1NFPm9ORO/hQfrlK8R89lm+HKOgOZgMtHlqCuXSIFWn8OG2/FsaRzw+qyxIFouFpUuXMnDgQAwGQ852RVEIDg5m5syZrF27ljNnzjBo0CDs7e3p168fAC4uLgwZMoRx48axfft2jh8/zoABA6hatSqtWrXS6iMJIYRV0el1tBpcmVLVPTFnWdi86BQRV+7m+XEMbm74vvUWAHe++JK08+fz/Bha6FknEI/UZwBYnxHBxau/apxI3M8qC9Jvv/3GzZs3GTx48F+eGz9+PMHBwYwcOZI6deoQHh7O1q1bcXJyytln/vz5dOvWjV69etG4cWPs7e3ZsGEDer2+ID+GEEJYNb1eR9uhQZSo4k5WhoWNC09yKyTvr/B1btcWpzZtICuLiEmTUDMz8/wYBU2vU3ih02iqJ5pQFYW5e99GVVWtY4n/R1HlT+SxJCQk4OLiQnx8vJyPJIR4omVlmNn4yUnCL97FZG+g66s18Qpw+vcXPsoxbt/mWqfOmOPj8QoOxvOl4Xn6/loJ/moxewzzyVQUFlV5iafqvKx1pCLvYb9/W+UIkhBCiMLDYKOnw4hq+JZ2IT0li/UfniAmIilvj+Hlhc+kNwG488knpF+5kqfvr5XRXXtT/a4HAPNOfU5WVrrGicSfpCAJIYT4z2xsDXQaVR3vQCfSkjJZv+AEd2+l5OkxnDt3xrFpU9TMzOyptiJwe6jSXo6ULjEJZ7OFEL3Kjzvf1DqSuEcKkhBCiDxhsjPQeXQNPIo7kpKQwc8LjpNwJzXP3l9RFHynTUXn6EjayVPELv86z95bS6PaNaPi3XIAfBL6K8nJ0RonEiAFSQghRB6ydTDSZUwN3HztSYpL5+cFx0mKy7tbhRh9ffF5YwIAtz/8kIzr1/PsvbXiam9Dw9rT8cuwEKdX+OJXuey/MJCCJIQQIk/ZO9vQNbgmzl52JNxJ4+cFJ0iOz7tza1x69MChUUPU9HQiJk8uEjd9fb5xZUokPQXAqvgzREWd1DiRkIIkhBAizzm4muj2ak0c3U3cvZXC+g9PkJqUNythK4qC7zvvotjbk3r0GHHffJMn76slG4OOHq3epkKqQrpO4YPfXtU60hNPCpIQQoh84eRuS7dXa+LgYkNsRDLrPzxBWnLerGFk418c73FjAYh+/wMywsLz5H211DaoGD7m7PuX/mK+zdmLP2uc6MkmBUkIIUS+cfGyp+urNbFzMnInNImNC0+SkZaVJ+/t1rcvdnVqo6akEPX2W1a/0KKiKIzo9jI1EuwAmHPg3SIxfWitpCAJIYTIV26+DnQNronJwcCtkAQ2LjxJZvp/v0Rf0enwmz4dxWQi+cDvxP/4Yx6k1VZQcRcCXF/FZFE5rktn5+H5Wkd6YklBEkIIke88ijvSZXQNbOwMRF6JZ/Onp8jK/O8lyaZkSbzGjAHg1uw5ZN669Z/fU2ujuzxDtXgfAN4/u4zMzLxbKkE8PClIQgghCoR3oDOdR1XHYNITdiGOLV+cwZz136eQ3Ac+j221aliSkoiaMtXqp9p8XWypXn4ablkWbhpgzW+vax3piSQFSQghRIHxLe1Cp5erYTDquHE6hm2Lz2Ix/7eSpOj1+M2YjmI0krRrFwkbN+ZRWu0Ma9WACgmVAfg8cicJCdZ/Erq1kYIkhBCiQBUv70b7EVXRGRSuHr/Nb8vOY7H8t1EfU7lyeL48EoBb02eQdft2XkTVjL2NgdaNZxGQoRKv17Ho11e0jvTEkYIkhBCiwJWo7EG7F6ui0ylcPnKLXSsvoP7HkuQxZAimypUwx8cT9e70PEqqnZ51ylAytSUA3yVfJiz8iMaJnixSkIQQQmiiVDVPWg+pgqLA+QOR7Pn20n86f0gxGvGbMQMMBhK3biVhy695mLbg6XQKA9pPplKKjkxFYd72cVpHeqJIQRJCCKGZsrW9aTmoMihwZnc4B3688p9Kkm2lSni+OAyAqHffJSsuLq+iaqJROS8CjINQVJUdahwnzn6rdaQnhhQkIYQQmqpQ35fm/SsCcOK3UA5vCPlP7+fx0kuYypXFHBPDrZmz8iKipl7p9iI1Ex0BmHNojiweWUCkIAkhhNBc5SZ+PNW7PABHN1/n2Jbrj/1eOhsbis2YATodCRs2kLhjZx6l1EYpTwfK+76BrcXCGX0mW/Zbf+mzBlKQhBBCFArVmvvTsHsZAA6uu8bJ7aGP/V521arh/sIgAKKmTsWckJAXETXzcscOVIv3B2DBpTVkpCdpnKjok4IkhBCi0KjVJpC6nUoBsO/7y5zZ8/jr/3iNGoVNYCBZ0dHcmjs3ryJqwtXehkbVZ+CRZSHCAF9vfVXrSEWeFCQhhBCFSt2OJanVtgQAu1df5PyByMd6H52tLcVmzgBFIf6HH0navz8vYxa455+uRcXEmgAsuXOAu3evaxuoiJOCJIQQolBRFIUG3cpQrXn2lNLOFee5fOTx7rFmX7s2bv37AxD11tuYk5LzLGdBM+p1dG85k8B0lUSdjo9+kcUj85MUJCGEEIWOoig06VWOyk/5oaqwbek5rh1/vNWxvV8NxujvT2ZEBLc/eD+Pkxas1kEBlMnsCMDa9Otcv7FH40RFlxQkIYQQhZKiKDTrW4EKDXxRLSq/fnWGG2diHvl9dA4OFHv3HQDiVn9D8uHDeR21wCiKwrBub1Il2UCWojB35xtaRyqypCAJIYQotBSdQovnKlK2tjcWs8ovn58m7ELsI7+PQ8OGuPbqBUDk5LewpKbmddQCE1TchXKOw9GrKnuVRI6cXKZ1pCJJCpIQQohCTafX0WpwZUpV98ScaWHTolNEXLn7yO/j/fprGHx9ybx5k9sffpT3QQvQK90GUSPBBYA5RxdgMWdpnKjokYIkhBCi0NPrdbQdGkSJyu5kZVjYuPAkt0IebW0jvZMTxaZNBSB2+XJST5zI+6AFxMfZlpql38beYuGiwcz6PVO1jlTkSEESQghhFfRGHe1eqkrx8q5kppnZ8PEJbocmPtJ7ODZtikvXrqCqREyajCU9PZ/S5r9hbVpSLaEkAAuvrSMt9a6meYoaKUhCCCGshtFGT4eR1fAt7UJ6ShbrPzxBbMSjXbrvM/EN9J6eZFy9yp1Fn+ZT0vxnb2Ogbf05eGdauGVQWLxltNaRihQpSEIIIayKja2BTqOq4x3oRFpSJj8vOM7dWykP/Xq9qyu+U94GIOarr0g9eza/oua77vWqUCmlPgBf3/2DOzGXNE5UdEhBEkIIYXVMdgY6j66BR3FHUhIy+HnBcRLuPPyVac6tW+PUvh2YzUS+OQk1IyMf0+YfnU6hf4dZlE6DFJ3Cgi2jtI5UZEhBEkIIYZVsHYx0GVMDN197kuLS+XnBcZLi0h769b6TJ6N3dSX94kXufPllPibNXw3L+lBB1xOADZnhXL32m8aJigYpSEIIIayWvbMNXYNr4uxlR8KdNH5ecILk+Ic78drg4YHP5MkA3Pnsc9IuWu/01MhnXqNqkg0WRWHWrklaxykSpCAJIYSwag6uJroG18DR3cTdWyms//AEqUkPN2Xm3LEDji1bQmYmkZMmoWZZ53pCJT0dqOo5GoOqckifwv6jn2kdyepJQRJCCGH1nD3s6PZqTRxcbIiNSGb9hydIS87819cpioLv22+jc3Ym7cwZYpcty/+w+WRk537UTHAHYN7JRZizrPO8qsJCCpIQQogiwcXLnq6v1sTOycid0CQ2LjxJRtq/jwgZfbzxeSP7nma3P/qY9Gsh+R01X7jYG2lc+V2czBauGlR+2CFTbf+FFCQhhBBFhpuvA12Da2JyMHArJIFNn5wiM8P8r69zeaYbDk2aoGZkZE+1mf/9NYXR882folpSOQA+C/uFlOTbGieyXlZVkLKyspg8eTKlSpXCzs6O0qVL884772CxWHL2UVWVqVOn4ufnh52dHc2aNePsfWtcpKenM2rUKDw9PXFwcKBLly6EhYUV9McRQgiRDzyKO9JldA1s7AxEXL7L5kWnyMr858KjKArF3pmGzt6e1OPHiVu1uoDS5i2jXkf3Zu/jm2nhjl7hs81y2f/jsqqCNGfOHD777DMWLlzI+fPnmTt3LvPmzePjjz/O2Wfu3Ll88MEHLFy4kCNHjuDr60vr1q1JTPzfcvTBwcGsXbuWNWvWsG/fPpKSkujUqRNmK/2JQQghRG7egc50HlUdg0lP2IU4tnxxBnOW5R9fY/Tzw3v86wBEz59PRmhoQUTNc62rliYo42kAvkk6Q3T0GY0TWSdFVVVV6xAPq1OnTvj4+LB48eKcbT169MDe3p4VK1agqip+fn4EBwczYcIEIHu0yMfHhzlz5jB8+HDi4+Px8vJixYoV9O7dG4CIiAgCAgLYvHkzbdu2fagsCQkJuLi4EB8fj7Ozc95/WCGEEP9Z+MU4Niw8iTnTQpmaXrQZWgWd/sFjA6rFws1BL5By+DD29etTYtlSFEUpwMR542zYXd7a+DSX7VTaKV7Me36H1pEKjYf9/m1VI0hNmjRh+/btXLqUvVbFyZMn2bdvHx06dAAgJCSEqKgo2rRpk/Mak8lE06ZNOXDgAADHjh0jMzMz1z5+fn4EBQXl7PN30tPTSUhIyPUQQghRuBWv4EaHEVXRGRSuHr/Nb8vOY7E8eFxA0ekoNv1dFFtbUg4d4u533xdg2rxTxd+VILsBAPxqieb8pQ0aJ7I+VlWQJkyYQN++falYsSJGo5GaNWsSHBxM3759AYiKigLAx8cn1+t8fHxynouKisLGxgY3N7cH7vN3Zs2ahYuLS84jICAgLz+aEEKIfFKisgftXqyKTqdw+cgtdq26gPoPJcmmRAm8Xw0GIHruXDIjIgooad565ZnR1EiyRVUUZu+dhmr55ylGkZtVFaRvv/2WlStXsnr1av744w+WL1/Oe++9x/Lly3Ptd/9wqKqq/zpE+m/7TJw4kfj4+JxHqJXOTQshxJOoVDVPWg+pgqLA+f2R7P32Ev90honbgAHY1aiBJTmZyClT/3Hfwsrb2ZY6/hMwqip/GNLZeehDrSNZFasqSK+//jpvvPEGffr0oWrVqjz33HO8+uqrzJo1CwBfX1+Av4wERUdH54wq+fr6kpGRQVxc3AP3+TsmkwlnZ+dcDyGEENajbG1vWg6qDAqc3h3OgZ+uPrD4KHo9xWbOQLGxIXnvXuLX/VzAafPGi+2foVaiNwAfnFtCVubD36vuSWdVBSklJQWdLndkvV6fc5l/qVKl8PX1Zdu2bTnPZ2RksHv3bho1agRA7dq1MRqNufaJjIzkzJkzOfsI61WyZEkWLFiQ82tFUVi3bt1Dv37q1KnUqFEjz3MJIQqHCvV9adavAgAntt3k8IYHLwppKl0az1GvAHBr1iwyo6MLJGNesrPR07b2bFzMFm4YYPXW17WOZDWsqiB17tyZGTNmsGnTJq5fv87atWv54IMPeOaZZ4Dsb4bBwcHMnDmTtWvXcubMGQYNGoS9vT39+vUDwMXFhSFDhjBu3Di2b9/O8ePHGTBgAFWrVqVVq1ZafrxC48CBA+j1etq1a/eX565fv46iKBgMBsLDw3M9FxkZicFgQFEUrl+/nrP9xx9/pH79+ri4uODk5ESVKlUYN27cQ2V58cUX0ev1rFmz5rE+S2RkJO3bt3+s1/4Xj1rMhBAFp8pTxXmqd/Ziikc3X+fYlusP3NfjhRewrVIFS0ICUdPescqpth4N6lIjpQoAX97aQVJipMaJrINVFaSPP/6Ynj17MnLkSCpVqsRrr73G8OHDeffdd3P2GT9+PMHBwYwcOZI6deoQHh7O1q1bcXJyytln/vz5dOvWjV69etG4cWPs7e3ZsGEDer1ei49V6CxZsoRRo0axb98+bt68+bf7+Pn58fXXX+fatnz5cooXL55r22+//UafPn3o2bMnhw8f5tixY8yYMYOMjH+/R1BKSgrffvstr7/+eq6lHR6Fr68vJpPpsV4rhCi6qjUPoOEzZQA4uO4aJ7f//XmlisFAsZkzwWgkaft2En/5pSBj5gmdTqF/mw8onmHhrl7Hx5te1jqSdVDFY4mPj1cBNT4+XusoeSopKUl1cnJSL1y4oPbu3VudNm1arudDQkJUQJ08ebJarly5XM9VqFBBfeutt1RADQkJUVVVVceMGaM2a9bssbIsW7ZMbdCggXr37l3Vzs4u5z3/dOvWLbVTp06qra2tWrJkSXXlypVqYGCgOn/+/Jx9AHXt2rU5vx4/frxarlw51c7OTi1VqpQ6efJkNSMjI+f5KVOmqNWrV1c/++wz1d/fX7Wzs1N79uypxsXF5exz+PBhtVWrVqqHh4fq7OysPv300+qxY8dyng8MDFSBnEdgYOBjfX4hRP47tOGaunD4dnXh8O3q6d1hD9wv+uOF6rkKFdWLDRqqmTExBZgw74z/IlgNWhak1l5SRQ0PP6p1HM087PdvqxpBslaqqpKSkaXJQ33E4eBvv/2WChUqUKFCBQYMGMDSpUv/9j26dOlCXFwc+/btA2Dfvn3ExsbSuXPnXPv5+vpy9uxZzpx59JVcFy9ezIABA3BxcaFDhw4sXbo01/ODBg3i+vXr7Nixgx9++IFFixYR/S/nCDg5ObFs2TLOnTvHhx9+yJdffsn8+fNz7XPlyhW+++47NmzYwJYtWzhx4gQvv/y/n7gSExMZOHAge/fu5eDBg5QrV44OHTrkrNZ+5MgRAJYuXUpkZGTOr4UQhU/djiWp1bYEALtXX+TC738//eT54jBM5ctjjovj1vQZBRkxz4zo9g4VUnWk6xTmbn1V6ziFnkHrAE+C1Ewzld/+VZNjn3unLfY2D//H/GcpAWjXrh1JSUls3779L+dnGY1GBgwYwJIlS2jSpAlLlixhwIABGI3GXPuNGjWKvXv3UrVqVQIDA2nQoAFt2rShf//+/zj1dfnyZQ4ePMhPP/0EwIABAxg9ejRTpkxBp9Nx6dIlfvnlFw4ePEj9+vVzsleqVOkfP9/kyZNz/r9kyZKMGzeOb7/9lvHjx+dsT0tLY/ny5fj7+wPZU7sdO3bk/fffx9fXlxYtWuR6z88//xw3Nzd2795Np06d8PLyAsDV1TXnykohROGkKAoNupUhK8PCqZ1h7Pj6PHqjjnJ1cl/VrNjYUGzmTK737k3C5s04d2iPk5Wdt1rSy4narsO4mP4525U4Tp79nupVntU6VqElI0gix8WLFzl8+DB9+vQBwGAw0Lt3b5YsWfK3+w8ZMoTvv/+eqKgovv/+ewYPHvyXfRwcHNi0aRNXrlxh8uTJODo6Mm7cOOrVq0dKSsoDsyxevJi2bdvi6ekJQIcOHUhOTua3334D4Pz58xgMBurUqZPzmooVK+Lq6vqPn/GHH36gSZMm+Pr64ujoyFtvvfWX86xKlCiRU44AGjZsiMVi4eLFi0D2khAvvfQS5cuXz1k4NCkp6YHnawkhCjdFUWjSqxyVn/JDVWHbknNcO3H7L/vZBVXB496/c5HTpmGOjy/oqP/ZyK7DqZnoAMCcg7Nk8ch/ICNIBcDOqOfcOw93j7f8OPbDWrx4MVlZWblOtFZVFaPRSFxc3F9WHw8KCqJixYr07duXSpUqERQUxIkTJ/72vcuUKUOZMmUYOnQokyZNonz58nz77be88MILf9nXbDbz9ddfExUVhcFgyLV98eLFtGnTJmfa71HukXTw4EH69OnDtGnTaNu2LS4uLqxZs4b333//H1/35zH+/O+gQYO4ffs2CxYsIDAwEJPJRMOGDR/qxHMhROGkKArN+lbAnGHh4qEofv3yDB1GVCMwyCPXfp6vvEzib7+RERLCrVmz8Zs9S6PEj8fFzkiz8m9xLnwCpw2ZbN47h45NJ2odq1CSEaQCoCgK9jYGTR4PWyCysrL4+uuvef/99zlx4kTO4+TJkwQGBrJq1aq/fd3gwYPZtWvX344ePUjJkiWxt7cnOTn5b5/fvHkziYmJHD9+PFeW77//nnXr1hETE0OlSpXIysri6NGjOa+7ePEid+/efeBx9+/fT2BgIJMmTaJOnTqUK1eOGzdu/GW/mzdvEvH/bi3w+++/o9PpKF++PAB79+5l9OjRdOjQgSpVqmAymbhz506u9zAajZjN5of+PRFCaE/RKbR4viJlanljMav88vlpwi7E5tpHZzJRbMYMUBTi160jac8ejdI+vudatqd2UvYPwh9fWUVm+t//W/ykk4IkANi4cSNxcXEMGTKEoKCgXI+ePXs+8DL7YcOGcfv2bYYOHfq3z0+dOpXx48eza9cuQkJCOH78OIMHDyYzM5PWrVv/7WsWL15Mx44dqV69eq4cPXr0wMvLi5UrV1KhQgXatWvHsGHDOHToEMeOHWPo0KHY2dk98DOWLVuWmzdvsmbNGq5evcpHH33E2rVr/7Kfra0tAwcO5OTJkzllqFevXjnnE5UtW5YVK1Zw/vx5Dh06RP/+/f9y3JIlS7J9+3aioqL+smq7EKLw0ul1tB5SmZLVPDFnWti06BQRV+7m2se+Vk3cn38egMi3p2BOStIg6eMz6nV0f+p93LIshBsUlm6RE7b/jhQkAWSXklatWuHi4vKX53r06MGJEyf4448//vKcwWDA09Mz11TY/9e0aVOuXbvG888/T8WKFWnfvj1RUVFs3bqVChUq/GX/W7dusWnTJnr06PGX5xRFoXv37jllbenSpQQEBNC0aVO6d+/Oiy++iLe39wM/Y9euXXn11Vd55ZVXqFGjBgcOHOCtt976y35ly5ale/fudOjQgTZt2hAUFMSiRYtynl+yZAlxcXHUrFmT5557jtGjR//luO+//z7btm0jICCAmjVrPjCTEKLw0et1tBsWRInK7mRlWNi48CS3rifk2screAzGEiXIiooiet57GiV9fG2qV6FWei0AlsfsJz5ezqG8n6I+6nXgAoCEhARcXFyIj4+X+7IJIUQRlJlhZtPCk4RfuovJ3kC3sTXx9P/fosPJhw5zc+BAAEosW4pDgwZaRX0sZ0KjeX1LC8JsFHoaApnSf6PWkQrEw37/lhEkIYQQ4m8YbfR0GFkN39IupKdk8fOCE8RG/O98HYf69XDtm33Vb+Tkt7D8w5W5hVFQgDf1jF0A+DnzOjdv/q5xosJFCpIQQgjxADa2BjqNqo5XCSfSkjL5ecFx7t76XxHyHvcaBr9iZIaFEf3/bpRtLUY+M5lKKQYyFYXZvz3cPTKfFFKQhBBCiH9gsjPQZXQNPIo7kJKQwc8LjpNwJxUAvaMDxaa9A0DcipWk/M25moWZj4s9jX1fQVFV9uoTOXxihdaRCg0pSEIIIcS/sHU00mVMTdx87UmKS+fnBcdJiksDwPGpJrh07w6qSuSbk7CkpWmc9tEM7zSI2knZF+i8d/R9WTzyHilIQgghxEOwd7aha3BNnL3sSLiTxs8LTpCSkL1ArM+E8Ri8vMi4fp07n3yicdJHY2vU06H6dOwsFs4bzazdMVXrSIWCFCQhhBDiITm4mugaXANHdxN3b6Xw84LjpCZloHdxwXfaVABiFi8h9fRpbYM+oh6Nm1EnpSQAn974ifQ067uNSl6TgiSEEEI8AmcPO7q9WhMHFxtiI5JZ/+EJ0lMycWrRAueOHcFiIfLNN7FY0e2HdDqF51p+iEeWhSiDwucbR2sdSXNSkIQQQohH5OJlT9dXa2LnZOROaBIbPj5JRloWPpMnoXd3J/3yFWI++1zrmI+kYcWy1DM3BOCbxKPExl7VOJG2pCAJIYQQj8HN14EuY2picjBwKySBnxecIF1nj+/b2Sv03/niCxK3b9c45aMZ+cwHlEyHJJ2ODza9onUcTUlBEoXa9evXURSFEydOFOhxdu3ahaIo/3jz2/s1a9aM4ODgfMknhCicPP0d6TK6BiYHA9HXE/hh9lHSKjXCuXNnyMoibPQY7q5dp3XMh1bSy5n6dt0B2JIVSkzMZY0TaUcKkshl0KBBKIqCoigYjUZKly7Na6+9RnLyk3W350aNGhEZGfm396bLT49TzIQQ2vIOdKbnhDo5SwCsfe8PUp59FZdu3cBsJnLiRGKWLtM65kMb1nkCpdMgXafw2a8TtI6jGSlI4i/atWtHZGQk165dY/r06SxatIjXXntN61gFysbGBl9fXxRF0TqKEMIKuHrb02NCHUpU8SAr08LWJecJbTQUt4GDAIieM4foD+ZjDbc/9XG1p7pNawA2pl8kKTFS40TakIIk/sJkMuHr60tAQAD9+vWjf//+rFu3jpMnT9K8eXOcnJxwdnamdu3aHD16NOd1Bw4c4Omnn8bOzo6AgABGjx6da+RJURTWrVuX61iurq4sW7Ys59eHDx+mZs2a2NraUqdOHY4fP/6XfLt376ZevXqYTCaKFSvGG2+8QVZWVs7zW7ZsoUmTJri6uuLh4UGnTp24ejX3yYb/dpz7R3JiYmLo27cv/v7+2NvbU7VqVb755pu/ZMvKyuKVV17JOfbkyZNz/YO4cuVK6tSpg5OTE76+vvTr14/o6Ggge5qvefPmALi5uaEoCoMGDfqbPyEhRGFksjPQ8eVq1GgVAMDRzTc44dEBtzHZt/CI+eILoqZMRTWbtYz5UIZ0nkrxDJUknY6vtozXOo4mpCAVBFWFjGRtHnnw04qdnR2ZmZn0798ff39/jhw5wrFjx3jjjTcwGo0AnD59mrZt29K9e3dOnTrFt99+y759+3jllYc/yS85OZlOnTpRoUIFjh07xtSpU/8ychUeHk6HDh2oW7cuJ0+e5NNPP2Xx4sVMnz491/uMHTuWI0eOsH37dnQ6Hc888wyWe6vDPsxx7peWlkbt2rXZuHEjZ86c4cUXX+S5557j0KFDufZbvnw5BoOBQ4cO8dFHHzF//ny++uqrnOczMjJ49913OXnyJOvWrSMkJCSnBAUEBPDjjz8CcPHiRSIjI/nwww8f+vdPCKE9nU6hcc9ytHi+Ijq9wtU/brM7thpOE98FReHud98RPnZcoV8CINDTmRo0AmBt4h+kpcZpnKjgGbQO8ETITIGZftoc+80IsHF47JcfPnyY1atX07JlS3755Rdef/11KlasCEC5cuVy9ps3bx79+vXLOUm5XLlyfPTRRzRt2pRPP/0UW1vbfz3WqlWrMJvNLFmyBHt7e6pUqUJYWBgjRozI2WfRokUEBASwcOFCFEWhYsWKREREMGHCBN5++210Oh09evTI9b6LFy/G29ubc+fOERQU9FDHuV/x4sVzlahRo0axZcsWvv/+e+rXr5+zPSAggPnz56MoChUqVOD06dPMnz+fYcOGATB48OCcfUuXLs1HH31EvXr1SEpKwtHREXd3dwC8vb1xdXX9198zIUThVKmRHy7e9mz5/DR3QpPYGu9L07cWkDnrNRJ//ZWwxAT8P/4YncPj//uc3wa2n86RLc2JNupYsfVNhnX9VOtIBUpGkMRfbNy4EUdHR2xtbWnYsCFPP/00H3/8MWPHjmXo0KG0atWK2bNn55q2OnbsGMuWLcPR0THn0bZtWywWCyEhIQ913PPnz1O9enXs7e1ztjVs2PAv+zRs2DDXuUGNGzcmKSmJsLAwAK5evUq/fv0oXbo0zs7OlCpVCoCbN28+9HHuZzabmTFjBtWqVcPDwwNHR0e2bt2a855/atCgQa5sDRs25PLly5jvDakfP36crl27EhgYiJOTE82aNcuVTQhRdPiVdaXnG3XwKO5IakIG2w7YkDH+ExR7e5IP/M6NFwaTFVd4R2Yq+XtTw1wdgO/u7CUr07ruMfdfyQhSQTDaZ4/kaHXsR9S8eXM+/fRTjEYjfn5+OdNoU6dOpV+/fmzatIlffvmFKVOmsGbNmpzpq+HDhzN69F9XXy1RogSQfQ7S/ScoZmZm5vz/w5y8qKrqX06c/vN1f27v3LkzAQEBfPnll/j5+WGxWAgKCiLj3pD245wk+f777zN//nwWLFhA1apVcXBwIDg4OOc9H0ZycjJt2rShTZs2rFy5Ei8vL27evEnbtm0f6X2EENbD2cOO7q/X4rel5wg5eYe9+y1UHb4QnyVjSTt1ihsDnqPE4q8w+vpqHfVv9W01g8O7OxFl0PH99in0bTdH60gFRkaQCoKiZE9zafF4jKuwHBwcKFu2LIGBgTnl6E/ly5fn1VdfZevWrXTv3p2lS5cCUKtWLc6ePUvZsmX/8rCxsQHAy8uLyMj/XQ1x+fJlUlJScn5duXJlTp48SWpqas62gwcP5jp+5cqVOXDgQK6Sc+DAAZycnChevDgxMTGcP3+eyZMn07JlSypVqkTcfT+hPcxx7rd37166du3KgAEDqF69OqVLl+by5b+uD3L/+xw8eJBy5cqh1+u5cOECd+7cYfbs2Tz11FNUrFgx5wTtP/35e2W2gpM4hRAPx8bWQPvhVandPhCA08dTudTzAygWQMbVq1zv14/0aw830l7Q6pQpRc307NMpVoVtxmLO+pdXFB1SkMRDSU1N5ZVXXmHXrl3cuHGD/fv3c+TIESpVqgTAhAkT+P3333n55Zc5ceIEly9fZv369YwaNSrnPVq0aMHChQv5448/OHr0KC+99FKuAtavXz90Oh1Dhgzh3LlzbN68mffeey9XjpEjRxIaGsqoUaO4cOECP//8M1OmTGHs2LHodDrc3Nzw8PDgiy++4MqVK+zYsYOxY8fmeo+HOc79ypYty7Zt2zhw4ADnz59n+PDhREVF/WW/0NBQxo4dy8WLF/nmm2/4+OOPGTNmDJA9kmZjY8PHH3/MtWvXWL9+Pe+++26u1wcGBqIoChs3buT27dskJSU9xJ+OEKKwU3QKDbqWofXgyugNOm5eTeV4k7fJKludrIhIbgwYQOqZs1rH/Fs9n5qOg8XCDSNs2jtX6zgFRxWPJT4+XgXU+Ph4raPkqYEDB6pdu3b9y/b09HS1T58+akBAgGpjY6P6+fmpr7zyipqampqzz+HDh9XWrVurjo6OqoODg1qtWjV1xowZOc+Hh4erbdq0UR0cHNRy5cqpmzdvVl1cXNSlS5fm7PP777+r1atXV21sbNQaNWqoP/74owqox48fz9ln165dat26dVUbGxvV19dXnTBhgpqZmZnz/LZt29RKlSqpJpNJrVatmrpr1y4VUNeuXfvQx9m5c6cKqHFxcaqqqmpMTIzatWtX1dHRUfX29lYnT56sPv/887l+r5o2baqOHDlSfemll1RnZ2fVzc1NfeONN1SLxZKzz+rVq9WSJUuqJpNJbdiwobp+/fq/fL533nlH9fX1VRVFUQcOHPhQf25CCOsRdS1eXTJ+r7pw+Hb1q1d3qUd7vayeq1BRvVCrtpp08JDW8f7CYrGoL33SRg1aFqT2+LKaajGbtY70nzzs929FVa1g1apCKCEhARcXF+Lj43F2dtY6jhBCCCuSFJfO5k9PcftmIjq9QlDKPjx/X41iY0PxD97HqVUrrSPmsvnIAd4+8yLpOoWPKoykeYMHX/Vb2D3s92+ZYhNCCCEKmKObiWdeq0XZOt5YzCqnTI253vxVzJn37t/2409aR8ylfZ2G1Ez1AGDJma/+Ze+iQQqSEEIIoQGjjZ42Q6pQr3P2UiTX1LKcazWVTJ2JyEmTiFm8ROOE/6MoCm2C3kCvqpwwZnD01LdaR8p3UpCEEEIIjSiKQt2OpWj3YhAGGx3RmR6caD6dFDtvoufNI/r99wvN/du6N2lHjRQnAD4/PF/jNPlPCpIQQgihsTK1vOn+Wm0c3UwkZtpyrNFkYt0qEPPlV0S9/XahuH+bXqfQvGz2WncHjcmcv/SrxonylxQkIYQQohDwKuFEzzfq4FPKmUyznpM1RhFWvClx3/9AePCrheL+bf1a9qZ6igmAT/fN0DhN/pKCJIQQQhQSDi4muo2tSYUGvqiq8n/t3XlcTfn/B/DXvd263RZXi9wWZYlWEgbZCm12ypQZWyTb2Nexlu+MrZnsX3sKI9vYQwpFlFAipCzZSySlRevn94ef83Xb0aK8n4/HfdA5n/M57/c5ct/3cz7nXMQ3d0K8wa9IO3sOz8aNQ0FGZo3GJyvDRxcdVwBAKP8tnjy7WqPxVCUqkAghhJDviEBWBj1HGsHCoRnAA15odsZN86lIuxaDpy4uNf79bS72Y2GULYN8Hg8bzy2s0ViqEhVIhBBCyHeGx+Ohja0e+kxoBVmhDFLr6eP6T3OR8ugNngwdhrzPvrapusnLysBC3RkAcI69RHLyvRqLpSrVugLp/fv3mDZtGvT09CASidCpUydcu3aNW88Yg4eHB7S0tCASiWBlZYU7d6Qf356Tk4PJkydDXV0dioqK6N+/P/dN8IQQQsj3onErdTjOaYt66vLIFqrhets5ePlOhMe/DkXOo0c1Fpdr7xlo9oGHHD4PG8/MrbE4qlKtK5DGjBmDoKAg7N69GzExMbC1tYW1tTVevHgBAPD09MSqVauwYcMGXLt2DRKJBDY2Nnj//j3Xx7Rp03DkyBHs27cPly5dQkZGBvr27UtfEFqLeXh4oHXr1tzPLi4uGDhwYJnbWFlZYdq0aVUaFyGEfCs1bSUM/r0dtJrXR4GMELdaTsAjGWM8HjoM2TG3aySmegpCdFTqDQAIyH+A9LS6N8hQqwqk7OxsHDp0CJ6enujWrRv09fXh4eGBJk2aYNOmTWCMYc2aNViwYAEcHBxgamqKnTt3IisrC35+fgCAtLQ0eHt7w8vLC9bW1jA3N8c///yDmJgYnD17toYzrHkuLi7g8Xjg8XgQCATQ1dXFhAkTkFrD17zLM2vWLJw7d66mwyCEkCohUpJD/6mtYdxFC+Dx8EDfAbc1+uCxy2hkXrlSIzG59V+MRrkMmXw+Np+aXSMxVKVaVSDl5+ejoKAA8vLyUstFIhEuXbqEhIQEJCUlwdbWllsnFAphaWmJsLAwAEBkZCTy8vKk2mhpacHU1JRrU5KcnBykp6dLveoqe3t7JCYm4vHjx9i+fTtOnDiBiRMn1lg8BQUFKCwsLLONkpIS1NTUqikiQgipfjICPqyGGqCrc3PweECSpgUiW7jhwcQZSA8MrPZ41JQV0F6uGwDgRPYtZGe9rfYYqlKtKpCUlZVhYWGBP/74Ay9fvkRBQQH++ecfREREIDExEUlJSQCAhg0bSm3XsGFDbl1SUhLk5OSgoqJSapuSLF++HGKxmHs1atSownEzxpCVl1Ujr695AqtQKIREIoGOjg5sbW3h7OyMwM9++Xx8fGBkZAR5eXkYGhpi48aN3DoLCwv8/vvvUv29fv0asrKyCA4OBgDk5uZizpw50NbWhqKiIjp06ICQkBCuva+vL+rXrw9/f38YGxtDKBTiyZMnCAkJQfv27aGoqIj69eujc+fOePLkCYDil9g+WbJkCTQ0NFCvXj2MGzcOuWU8R6S8uAghpKbxeDy06t4IfSebQU4kgzRxM1xrNQP3FvyNd//+W+3xuPVdioZ5hXgnw4f36bo1F0lQ0wF8qd27d2P06NHQ1taGjIwM2rRpg19//RVRUVFcGx6PJ7UNY6zYsqLKazNv3jzMmDGD+zk9Pb3CRVJ2fjY6+HWoUNvKFvFrBBRkFb56+0ePHiEgIACysrIAgG3btsHd3R0bNmyAubk5bty4ATc3NygqKmLkyJEYOnQo/vrrLyxfvpw7nvv370fDhg1haWkJABg1ahQeP36Mffv2QUtLC0eOHIG9vT1iYmLQvHlzAEBWVhaWL1+O7du3Q01NDaqqqjA3N4ebmxv27t2L3NxcXL16tcxzdu7cOcjLyyM4OBiPHz/GqFGjoK6ujqVLS364WUXiIoSQ74GusRoGz22HUxtv4V2yKiJbT8eHNTth8u4d1MaMqbY4tNVU0J7XFidwA0ffhWNcXhZkv+E953tSq0aQAKBZs2a4cOECMjIy8OzZM1y9ehV5eXlo0qQJJBIJABQbCUpOTuZGlSQSCXJzc4vNqfm8TUmEQiHq1asn9aqr/P39oaSkBJFIhGbNmuHu3buYO/fjJ4M//vgDXl5ecHBwQJMmTeDg4IDp06djy5YtAABnZ2e8fPkSly5d4vrz8/PDr7/+Cj6fj4cPH2Lv3r04ePAgunbtimbNmmHWrFno0qULfHx8uG3y8vKwceNGdOrUCQYGBigoKEBaWhr69u2LZs2awcjICCNHjoSurm6pecjJyWHHjh0wMTFBnz598J///Afr1q0r8XJdReMihJDvhYpEEY5z20HHSAWFMkLEmI7F1QO3keT5V7V+f9voXiugkl+IVwIe9gQsqrb9VrVaN4L0iaKiIhQVFZGamoozZ87A09OTK5KCgoJgbm4O4ONlkwsXLmDlypUAgLZt20JWVhZBQUFwcnICACQmJuL27dvw9PSsklhFAhEifo2okr4rsu8v1b17d2zatAlZWVnYvn074uPjMXnyZLx+/RrPnj2Dq6sr3NzcuPb5+fkQi8UAgAYNGsDGxgZ79uxB165dkZCQgPDwcGzatAkAEBUVBcYYWrRoIbXPnJwcqTlEcnJyaNWqFfezqqoqXFxcYGdnBxsbG1hbW8PJyQmampql5mFmZgYFhf99krGwsOAKaz09Pam2FY2LEEK+J/KKsug3yQyX/32AW8HP8ahpf2SEX0fHhe7QWbIYPEHVv83ra2mhfYEhzgjicfBVIEYU5IMvU2vLC06ty+DMmTNgjMHAwAAPHjzA7NmzYWBggFGjRoHH42HatGlYtmwZmjdvjubNm2PZsmVQUFDAr7/+CgAQi8VwdXXFzJkzuUs3s2bNQsuWLWFtbV0lMfN4vG+6zFXdFBUVoa+vDwBYt24dunfvjiVLlmDSpEkAPl5m69BB+pKhjIwM9/ehQ4di6tSpWL9+Pfz8/GBiYgIzMzMAQGFhIWRkZBAZGSm1DfBxovUnIpGo2OUzHx8fTJkyBQEBAdi/fz8WLlyIoKAgdOzY8YvyK+myXEXjIoSQ7w1fho+uzi2gqqWIC373kNywHYITnsBi2jw08/oTfKGwymMYYbMCl4MH4qksH4fOL8PPNourfJ9VrdYVSGlpaZg3bx6eP38OVVVVODo6YunSpdwcmTlz5iA7OxsTJ05EamoqOnTogMDAQCgrK3N9rF69GgKBAE5OTsjOzkbPnj3h6+tb7I2RfOTu7o5evXphwoQJ0NbWxqNHjzB06NBS2w8cOBDjxo1DQEAA/Pz8MHz4cG6dubk5CgoKkJycjK5du35xLObm5jA3N8e8efNgYWEBPz+/UgukmzdvIjs7GyLRx1G0K1euQElJCTo6OiX2+y1xEUJITTPpqo36Ggo49d8ovK+nh5BMMbLGzYfphiWQqeIPeq2aNMdPZ/QQLHqGvY//xeDCheDxa90sHim1LnonJyc8fPgQOTk5SExMxIYNG7jLO8DH0QEPDw8kJibiw4cPuHDhAkxNTaX6kJeXx/r165GSkoKsrCycOHHii+5K+9FYWVnBxMQEy5Ytg4eHB5YvX461a9ciPj4eMTEx8PHxwapVq7j2ioqKGDBgABYtWoTY2Fhu9A4AWrRogaFDh2LEiBE4fPgwEhIScO3aNaxcuRKnTp0qNYaEhATMmzcP4eHhePLkCQIDAxEfHw8jI6NSt8nNzYWrqyvu3r2L06dPw93dHZMmTQK/hF/ar42LEEK+J9oGKnBa1An16/OQK6yPMFkbXBn7J/LfVv0t+EO6/glhIcN9OYaAyxuqfH9VrdYVSKRmzJgxA9u2bYOdnR22b98OX19ftGzZEpaWlvD19UWTJk2k2g8dOhQ3b95E165di02k9vHxwYgRIzBz5kwYGBigf//+iIiIKLNIVVBQwL179+Do6IgWLVpg7NixmDRpEsaNG1fqNj179kTz5s3RrVs3ODk5oV+/fvDw8Ci1/dfERQgh3xtxAxF+du+KRnpyKJSRQ3Q9W5yduAm5//+NE1Wlk0kb/PRBAwCw+55vle6rOvBYdU51r0PS09MhFouRlpZWp+9oI4QQUjsVFjJc8o1CzNU0AIDG+1j0WmgLJaOqe2xJ4PXzmHt7CvJ5PGwymYsu7YZV2b6+VkXfv2kEiRBCCKmD+Hweuo1uC6sBmuCxfCQrG+HQiqt4fTm6yvZp07Y72mR/nPay48a6KttPdaACiRBCCKnDTHoZof8EI8gVZiFDpIkjO54g4dil8jf8CjweD31NZ4LHGK7JZSM6tvbO4aQCiRBCCKnjdFo3ws+LOqFe4VvkySrj9MksRG8NqJJ9DewyCK2zPz7aZtvl5VWyj+pABRIhhBDyA6jfSBVOXn2gyU8E4wtwOUoOl/44WO6XgX8pHo8Hm6YfHyYcJkjFi6Tbldp/daECiRBCCPlBCJVFGLjWGc2VEwEAN1+oIWCWHwpy8yt1P0OsXdH8Ax/5PB62B9XOh0ZSgUQIIYT8QPiyAtj+NRTmjVMBVoiELC0cmbIPOanvK20fsjJ8dFDuCQA4nxeHnA/pldZ3daECiRBCCPkBdfrdEd06MPAL8/AKWjg4+yTSHydWWv+je7tDPb8Qb2X42B24pNL6rS5UIBFCCCE/qJajbWA/UBWy+ZlIE2jg3z/C8Op6XKX03aC+GD8xAwDAyVdBYJU816mqUYFECCGE/MCa9P4JAycYQJSXimxZFRzbfB8Jp65WSt9DurlDrpDhgRxD8LWdldJndaECiXwTHo+Ho0ePltnGxcUFAwcOrHCfjx8/Bo/HQ3R0NAAgJCQEPB4P7969++o4K8P3Esf3rCL/Hmq7xo0bY82aNdzPX5qzh4cHWrduXelxEfItNNq2wM+LO0Oc/wp5AgUEHE1FzI6gb+63TQsztM2pDwDYd2vrN/dXnahAIpwvLWQAIDExEb169QJQvLD5ZO3atfD19a2cIL9ScnIyxo0bB11dXQiFQkgkEtjZ2SE8PLxG4yrqa87Bt6qJoiYsLAwyMjKwt7cvtu7TvyOBQIAXRb47KjExEQKBADweD48fP+aWHzp0CB06dIBYLIaysjJMTEwwc+bMCsUyduxYyMjIYN++fV+Vy+e/A9XpRyhGSfVS1pPg57/7QoKXKOTL4mIED2HLD31zv3aG4wEAV2XfI+Fp5Df3V12oQCLfRCKRQCgUltlGLBajfv361RNQKRwdHXHz5k3s3LkT8fHxOH78OKysrPC2Gr7huiYUFBRU+rNNKtOOHTswefJkXLp0CU+fPi2xjZaWFnbt2iW1bOfOndDW1pZadvbsWQwZMgSDBw/G1atXERkZiaVLlyI3N7fcOLKysrB//37Mnj0b3t7eX5VLRX4HCKkthPWVMXD9EDRVSAR4fNx4ooIzs/egIO/rHwMwqNtQGH6QQQGPh+3BHpUXbBWjAqkaMMZQmJVVI69v+S5iKysrTJkyBXPmzIGqqiokEgk8PDyk2nz+KbZJkyYAAHNzc/B4PFhZWQEoPioSEBCALl26oH79+lBTU0Pfvn3x8OHDCsWUmZmJevXq4d9//5VafuLECSgqKuL9++K3qb579w6XLl3CypUr0b17d+jp6aF9+/aYN28e+vTpA6Dk0a93796Bx+MhJCREqr/Lly/DzMwM8vLy6NChA2JiYrh1T548Qb9+/aCiogJFRUWYmJjg1KmPj9ovKCiAq6srmjRpApFIBAMDA6xdu5bb1sPDAzt37sSxY8fA4/G4fZd0aS86OlpqFMXX1xf169eHv78/jI2NIRQK8eTJE1y7dg02NjZQV1eHWCyGpaUloqKiuH4aN24MABg0aBB4PB7386dj2rZtW8jLy6Np06ZYsmQJ8vP/95/k/fv30a1bN8jLy8PY2BhBQRUbjs/MzMSBAwcwYcIE9O3bt9TRxZEjR8LHx0dqma+vL0aOHCm1zN/fH126dMHs2bNhYGCAFi1aYODAgVi/fn25sRw8eBDGxsaYN28eLl++LDUqBXwceezXrx9EIhGaNGmCPXv2FOuj6EjO3Llz0aJFCygoKKBp06ZYtGgR8vLyim23ZcsWNGrUCAoKCvj555+lzu+3nDdCvpWMrAB2f/+C1jopAIAH7zVxbMo+5KZnflV/fD4PnVU/jrJeKHiErMza8cFUUNMB/AhYdjbi2rStkX0bREWCp6Dw1dvv3LkTM2bMQEREBMLDw+Hi4oLOnTvDxsamWNurV6+iffv2OHv2LExMTCAnJ1din5mZmZgxYwZatmyJzMxMLF68GIMGDUJ0dDT4/LJrdkVFRQwZMgQ+Pj4YPHgwt/zTz8rKysW2UVJSgpKSEo4ePYqOHTt+86f92bNnY+3atZBIJJg/fz769++P+Ph4yMrK4rfffkNubi4uXrwIRUVF3L17F0pKSgCAwsJC6Ojo4MCBA1BXV0dYWBjGjh0LTU1NODk5YdasWYiNjUV6ejpXGKiqqiIsLKxCcWVlZWH58uXYvn071NTUoKGhgYSEBIwcORLr1n380kgvLy/07t0b9+/fh7KyMq5duwYNDQ34+PjA3t4eMjIyAIAzZ85g2LBhWLduHbp27YqHDx9i7NixAAB3d3cUFhbCwcEB6urquHLlCtLT0zFt2rQKxbl//34YGBjAwMAAw4YNw+TJk7Fo0SLweDypdv3798fmzZtx6dIldOnSBZcuXcLbt2/Rr18//PHHH1w7iUQCPz8/3L59G6amphWK4RNvb28MGzYMYrEYvXv3ho+PD5Ys+d/tyC4uLnj27BnOnz8POTk5TJkyBcnJyWX2qaysDF9fX2hpaSEmJgZubm5QVlbGnDlzuDYPHjzAgQMHcOLECaSnp8PV1RW//fYbV4C9f//+q84bIZWFz+ej88KfobQ1AJev85HI18LBGcfR38MayjoNvri/0b0X4cTe40iW5cMnYDF+c9xQBVFXMka+SlpaGgPA0tLSym1bkJnJ7hoY1sirIDOzwjmNHDmSDRgwgPvZ0tKSdenSRarNTz/9xObOncv9DIAdOXKEMcZYQkICA8Bu3LhRZr9FJScnMwAsJiamxH6Cg4MZAJaamsoYYywiIoLJyMiwFy9eMMYYe/36NZOVlWUhISGl7uPff/9lKioqTF5ennXq1InNmzeP3bx5k1tfUuypqakMAAsODpaKY9++fVyblJQUJhKJ2P79+xljjLVs2ZJ5eHiUGkdREydOZI6OjtzPJR2rovkzxtiNGzcYAJaQkMAYY8zHx4cBYNHR0WXuLz8/nykrK7MTJ05wyz4/h5907dqVLVu2TGrZ7t27maamJmOMsTNnzjAZGRn27Nkzbv3p06dL7KuoTp06sTVr1jDGGMvLy2Pq6uosKCiIW//5uZg2bRobNWoUY4yxUaNGsenTpxfLPSMjg/Xu3ZsBYHp6eszZ2Zl5e3uzDx8+lBlHfHw8k5WVZa9fv2aMMXbkyBHWqFEjVlBQwBhjLC4ujgFgV65c4baJjY1lANjq1avLPH6f8/T0ZG3btuV+dnd3L/HY8fl8lpiYWGIfFT1vhFSFh8fC2GZXf7Zh3Dm2Y/RB9jr6wVf1M9/biZn6mrJ+W01Z4f//ntWEir5/0whSNeCJRDCIqpmJaTyR6Ju2b9WqldTPmpqa5X6CLs/Dhw+xaNEiXLlyBW/evOHmyjx9+rRCIwDt27eHiYkJdu3ahd9//x27d++Grq4uunXrVuo2jo6O6NOnD0JDQxEeHo6AgAB4enpi+/btcHFx+aL4LSwsuL+rqqrCwMAAsbGxAIApU6ZgwoQJCAwMhLW1NRwdHaWO4ebNm7F9+3Y8efIE2dnZyM3NrbQ7muTk5Iqdr+TkZCxevBjnz5/Hq1evUFBQgKysrFLn/XwSGRmJa9euYenSpdyygoICfPjwAVlZWYiNjYWuri50dHS49Z8fl9LExcXh6tWrOHz4MABAIBDA2dkZO3bsgLW1dbH2rq6usLCwwLJly3Dw4EGEh4dLXeYDPo4qnjx5Eg8fPkRwcDCuXLmCmTNnYu3atQgPD4dCKSOo3t7esLOzg7q6OgCgd+/ecHV1xdmzZ2Fra4vY2FgIBAK0a9eO28bQ0LDc+XT//vsv1qxZgwcPHiAjIwP5+fmoV6+eVJuSjl1hYSHi4uIgkUi++rwRUhWa9rfAAMk9nNxyF1myqji8/g7snN9Bz+bLrowM6/kfBJ53RIIcD6cubUKfbr9VUcSVg+YgVQMejwe+gkKNvIpetvhSsrKyxXL51sm//fr1Q0pKCrZt24aIiAhEREQAQIUm1X4yZswY7jKUj48PRo0aVW6u8vLysLGxweLFixEWFgYXFxe4u7sDAHdpj302Z6ukeSOl+bTvMWPG4NGjRxg+fDhiYmLQrl07bi7MgQMHMH36dIwePRqBgYGIjo7GqFGjys27orGJRKJix8DFxQWRkZFYs2YNwsLCEB0dDTU1tXL3WVhYiCVLliA6Opp7xcTE4P79+5CXly9xbltF/q15e3sjPz8f2traEAgEEAgE2LRpEw4fPozU1NRi7U1NTWFoaIhffvkFRkZGZRbQzZo1w5gxY7B9+3ZERUXh7t272L9/f4ltCwoKsGvXLpw8eZKLQ0FBAW/fvuUma3/K8Ut+h65cuYIhQ4agV69e8Pf3x40bN7BgwYJyj/enfXz682vPGyFVRdLeEIPnd0C9vGTkCZRw6sBr3Nl9/ov6MNIzQLvcjx9IDsV9/89EogKJVJpPc44KCgpKbZOSkoLY2FgsXLgQPXv2hJGRUYlvjOUZNmwYnj59inXr1uHOnTvFJu5WhLGxMTIzP046bNDg4zX1xMT/PWa/6OMKPrly5Qr399TUVMTHx8PQ0JBb1qhRI4wfPx6HDx/GzJkzsW3bNgBAaGgoOnXqhIkTJ8Lc3Bz6+vrFJqfLyckVO35fEltRoaGhmDJlCnr37g0TExMIhUK8efNGqo2srGyxfbZp0wZxcXHQ19cv9uLz+TA2NsbTp0/x8uVLbpvyHpmQn5+PXbt2wcvLS6rwunnzJvT09EqcAA0Ao0ePRkhICEaPHl2hnIGPk5gVFBS481vUqVOn8P79e9y4cUMqloMHD+Lo0aNISUmBkZER8vPzcf36dW67uLi4Mp+DdfnyZejp6WHBggVo164dmjdvjidPnhRrV9Kx4/P5aNGiBYCvP2+EVCVxM204/dUbGuwlCmXkEHKpEFf+OvJFffRrOQUAECmbhdgHl6oizEpDBRKpNBoaGhCJRAgICMCrV6+QlpZWrI2KigrU1NSwdetWPHjwAOfPn8eMGTO+eF8qKipwcHDA7NmzYWtrK3W5oqiUlBT06NED//zzD27duoWEhAQcPHgQnp6eGDBgAICPoy8dO3bEihUrcPfuXVy8eBELFy4ssb///Oc/OHfuHG7fvg0XFxeoq6tzd+lNmzYNZ86cQUJCAqKionD+/HkYGRkBAPT19XH9+nWcOXMG8fHxWLRoEa5duybVd+PGjXHr1i3ExcXhzZs3yMvLg76+Pho1agQPDw/Ex8fj5MmT8PLyqtBx0tfXx+7duxEbG4uIiAgMHToUoiKXXRs3boxz584hKSmJK1YXL16MXbt2wcPDA3fu3EFsbCz279/PHRNra2sYGBhgxIgRuHnzJkJDQ7FgwYIyY/H390dqaipcXV1hamoq9Ro8eHCpt9m7ubnh9evXGDNmTInrPTw8MGfOHISEhCAhIQE3btzA6NGjkZeXV+LNBMDHkaw+ffrAzMxMKg5HR0c0aNAA//zzDwwMDGBvbw83NzdEREQgMjISY8aMKXb8ih7vp0+fYt++fXj48CHWrVuHI0eKv4HIy8tj5MiR3LGbMmUKnJycIJFIuH6+5rwRUtWEqvXgsM4ZjeVfAjw+Ih+KEfS7HwrzK1as97IYBJMPsijk8eBzcWn5G9QgKpBIpREIBFi3bh22bNkCLS0trvj4HJ/Px759+xAZGQlTU1NMnz4df/3111ftz9XVFbm5ueWOLCgpKaFDhw5YvXo1unXrBlNTUyxatAhubm7YsOF/d1Ls2LEDeXl5aNeuHaZOnYo///yzxP5WrFiBqVOnom3btkhMTMTx48elRs9+++03GBkZwd7eHgYGBti4cSMAYPz48XBwcICzszM6dOiAlJQUTJw4UapvNzc3GBgYoF27dmjQoAEuX74MWVlZ7N27F/fu3YOZmRlWrlxZamxF7dixA6mpqTA3N8fw4cMxZcoUaGhoSLXx8vJCUFAQGjVqBHNzcwCAnZ0d/P39ERQUhJ9++gkdO3bEqlWroKenB+DjeTxy5AhycnLQvn17jBkzRmq+Ukm8vb1hbW0NsVhcbJ2joyOio6OlbmX/RCAQQF1dHQJByVMmLS0t8ejRI4wYMQKGhobo1asXkpKSEBgYCAMDg2LtX716hZMnT8LR0bHYOh6PBwcHB65Y8/HxQaNGjWBpaQkHBweMHTu22PH73IABAzB9+nRMmjQJrVu3RlhYGBYtWlSsnb6+PhwcHNC7d2/Y2trC1NSU+3cCfP15I6Q6yAhl0WvVr2ip+XFUM/6dBMen+iE3I7vcbXk8Hiw1+gMAQvEUaelJVRrrt+CxkiYTkHKlp6dDLBYjLS2t2ARMUj327NmDqVOn4uXLl6U+UoAQQkjVubHpFMJvCMD4AqgWJKH/ElsoaqmXuU12bg4G7mqLl7I8jJLviBnO26op2o8q+v5NI0ik1snKysKdO3ewfPlyjBs3joojQgipIeYTesO2lyJk8j/grYwEBxcFI+X24zK3EckJYSH7cdTz7PtwsO/0qf9UIJFax9PTE61bt0bDhg0xb968mg6HEEJ+aPqDOqP/KD0I89KQKauGw6tv4tn56DK3GWX7JxQKC/FMlodD51dXT6BfiC6xfSW6xEYIIYT8z7v7z3F8xWW8l20AmYIcWPUQwfAXq1LbT97aEyHCZJjnCLFr7PVS21U2usRGCCGEkGpTv7kOfl5pD/XCRBTICHE+JA/XVh8rtb1ju9ngMYYbwhzcuHuuGiOtGCqQCCGEEFIpROpiOK4bDF25l2A8GVyNU8a5BXtLfMCwVRt7tMqRBwDsDl9R3aGWiwokQgghhFQagbwQfdb8CuMGrwEA91Ia4sTUPcjP+lCsbU/tj186fpn/Em9Sn1drnOWhAokQQgghlYrP56P7H87oaJwFXmEBnudp49+ph5GVLP1Q0+H2s9EolyGLz8f2U2U/bLa6UYFECCGEkCrRdkpf9LSWh0zBB6TISHBwXhBS7/3vS5cFAhl0EbUHAJzPjkRBQcW/A7OqUYFECCGEkCpj4NQV/YbrQJj3Hhmy6jj0VxRehMZw60f3WgqlgkIkyvLgd2ZlDUYqjQok8kV4PB6OHj1aqX16eHigdevWldrnt6iKHH9k58+fh6GhYYmTNGtaTk4OdHV1ERkZWdOhEFKnaXdrBcdZraGU9wY5svVwYtczxB8MBQBI1DRhUfDx+zRPPz9ck2FKoQKJcJKTkzFu3Djo6upCKBRCIpHAzs5O6lvaExMT0atXrxqM8vvw7NkzuLq6QktLC3JyctDT08PUqVORkpIi1c7Kygq+vr5Sy27cuAFnZ2doampCKBRCT08Pffv2xYkTJ1AXH0s2Z84cLFiwAHz+x/9uDh8+DBsbGzRo0AD16tWDhYUFzpw5U2y7Q4cOwdjYGEKhEMbGxsW+9PXixYvo168ftLS0Si1qPTw8YGhoCEVFRaioqMDa2hoRERHceqFQiFmzZmHu3LmVmzQhpBgVIz38vMwaagWJKJCRx9mgD4hc7w8A+KXTfPAZQ4wwD2HR/jUc6UdUIBGOo6Mjbt68iZ07dyI+Ph7Hjx+HlZUV3r59y7WRSCQQCoU1GGXNe/ToEdq1a4f4+Hjs3bsXDx48wObNm3Hu3DlYWFhIHa+ijh07ho4dOyIjIwM7d+7E3bt3cfDgQQwcOBALFy5EWlraV8eVm5v71dtWlbCwMNy/fx8///wzt+zixYuwsbHBqVOnEBkZie7du6Nfv364ceMG1yY8PBzOzs4YPnw4bt68ieHDh8PJyUmquMnMzISZmZnUFw4X1aJFC2zYsAExMTG4dOkSGjduDFtbW7x+/ZprM3ToUISGhiI2NraSsyeEFKXQUBWOaxyhI3gJxpfBlTsKCFm8H22NusI8RwEAsPeaVw1H+f8Y+SppaWkMAEtLSyu3bWFhIcv9kF8jr8LCwgrlk5qaygCwkJCQMtsBYEeOHGGMMZaQkMAAsEOHDjErKysmEolYq1atWFhYmNQ2W7duZTo6OkwkErGBAwcyLy8vJhaLufXu7u7MzMyM7dq1i+np6bF69eoxZ2dnlp6eXmocb968YUOGDGHa2tpMJBIxU1NT5ufnJ9XG0tKSTZ48mc2ePZupqKiwhg0bMnd3d6k28fHxrGvXrkwoFDIjIyMWGBgolWNJ7O3tmY6ODsvKypJanpiYyBQUFNj48eOlYvDx8WGMMZaRkcHU1NTYoEGDSu378/MVEhLCfvrpJyYnJ8ckEgmbO3cuy8vLk+r7t99+Y9OnT2dqamqsW7duLDg4mAFgAQEBrHXr1kxeXp51796dvXr1ip06dYoZGhoyZWVlNmTIEJaZmcn1dfr0ada5c2cmFouZqqoq69OnD3vw4AG3vqLnuqjJkyezwYMHl9mGMcaMjY3ZkiVLuJ+dnJyYvb29VBs7Ozs2ZMiQErcv75x98un39uzZs1LLrays2KJFi8rdnhBSOQoKCtjZeX5sw7hzbMO4c+z45N3M76QXM/U1ZW13mLBnrx5W2b4r+v4tqKnC7EeSn1uIrVMv1Mi+x661hKxQptx2SkpKUFJSwtGjR9GxY8cvGiVasGAB/v77bzRv3hwLFizAL7/8ggcPHkAgEODy5csYP348Vq5cif79++Ps2bNYtGhRsT4ePnyIo0ePwt/fH6mpqXBycsKKFSuwdOnSEvf54cMHtG3bFnPnzkW9evVw8uRJDB8+HE2bNkWHDh24djt37sSMGTMQERGB8PBwuLi4oHPnzrCxsUFhYSEcHBygrq6OK1euID09HdOmTSsz17dv3+LMmTNYunQpRCKR1DqJRIKhQ4di//792LhxI3g8ntT6wMBApKSkYM6cOaX2/2mbFy9eoHfv3nBxccGuXbtw7949uLm5QV5eHh4eHlL5TZgwAZcvXwZjDElJSQA+XlrasGEDFBQU4OTkBCcnJwiFQvj5+SEjIwODBg3C+vXruUtLmZmZmDFjBlq2bInMzEwsXrwYgwYNQnR0NHdpDCj7XJfk4sWL+OWXX8o8poWFhXj//j1UVVW5ZeHh4Zg+fbpUOzs7O6xZs6bMvsqSm5uLrVu3QiwWw8zMTGpd+/btERoa+tV9E0K+DJ/PR89lv6De6mO4ek8RT3O10OAoYGwixN36OdgRsACLR+yt2RhrdO9FlDengDEGDw8PaGlpQSQSwcrKCnfu3JFqk5OTg8mTJ0NdXR2Kioro378/nj+XfvhUamoqhg8fDrFYDLFYjOHDh+Pdu3dVnN33TSAQwNfXFzt37kT9+vXRuXNnzJ8/H7du3Sp321mzZqFPnz5o0aIFlixZgidPnuDBgwcAgPXr16NXr16YNWsWWrRogYkTJ5Y4h6mwsBC+vr4wNTVF165dMXz4cJw7V/qj57W1tTFr1iy0bt0aTZs2xeTJk2FnZ4eDBw9KtWvVqhXc3d3RvHlzjBgxAu3ateP6PXv2LGJjY7F79260bt0a3bp1w7Jly8rM9f79+2CMwcjIqMT1RkZGSE1N5S7hhISEwMXFBQAQHx8PADAwMODaX7t2jStOlZSU4O//8dr7xo0b0ahRI2zYsAGGhoYYOHAglixZAi8vL6nJzvr6+vD09ISBgQEMDQ255X/++Sc6d+4Mc3NzuLq64sKFC9i0aRPMzc3RtWtXDB48GMHBwVx7R0dHODg4oHnz5mjdujW8vb0RExODu3fvSuVX1rkuyePHj6GlpVXmMfXy8kJmZiacnJy4ZUlJSWjYsKFUu4YNG3IF4Jfw9/eHkpIS5OXlsXr1agQFBUFdXV2qjba2Nh4/fvzFfRNCvs1P0wegh6UM+AW5eM3Xgt2NadB8q4wLebeQk5tdo7F9VyNIn+YUjBo1Co6OjsXWe3p6YtWqVfD19UWLFi3w559/wsbGBnFxcVBWVgYATJs2DSdOnMC+ffugpqaGmTNnom/fvoiMjISMzMeRlF9//RXPnz9HQEAAAGDs2LEYPnw4Tpw4USV5CeT4GLvWskr6rsi+K8rR0RF9+vRBaGgowsPDERAQAE9PT2zfvp17ky9Jq1atuL9ramoC+Djh29DQEHFxcRg0aJBU+/bt23OFwCeNGzfmzuGnfpKTk0vdZ0FBAVasWIH9+/fjxYsXyMnJQU5ODhQVFUuNrWi/sbGx0NXVhY6ODrfewsKi1H1WBPv/SdZFR49K06pVK0RHRwMAmjdvjvz8fC42CwsLqX46d+6MjIwMPH/+HLq6ugCAdu3aldrvJw0bNoSCggKaNm0qtezq1avczw8fPsSiRYtw5coVvHnzhivCnj59ClNT0xL7LXquS5KdnQ15eflS89+7dy88PDxw7NgxaGhoSK0regwZYxU+rp/r3r07oqOj8ebNG2zbto2by/T5/kQiEbKysr64b0LItzP6tTuUGt5AgN9TZMtrYXDMDAQ124xdp5fCbcCfNRbXdzWC1KtXL/z5559wcHAoto4xhjVr1mDBggVwcHCAqakpdu7ciaysLPj5+QEA0tLS4O3tDS8vL1hbW8Pc3Bz//PMPYmJicPbsWQAf33gCAgKwfft2WFhYwMLCAtu2bYO/vz/i4uKqJC8ejwdZoUyNvL70DUVeXh42NjZYvHgxwsLC4OLiAnd39zK3kZWVlcoVAPcGW9KbGivhTq3P+/jUT1m3hXt5eWH16tWYM2cOzp8/j+joaNjZ2RWbqFxWvyXFUd7x0tfXB4/HKzay8sm9e/egoqJSbIQC+FgAAZD6dyYUCqGvrw99fX2ptmUdt8+XFy0IPyl6Tso7vv369UNKSgq2bduGiIgIbjJ0Wcez6Lkuibq6OlJTU0tct3//fri6uuLAgQOwtraWWieRSIqNFiUnJxcbVaoIRUVF6Ovro2PHjvD29oZAIIC3t7dUm7dv36JBgwZf3DchpHI06mmOQdNaQTEvBXlyquiZMA1PL5f8/2x1+a4KpLIkJCQgKSkJtra23DKhUAhLS0uEhYUBACIjI5GXlyfVRktLC6amplyb8PBwiMViqXkqHTt2hFgs5tqUJCcnB+np6VKvH4GxsTEyMzO/entDQ0OpkQoAuH79+reGhdDQUAwYMADDhg2DmZkZmjZtivv3739RH8bGxnj69ClevnzJLfv8kQYlUVNTg42NDTZu3IjsbOnh36SkJOzZswfOzs4lFlq2trZQVVXFypXlPwjN2NgYYWFhUkVcWFgYlJWVoa2tXe72XyIlJQWxsbFYuHAhevbsyV0mrAzm5uYlFpN79+6Fi4sL/Pz80KdPn2LrLSwsEBQUJLUsMDAQnTp1+uaYGGPIycmRWnb79m2Ym5t/c9+EkK+n3rIJfv6jO8S5L1AgUIDmu/Hw/3N9jcVTawqkT58my5qXkJSUBDk5OaioqJTZpuhQPgBoaGiUOb9h+fLl3JwlsViMRo0afVM+35uUlBT06NED//zzD27duoWEhAQcPHgQnp6eGDBgwFf3O3nyZJw6dQqrVq3C/fv3sWXLFpw+ffqrLpV8Tl9fH0FBQQgLC0NsbCzGjRv3xfNTrK2tYWBggBEjRuDmzZsIDQ3FggXlfxfQhg0bkJOTAzs7O1y8eBHPnj1DQEAAbGxsoK2tXerEciUlJWzfvh0nT55Enz59cObMGTx69Ai3bt2Cp6cnAHCXgSdOnIhnz55h8uTJuHfvHo4dOwZ3d3fMmDFDatJ0ZVBRUYGamhq2bt2KBw8e4Pz585gxY0al9G1nZ4dLly5JLdu7dy9GjBgBLy8vdOzYEUlJSUhKSpJ6xMHUqVMRGBiIlStX4t69e1i5ciXOnj0rNYk+IyMD0dHR3CXKhIQEREdH4+nTj19jkJmZifnz5+PKlSt48uQJoqKiMGbMGDx//lzqsQPAx4L78w9WhJCaoailDqd1gyGffQP8wjykKr2qsVhqTYH0ydfMSyjapqT25fUzb948pKWlca9nz559YeTfNyUlJXTo0AGrV69Gt27dYGpqikWLFsHNza3M58yUp3Pnzti8eTNWrVoFMzMzBAQEYPr06WXOS6mIRYsWoU2bNrCzs4OVlRUkEgkGDhz4RX3w+XwcOXIEOTk5aN++PcaMGVNqcfO55s2b4/r162jWrBmcnZ3RrFkzjB07Ft27d0d4eLjU3VhFDRo0CGFhYVBQUMCIESNgYGCAHj164Pz589i3bx/69u0L4OOk4VOnTuHq1aswMzPD+PHj4erqioULF35RjhXB5/Oxb98+REZGwtTUFNOnT8dff/1VKX0PGzYMd+/elbqsuGXLFuTn5+O3336DpqYm95o6dSrXplOnTti3bx98fHzQqlUr+Pr6Yv/+/VIjv9evX4e5uTk38jNjxgyYm5tj8eLFAD4Wm/fu3YOjoyNatGiBvn374vXr1wgNDYWJiQnXT3h4ONLS0jB48OBKyZkQ8m3klETo7N4Ddi4SDJ9Wc3OQeKykiRjfAR6PhyNHjnBveo8ePUKzZs0QFRUlNRQ+YMAA1K9fHzt37sT58+fRs2dPvH37VmoUyczMjLsLaMeOHZgxY0axu9bq16+P1atXY9SoURWKLz09HWKxGGlpaahXr9435/sjcXNzw7179+i26h/EnDlzkJaWhi1bttR0KCX6+eefYW5ujvnz59d0KISQalDR9+9aM4LUpEkTSCQSqXkJubm5uHDhAjcvoW3btpCVlZVqk5iYiNu3b3NtLCwskJaWJjUvJiIiAmlpaZUyv4EU9/fff+PmzZt48OAB1q9fj507d2LkyJE1HRapJgsWLICenh4KCgpqOpRicnJyYGZmVuyZS4QQ8l2NIGVkZHDPVDE3N8eqVavQvXt3qKqqQldXFytXrsTy5cvh4+OD5s2bY9myZQgJCZG6zX/ChAnw9/eHr68vVFVVMWvWLKSkpEjd5t+rVy+8fPmS+0Q7duxY6OnpfdFt/jSCVHFOTk4ICQnB+/fvuWcWjR8/vqbDIoQQ8gOq6Pv3d1UghYSEoHv37sWWjxw5Er6+vmCMYcmSJdiyZQtSU1PRoUMH/Pe//5V6TsuHDx8we/Zs+Pn5ITs7Gz179uQeuvfJ27dvMWXKFBw/fhwA0L9/f2zYsAH169evcKxUIBFCCCG1T60skGoTKpAIIYSQ2qfOzUEihBBCCKkuVCARQgghhBRBBRIhhBBCSBFUIBFCCCGEFEEFEiGEEEJIEVQgEUIIIYQUQQUSIYQQQkgRVCARQgghhBRBBRIhhBBCSBGCmg6gtvr0APL09PQajoQQQgghFfXpfbu8LxKhAukrvX//HgCkvuONEEIIIbXD+/fvIRaLS11P38X2lQoLC/Hy5UsoKyuDx+PVdDhS0tPT0ahRIzx79uyH+p44ypvy/hFQ3pT3j6Aq82aM4f3799DS0gKfX/pMIxpB+kp8Ph86Ojo1HUaZ6tWr90P9Qn1Cef9YKO8fC+X9Y6mqvMsaOfqEJmkTQgghhBRBBRIhhBBCSBFUINVBQqEQ7u7uEAqFNR1KtaK8Ke8fAeVNef8Ivoe8aZI2IYQQQkgRNIJECCGEEFIEFUiEEEIIIUVQgUQIIYQQUgQVSIQQQgghRVCBVAssX74cP/30E5SVlaGhoYGBAwciLi5Oqo2HhwcMDQ2hqKgIFRUVWFtbIyIiQqpNTk4OJk+eDHV1dSgqKqJ///54/vx5dabyxSqS++fGjRsHHo+HNWvWSC2vbblXJG8XFxfweDypV8eOHaXa1MW8ASA2Nhb9+/eHWCyGsrIyOnbsiKdPn3Lr62LeRc/1p9dff/3FtamLeWdkZGDSpEnQ0dGBSCSCkZERNm3aJNWmLub96tUruLi4QEtLCwoKCrC3t8f9+/el2tS2vDdt2oRWrVpxD3+0sLDA6dOnufWMMXh4eEBLSwsikQhWVla4c+eOVB/VmjMj3z07Ozvm4+PDbt++zaKjo1mfPn2Yrq4uy8jI4Nrs2bOHBQUFsYcPH7Lbt28zV1dXVq9ePZacnMy1GT9+PNPW1mZBQUEsKiqKde/enZmZmbH8/PyaSKtCKpL7J0eOHGFmZmZMS0uLrV69Wmpdbcu9InmPHDmS2dvbs8TERO6VkpIi1U9dzPvBgwdMVVWVzZ49m0VFRbGHDx8yf39/9urVK65NXcz78/OcmJjIduzYwXg8Hnv48CHXpi7mPWbMGNasWTMWHBzMEhIS2JYtW5iMjAw7evQo16au5V1YWMg6duzIunbtyq5evcru3bvHxo4dW+zY1La8jx8/zk6ePMni4uJYXFwcmz9/PpOVlWW3b99mjDG2YsUKpqyszA4dOsRiYmKYs7Mz09TUZOnp6Vwf1ZkzFUi1UHJyMgPALly4UGqbtLQ0BoCdPXuWMcbYu3fvmKysLNu3bx/X5sWLF4zP57OAgIAqj7mylJb78+fPmba2Nrt9+zbT09OTKpDqQu4l5T1y5Eg2YMCAUrepq3k7OzuzYcOGlbpNXc27qAEDBrAePXpwP9fVvE1MTNh//vMfqXZt2rRhCxcuZIzVzbzj4uIYAK5wYIyx/Px8pqqqyrZt28YYqxt5M8aYiooK2759OyssLGQSiYStWLGCW/fhwwcmFovZ5s2bGWPVnzNdYquF0tLSAACqqqolrs/NzcXWrVshFothZmYGAIiMjEReXh5sbW25dlpaWjA1NUVYWFjVB11JSsq9sLAQw4cPx+zZs2FiYlJsm7qQe2nnPCQkBBoaGmjRogXc3NyQnJzMrauLeRcWFuLkyZNo0aIF7OzsoKGhgQ4dOuDo0aPcNnUx76JevXqFkydPwtXVlVtWV/Pu0qULjh8/jhcvXoAxhuDgYMTHx8POzg5A3cw7JycHACAvL8+1kZGRgZycHC5dugSg9uddUFCAffv2ITMzExYWFkhISEBSUpJUPkKhEJaWllw+1Z0zFUi1DGMMM2bMQJcuXWBqaiq1zt/fH0pKSpCXl8fq1asRFBQEdXV1AEBSUhLk5OSgoqIitU3Dhg2RlJRUbfF/i9JyX7lyJQQCAaZMmVLidrU999Ly7tWrF/bs2YPz58/Dy8sL165dQ48ePbj/XOti3snJycjIyMCKFStgb2+PwMBADBo0CA4ODrhw4QKAupl3UTt37oSysjIcHBy4ZXU173Xr1sHY2Bg6OjqQk5ODvb09Nm7ciC5dugCom3kbGhpCT08P8+bNQ2pqKnJzc7FixQokJSUhMTERQO3NOyYmBkpKShAKhRg/fjyOHDkCY2NjLuaGDRtKtf88n+rOWVDpPZIqNWnSJNy6dYv7FPG57t27Izo6Gm/evMG2bdvg5OSEiIgIaGholNofYww8Hq8qQ640JeUeGRmJtWvXIioq6ovzqC25l3bOnZ2dub+bmpqiXbt20NPTw8mTJ6XeOIuqzXkXFhYCAAYMGIDp06cDAFq3bo2wsDBs3rwZlpaWpfZXm/MuaseOHRg6dKjUCENpanve69atw5UrV3D8+HHo6enh4sWLmDhxIjQ1NWFtbV1qf7U5b1lZWRw6dAiurq5QVVWFjIwMrK2t0atXr3L7+97zNjAwQHR0NN69e4dDhw5h5MiR3IcbAMVir0g+VZUzjSDVIpMnT8bx48cRHBwMHR2dYusVFRWhr6+Pjh07wtvbGwKBAN7e3gAAiUSC3NxcpKamSm2TnJxcrGL/HpWWe2hoKJKTk6GrqwuBQACBQIAnT55g5syZaNy4MYDanXt55/xzmpqa0NPT4+50qYt5q6urQyAQwNjYWKq9kZERdxdbXcz7c6GhoYiLi8OYMWOkltfFvLOzszF//nysWrUK/fr1Q6tWrTBp0iQ4Ozvj77//BlA38waAtm3bcoVEYmIiAgICkJKSgiZNmgCovXnLyclBX18f7dq1w/Lly2FmZoa1a9dCIpEAQLGRoM/zqe6cqUCqBRhjmDRpEg4fPozz589zvyAV2e7T5Za2bdtCVlYWQUFB3PrExETcvn0bnTp1qpK4K0N5uQ8fPhy3bt1CdHQ099LS0sLs2bNx5swZALUz96855ykpKXj27Bk0NTUB1M285eTk8NNPPxW7JTo+Ph56enoA6mben/P29kbbtm25+YWf1MW88/LykJeXBz5f+q1KRkaGG02si3l/TiwWo0GDBrh//z6uX7+OAQMGAKideZfk0/tUkyZNIJFIpPLJzc3FhQsXuHyqPedKn/ZNKt2ECROYWCxmISEhUrf5ZmVlMcYYy8jIYPPmzWPh4eHs8ePHLDIykrm6ujKhUCh1F8T48eOZjo4OO3v2LIuKimI9evT4rm8JZaz83EtS9C42xmpf7uXl/f79ezZz5kwWFhbGEhISWHBwMLOwsGDa2trFbomtS3kzxtjhw4eZrKws27p1K7t//z5bv349k5GRYaGhoVybupg3Yx/vTlVQUGCbNm0qsZ+6mLelpSUzMTFhwcHB7NGjR8zHx4fJy8uzjRs3cm3qYt4HDhxgwcHB7OHDh+zo0aNMT0+POTg4SPVT2/KeN28eu3jxIktISGC3bt1i8+fPZ3w+nwUGBjLGPt7mLxaL2eHDh1lMTAz75ZdfSrzNv7pypgKpFgBQ4svHx4cxxlh2djYbNGgQ09LSYnJyckxTU5P179+fXb16Vaqf7OxsNmnSJKaqqspEIhHr27cve/r0aQ1kVHHl5V6Skgqk2pZ7eXlnZWUxW1tb1qBBAyYrK8t0dXXZyJEji+VU1/L+xNvbm+nr6zN5eXlmZmYm9Uwcxupu3lu2bGEikYi9e/euxH7qYt6JiYnMxcWFaWlpMXl5eWZgYMC8vLxYYWEh16Yu5r127Vqmo6PD/X4vXLiQ5eTkSPVT2/IePXo009PTY3JycqxBgwasZ8+eXHHE2MfnP7m7uzOJRMKEQiHr1q0bi4mJkeqjOnPmMcZY5Y9LEUIIIYTUXjQHiRBCCCGkCCqQCCGEEEKKoAKJEEIIIaQIKpAIIYQQQoqgAokQQgghpAgqkAghhBBCiqACiRBCCCGkCCqQCCGEEEKKoAKJEEIIIaQIKpAIIYQQQoqgAokQQj6TkpICDQ0NPH78+Iu2Gzx4MFatWlU1QRFCqh0VSISQOikgIAA8Hq/M1+nTp4ttt3z5cvTr1w+NGzfmlrm4uGDgwIFS7f7991/Iy8vD09MTALB48WIsXboU6enpVZkWIaSaUIFECKmTLC0tkZiYyL3U1NQwf/58qWU2NjZS22RnZ8Pb2xtjxowps+/t27dj6NCh2LBhA+bMmQMAaNWqFRo3bow9e/ZUWU6EkOpDBRIhpE4SiUSQSCSQSCQoKChASkoKunTpwi2TSCQQCARS25w+fRoCgQAWFhal9uvp6YlJkybBz8+vWCHVv39/7N27t0ryIYRULyqQCCF13o0bNwAAbdu2LbPdxYsX0a5du1LX//777/jjjz/g7+8PR0fHYuvbt2+Pq1evIicn59sCJoTUOEH5TQghpHaLioqCtrY2NDQ0ymz3+PFjaGlplbju9OnTOHbsGM6dO4cePXqU2EZbWxs5OTlISkqCnp7eN8dNCKk5NIJECKnzoqKi0KZNm3LbZWdnQ15evsR1n+YYLV68GO/fvy+xjUgkAgBkZWV9fbCEkO8CFUiEkDovKiqq3MtrAKCuro7U1NQS12lra+PChQtITEyEvb19iUXS27dvAQANGjT4toAJITWOCiRCSJ2WkpKCZ8+eVWgEydzcHHfv3i11va6uLi5cuIDk5GTY2toWu6X/9u3b0NHRgbq6+jfHTQipWVQgEULqtMjISACoUIFkZ2eHO3fulDqKBAA6OjoICQlBSkoKbG1tkZaWxq0LDQ2Fra3ttwdNCKlxVCARQuq0GzduQENDA9ra2uW2bdmyJdq1a4cDBw6U2e7T5bZ3797BxsYG7969w4cPH3DkyBG4ublVVuiEkBrEY4yxmg6CEEK+F6dOncKsWbNw+/Zt8PkV/wz53//+F8eOHUNgYGAVRkcIqS50mz8hhHymd+/euH//Pl68eIFGjRpVeDtZWVmsX7++CiMjhFQnGkEihBBCCCmC5iARQgghhBRBBRIhhBBCSBFUIBFCCCGEFEEFEiGEEEJIEVQgEUIIIYQUQQUSIYQQQkgRVCARQgghhBRBBRIhhBBCSBFUIBFCCCGEFPF/YXh75wGJ1csAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 158, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ax.plot(so13,1e-2*pa,label=\"Singh and O'Gorman (2013)\")\n", + "ax.legend(frameon=False)\n", + "fig" + ] + }, + { + "cell_type": "markdown", + "id": "a8c4f819-a875-407a-8982-181f3dc5a6bd", + "metadata": {}, + "source": [ + "## Romps (2014)\n", + "Another example of an entraining plume model is [Romps (2014)](https://journals-ametsoc-org.cuucar.idm.oclc.org/view/journals/clim/27/19/jcli-d-14-00255.1.xml). This model considers not only the drying effect of mixing surrounding air into the rising parcel (entrainment) but the moistening effect of mixing the parcel air out to the surroundings (detrainment). By doing so the model predicts not only the vertical temperature but also the humidity profile of the surrounding air. Recall that the Singh and O'Gorman (2013) model takes the humidity profile as an input.\n", + "\n", + "This model requires as inputs the vertical profile of entrainment and detrainment rates. Equal entrainment and detrainment rates implies a uniform vertical mass flux, which is assumed in Romps (2014) in the lower troposphere. For simplicity, we start by assuming vertically constant and equal entrainment and detrainment rates through the entire column:" + ] + }, + { + "cell_type": "code", + "execution_count": 159, + "id": "072d535d-7ccc-41e7-8d2f-0e1f4d7f128f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[300.0 293.39145714174094 286.8417989194509 276.07425668852136 267.1004381037151 255.98547082300283 241.8377557403658 223.5254415576419] kelvin\n" + ] + } + ], + "source": [ + "ep=0.5e-3 # fractional entrainment rate [m**-2]\n", + "de=ep # fractional detrainment rate [m**-2]\n", + "r14=parcel_profile(pa,t1,td,lapse_type='r14',params={'ep':ep,'de':de})\n", + "print(r14)" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "id": "fa4ec7ed-433e-4f6b-ac5c-21dc171891ac", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGyCAYAAAAf/ztNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAADgxElEQVR4nOzdd3gUZbvH8e9sSe89ISH0GkoA6QhIk450kSYdFUSlClIUaSogIAhIR4oiIE167733mk56L9vm/LGY89KkZbPZ8Hyua69z2J2dudc3sL/M3PPckizLMoIgCIIgCEI2hbkLEARBEARByGtEQBIEQRAEQXiCCEiCIAiCIAhPEAFJEARBEAThCSIgCYIgCIIgPEEEJEEQBEEQhCeIgCQIgiAIgvAElbkLsFQGg4GIiAgcHR2RJMnc5QiCIAiC8BJkWSYlJQU/Pz8UiuefJxIB6TVFREQQEBBg7jIEQRAEQXgNoaGh+Pv7P/d1EZBek6OjI2D8D+zk5GTmagRBEARBeBnJyckEBARkf48/jwhIr+nfy2pOTk4iIAmCIAiChXlRe4xo0hYEQRAEQXiCCEiCIAiCIAhPEAFJEARBEAThCSIgCYIgCIIgPEEEJEEQBEEQhCeIgCQIgiAIgvAEEZAEQRAEQRCeIAKSIAiCIAjCE0RAEgRBEARBeIIISIIgCIIgCE+wqIA0b948ypcvnz3eo0aNGvzzzz/Zr8uyzPjx4/Hz88PW1pZ69epx5cqVx/aRlZXFoEGD8PDwwN7enlatWhEWFpbbH0UQBEEQhDzMogKSv78/U6ZM4fTp05w+fZr33nuP1q1bZ4egadOmMX36dObMmcOpU6fw8fGhUaNGpKSkZO9jyJAhbNiwgTVr1nD48GFSU1Np0aIFer3eXB9LEARBEIQ8RpJlWTZ3EW/Czc2NH374gV69euHn58eQIUMYMWIEYDxb5O3tzdSpU+nfvz9JSUl4enqyYsUKOnXqBEBERAQBAQFs27aNJk2avPRxk5OTcXZ2JikpKUeH1SY+jMKg1+PmVyDH9vmvsBsJ+BRxQqVW5vi+zUUbGYk+JQWbEiXMXYrwP/QGmYM3Y6hXyBop6jIUqoUsyxwKP0SdAnVeOCRSEATBVF72+9uiziD9L71ez5o1a0hLS6NGjRrcu3ePqKgoGjdunL2NtbU1devW5ejRowCcOXMGrVb72DZ+fn4EBQVlb/M8WVlZJCcnP/YwhWN//s6SLwewYdq3hF65SE7l1+S4DDb9fJ4Vo49xZvt9MtO0ObJfc4udO5d7rVoTNmgQGU9cThXMZ/XJED5eeoqdcwbD0mawYSBbr6/h0z2f0ntnb+4n3Td3iYIgCP/J4gLSpUuXcHBwwNramgEDBrBhwwbKlClDVFQUAN7e3o9t7+3tnf1aVFQUVlZWuLq6Pneb55k8eTLOzs7Zj4CAgBz8VEayLKPTaAC4e+Ykf3z7NStHDuHqwb3odW8WaFJiM7F3tiI9WcPxjXdZ/vVRDq+7RUp8Zk6UbhayLGPIyARJImXXbu63a09o/wFknD9v7tLeeplaPVYqiajENAyyBBdWkbHzG2wlFaeiTtFuUzsWXFyAVp8/grogCPmPxV1i02g0hISEkJiYyF9//cVvv/3GgQMHSExMpFatWkRERODr65u9fd++fQkNDWX79u2sWrWKjz/+mKysrMf22ahRI4oWLcqvv/763ONmZWU99r7k5GQCAgJy/BIbQHxEOGf/2cSV/bvRaYzHtHd1I7hJC8o3aoqtg+Nr7VevM3D79EPO7gwhPiINAIVCovg73gQ3Loh7AYcc+wy5Kev2bWLnLyB561YwGACwq1Edj4EDsa9a1czVvb3ux6YxdtMVUm4d5Xv1YsooHhCmUjKxQGGOKIy/CBRzKca4GuOo6FXRvMUKgvDWeNlLbBYXkJ7UsGFDihYtyogRIyhatChnz54lODg4+/XWrVvj4uLCsmXL2Lt3Lw0aNCA+Pv6xs0gVKlSgTZs2TJgw4aWPa6oepP+VkZrCxV3/cG7HFtIS4gFQWVtTtm5DKjVt9dp9SrIsE3IlnnO7HhB+IzH7+YJl3QhuHEiBEi4W2SOiefCA2AULSPp7E+h0ANhWqYzHgIHY16ppkZ/J0smyzD+Xo5i46SLvp2/mS9Wf2EuZbHVw4AdvH+INGiQkOpXsxOeVPsfByjJDuiAIluOtCUgNGjQgICCAJUuW4OfnxxdffMHw4cMB49kmLy+vp5q0V65cSceOHQGIjIzE398/zzRpP4tep+XG0UOc3rqRmPt3jU9KEkUqvUOV5m3wL1Putb/8H95P5tzOEO6ei+bfnwSvQEcqNipI0WBPFEqLuwqLNjyc2N9+I2ndX8ha4yUcm/Ll8RgwAIf69URQMoPULB0zdt1k+9EzjFYup5nyJIkKBT96+/G3jfFnzMvOi9HVRvNewffMXK0gCPlZvgxIX3/9NU2bNiUgIICUlBTWrFnDlClT2L59O40aNWLq1KlMnjyZJUuWULx4cSZNmsT+/fu5ceMGjo7Gy1IDBw5ky5YtLF26FDc3N4YOHUpcXBxnzpxBqXz5u7tyMyD9S5Zlwq5e4vTWjdw9czL7ea9CRancvDUla9ZBqVK/1r6TYtI5vzuUa0cj0WuNl6mcPGyo2LAgpWr6orayvDvftA+jiV+8iIS1fyBnGnutrEuVwmPAABwbN0JSWF74s3RXI5IZs/ESTmH7+E61lABFDCdsrPnWN4AQjJfdGhZsyKhqo/Cy8zJztYIg5Ef5MiD17t2bPXv2EBkZibOzM+XLl2fEiBE0atQIMAaICRMmMH/+fBISEqhWrRq//PILQUFB2fvIzMxk2LBhrFq1ioyMDBo0aMDcuXNfuenaHAHpf5mqTykjRcOl/WFc2h+efaebjYOacvX8KVevALYOVjn2GXKLLi6O+KVLSfh9FYb0dACsihbFY0B/nJo2RVKpzFzh28VgkPnjdCgz/7lAV+2f9FNuwaAwMN/NnaVO9uiQcVA78EXlL2hfoj0KSQRZQRByTr4MSHmJuQPSvzJSkrm4e3uO9ylps/RcOxrJhT0hJMcaz76o1ApK1/SlQsOCOHva5thnyC26hAQSVqwkfsUKDI8WD1UHFsSjXz+cW7VCUr/e2Tfh9cSlZjHln+ucO3uc79WLqaa4zg21mvG+BbisNJ7FDPYKZlyNcRR1KWrmagVByC9EQDKxvBKQ/vW8PqWilatSuVnr1+5TMugN3DkXw7mdIcSEpPy7W4pW9iK4UUG8As3/2V+VPiWFhN9XEb90KfrERADUfn649+2Dc9u2KKytzVvgW+bU/XjGrL9EUOw2vlb/jouUwhonB2a5e5KOHpVCRZ9yfehTrg/WSvG/jSAIb0YEJBPLawHpX//Zp9SiDSVr1H6tPiVZlgm/kcC5nSGEXI3Pfr5ASVcqNS5IQBk3i2t+NqSlkbD2D+IWL0YfGwuAyssL9969cOnYEYWt5Z0ls1RavYElR+6xZPc5BhlW0kW1jyilkole3hywMV4CLeRUiHE1xlHFp4qZqxUEwZKJgGRieTUg/a/4iDDObtvElQN7svuUHFzdqPiGfUqxYSmc2xXCrVPRyAbjj497AQeCGxekWBUvlBZ255shM5PEdX8R99tv6B4tGKp0c8Pt4564ftgFpYO9mSt8e0QkZjBh8xVirh7ie/UiSilC2WVny2Qvb2Il42W3dsXb8UXlL3C2djZztYIgWCIRkEzMEgLSv0zVp5Qcl8HFPWFcORKBLss47NfB1ZqKDQtSupYvVjaW1fxs0GhI2riRuAUL0YaFAaBwdsatezfcunVDmcf/d85P9l5/yISNF2iUspEvVOvQKzXMdHPjT0djWHW3cWdktZE0CWxicWcuBUEwLxGQTMySAtK/TNWnlJmm5fLBcC7uDSUjxXjnm7WdiqB3C1Cuvj/2zpbVNyJrtSRt3Urcr/PR3L8PgMLBAdePPsKtZw9UT4yqEUwjQ6Pnl3232XTwBKMVy2iiPM0Za2smeHlxT2X8Oa3rX5fR1Ubj6+D7gr0JgiAYiYBkYpYYkP4lyzKhVy5xZlvO9inptHpuHI/i3K4QkqIzAFCqFJSs7kPFhgG4+ljWpSpZrydlxw5i5/1K1q1bAEi2trh27ox7r49ReXqaucK3w+3oVL7ZeBm7+zuZoF6GlxTLIhcnFri6okPGTmXH4EqD6VyyM0qF5a3XJQhC7hIBycQsOSD9L1P0KRkMMvcvxHJ25wMe3ks2PilBkQqeBDcuiE8Ry+odkQ0GUvfuJXbuPDKvXgVAsrbGpUMH3Hv3Qu0rzl6YmizL/H0+gh+3nOOjrDX0UW4j1EpivKcn56yNYT7IPYjxNcdT0q2kmasVBCEvEwHJxPJLQPrXf/UpVW7WClffV+9TkmWZyDtJnNsZwv2LsdnP+xZzJrhxIIWC3JEUltM/IssyaYcOETt3HhnnzxufVKtx+eAD3Pv2weoVFxsVXl1Shpafdt7g+IkjfKdazDuK6/zlaM8Md3dSJFBKSnqW7cmACgOwUdmYu1xBEPIgEZBMLL8FpH/9Z59S8zb4lw56rT6l+Ig0zu8O4caJKAx644+cq48dFRsVpGRVH5Rqy7nzTZZl0k+cIHbuPNJPPrpEqVTi3LIl7v36YV2ksHkLfAtcDEtk9PpLlHy4ma9Vv6NXpTPZ3Y1d9nYABDgG8E31b6jhV8PMlQqCkNeIgGRi+TUg/Su7T2nrBu6ePZX9vFfholRu/vp9SmmJWVzYG8qVg+FoMo13vtk5W1HhvQDK1vHD2s6yVrNOP3OG2Hm/knb4sPEJScKpaVPcB/THpkQJ8xaXz+kNMqtOPGD+jtN8pltBZ9V+9tnZMtHDnehHS020KtqKoVWG4mojGusFQTASAcnE8ntA+l/P7VN6vyXlG77/Wn1KmgwdVw5FcGFPCGlJxiGlahslZesUoMJ7/ji4WtblkYyLF4n9dT6pe/dmP+fYqCHu/QdgG1TWjJXlf9EpmUzaeo3QC/v4Xr0Yf2UYs11dWO3kiCyBq7Urw94ZRosiLcSSAIIgiIBkam9TQPqXKfqU9DoDt0495NyuEOIj0gBQKCRKVPWmYqOCuBdwyNHPYGqZ168T++t8UnbsgEd/tezrvovHgAHYBQebubr87ejtWMZtPE/9hHUMUa3nlo3MeA93blsZz0rW9KvJmOpjCHAUvWKC8DYTAcnE3saA9C9T9CnJBpkHV+I4tzOEiFuJ2c8HBrkT3LggfsVdLOq3/6zbt4ldsIDkLVvBYFwB2q5GdTwGDMSu6jsW9VksSZZOz2+H7rFuz1G+lpZST3mGZc5OzHN1QSOBjdKGTyp+Qrcy3VApLGshU0EQcoYISCb2Ngekf5mqTynqXhLnd4Zw53wMPPrp9Ap0JLhxIEWCPVFY0J1vmgcPiF2wgKS/N4FOB4Bt5cp4DByIfa2aIiiZSGh8OuM2XUF5cxvj1cvQqZP4zsONE7bGS7el3EoxvsZ4ynqIy5+C8LYRAcnEREB6nLFP6W+uHNibY31KiQ/TOb8nlOtHI9HrjGdhnDxtCW5UkFLVfVBZWc6igNrwcOIWLSLxz3XIWuNq4zbly+MxYAAO9euJoGQCsiyz48pDpm06Tcf01fRWbmOroy0/uLuSrFCgkBR8VPojPqv4GXZqO3OXKwhCLhEBycREQHq27D6l7ZtJS0wAjH1KQfWMc99ep08pPVnDpf1hXNofRlb6o7MwjmrK1fOnXF1/bBws58437cNo4hcvJmHtWuTMTACsS5XCY0B/HBs3RlJYznIHliItS8esPbc4dOQAE5SLKKK6zTR3V7Y9GkLsZ+/HmOpjqONfx8yVCoKQG0RAMjERkP6bTqvlxtGDnNm6kZgH94xPvmGfkiZTx7WjkVzYHUpKvDFcqKwUlKnlR4UGATh52Ob0xzAZXVwc8UuXkvD7Kgzp6QBYFS2Kx4D+ODVtiqQS/TE57UZUCt9suEChsI2MUq3mip2Oie5uhKuN/62bFmrK8KrD8bD1MHOlgiCYkghIJiYC0sv5rz6lKs3bUOI1+pQMegO3z0ZzbmcIsaGpAEgKiWKVvQhuVBDPgq9+Oc9c9ImJxK9YSfyKFRiSjWNZ1IEF8ejXD+eWLZGsrMxcYf5iMMisOxvGr1uPM1C7nObqQ8x1dWaFkyMGScLJyomhVYbSplgbcdlTEPIpEZBMTASkV/fMPiU3d+Pct9foU5JlmbDrCZzb+YDQawnZz/uXcqVS40D8S7tazJecPiWFhFWriV+6FH3Co0uTfr549O2Lc9u2KKytzVxh/pKQpmHajuvcObWTierFaG2imeDhzjVrYyB9x+cdxlYfSyHnQuYtVBCEHCcCkomJgPT6TNGnFBOSwrldIdw+E41sMP5IewQ4ENyoIMUqe6FQWkZvjyE9nYQ1a4lbvBh9rHF+ncrLC/fevXDp2BGFreVcRrQEZx4kMH7DOWrHrOUT1XrWO1szx9WZTIUCK4UV/Sv05+OyH6NWWk6fmyAI/00EJBMTAenNmaJPKTk2gwt7Q7l6OAKdxnjnm6ObDRUaBFC6li9WNpbR22PIzCRx3V/E/fYbuqgoAJRubrh93BPXD7ugfNRgLLw5nd7A0qP3WbvrMCPlxZS0vshEdzeO2BnDaDGXYoyvOZ4KnhXMXKkgCDlBBCQTEwEp5xj7lC5yZuvGHOtTykzVcvlgGBf3hZGRYryt3tpOZbzzrZ4/dk6W0dsjazQkbtxI3IKFaMPCAFA4O+PWvRtuXbuidHY2c4X5R1RSJt9tvoLu6mbGqpdx3iGTae6uxCuVSEh0KtmJzyt9joOVZa3uLgjC40RAMjERkEwjLjyUc/9syrE+JZ1Gz/XjUZzfFUJSTAYASpWCUjV8qNiwIC7elrH+jazTkbRlC3HzF6C5ZzzbpnBwwPWjj3Dr2QOVqxjGmlP234hmyt+naZu8krbqHcx0d+JvR2Mo8rLzYnS10bxX8D0zVykIwusSAcnEREAyrfTkJC7u3s75HVtypE/JYJC5dyGGsztCiL5vvFsMCYpU9CS4cUF8ClvGmRhZrydlxw5i5/1K1q1bAEi2trh27ox7r49ReXqaucL8IVOrZ+7+O+zfv5fxyoVo7UKZ4OFGqNp4JrNhwYaMqjYKLzsvM1cqCMKrEgHJxERAyh3P71OqRpXmbShQuuwr9SnJskzk7UTO7Qzh/qW47Of9irsQ3KgggUHuSBYwykQ2GEjdu5fYufPIvHoVAMnKCpcOHXDv0xu1r6+ZK8wf7sWmMW7jRfzureML9WrWuKpY6uyETpJwUNvzReUvaV+iPQrJMm4CEARBBCSTEwEpd724T6kOyldcXDEuIpXzu0K4efIhBr3xr4Grrz3BjQpSoqo3SlXe/9KTZZm0Q4eInTuPjPPnjU+q1bi0aYN7v75YBYjJ9W9KlmW2XIxkzuZj9MtaQpDNcSZ4uHHJxrj0QrBnMONqjqOoS1EzVyoIwssQAcnEREAyn+w+pf170Gk1gLFPKfj9lpRv8D42Dq/WRJuakMXFvaFcPhSONlMPgL2zFeUbBFC2TgGsbfP+nW+yLJN+4gSxc+eRfvKk8UmlEucWLXDv3x/rIoXNW2A+kJKpZfqum1w/to3xqsWcdklmlqsL6QoFKklFn/J96FuuL1ZKy7gBQBDeViIgmZgISOaX031KWRk6rhwM58LeUNKTjMHLykZJ2XcLUOG9AOxdLGOxxvQzZ4id9ytphw8bn5AknJq+j3v/AdiULGHe4vKBy+FJjN9wjqqRv9PR+m9+8nBkv72x2b+QUyDjaoynik8VM1cpCMLziIBkYiIg5R3ZfUpbNhATct/45Bv0Kem1Bm6eiuLczhASooxz0hRKiRLVfAhuWBA3P8tYgyjj0iVif51P6p492c85NGyAx4CB2AaVNWNlls9gkFl9KoSV/xxgmH4hOsdbTHZ3I1alBKBd8XZ8UfkLnK0to/lfEN4mIiCZmAhIeU9O9ynJBpkHl+M4u/MBkbeTsp8vVM6d4MaB+BZztohRJpnXrxP763xSduyAR3/d7d+tg8fAgdgFB5u5OssWm5rF5K3XSLuwgaHWy/jdDdY5GZeicLd2ZVT10TQObGwRPyeC8LYQAcnEREDK2+LCQzm77W+uHtibI31KUXeTOLcrhLvnY+DR3xjvwk4ENy5I4QqeKCzgzresO3eInT+f5C1bwWBcZdyuenVjUKr6jvgSfwMn7sbx/YaTtE5YRnn7vXzn4cY9K+OSAHULvMuYGt/gY+9j5ioFQQARkExOBCTL8Pw+pUZUatYKVx+/V9pf4sN0zu0O4caxKPQ6Y8hw9rIluFFBSlb3QaVW5vhnyGmaBw+IXbiQpI1/g04HgG3lyngMGIB97VoiKL0mjc7AosP32LVnJ6OkBZxyi2Ohi3FJADulDYMrD6Fzyc4oFXn/Z0QQ8jMRkExMBCTLktN9SunJGi7uC+XygXCy0h+FDEc15esHEFS3ADb2eX+4qTY8nLhFi0hc9xeyxniWzaZcOTwGDsChfn0RlF5TWEI63266hOfNNXSy/ZMfPW05Z2MDQDm30oyr9R0l3UqauUpBeHuJgGRiIiBZJlmWCbl8gTNbN3Lv3Ons572LFKNy8zaUqF77lfqUNJk6rh2J5PyeEFLjjaNRVNZKytTypUKDAJzcbXP8M+Q07cNo4hcvJmHtWuTMTACsS5bEY+AAHBs3RlLk/fWg8qLdVx8y8+8j9Ez/DYPLBWa4uZCqUKBCQY+gjxlQYQA2KhtzlykIbx0RkExMBCTLl5N9Snq9gdunozm3K4S4sFQAJIVE8SpeBDcuiIf/q82QMwddXBzxS5eR8PvvGNKNd+9ZFS2KR/9+ODVrhvSKC3EKkKHRM3vvLS4d3sRg9WJWe2rZ9WhJgAA7H76p9S01/GqYuUpBeLuIgGRiIiDlH+nJSVzc9Q/nd2594z4lWZYJvRbPuZ0hhF1PyH4+oIwbwY0L4l/SNc9futInJhK/YiXxK1ZgSDbOrVMXLIhHv744t2qFZCUWQnxVt6NTGL/hLBVDVlDe6R+mejgR/ShwtircnGFVR+Ji42LeIgXhLSECkomJgJT/5HSfUkxICud2PuD2meh/767HI8CBSo0DKVrJE4Uyb1+60qekkLBqNfFLl6JPeBQc/Xxx79MHl3btUFhbxsKZeYUsy2w8H86yLXsZoF3AWY8w1jg5IEsSrip7htcYQ/PCzfN8gBYES/dWBKTJkyfz9ddf8/nnnzNz5kzA+I/QhAkTWLBgAQkJCVSrVo1ffvmFsmX/f2G8rKwshg4dyurVq8nIyKBBgwbMnTsXf3//lz62CEj5V073KSXHZnB+TyjXDkeg0xrvfHN0t6FiwwBK1/RDbZ2372oypKeTsPYP4hYvQh8TC4DK0xO33r1w7dQJhW3e77PKS5LStfyw4xoJp/+kvf3vzPJUc/vRWbmaXpUZU/s7AhzFDD1BMJV8H5BOnTpFx44dcXJyon79+tkBaerUqXz//fcsXbqUEiVKMHHiRA4ePMiNGzdwdDT2gQwcOJDNmzezdOlS3N3d+eqrr4iPj+fMmTMolS/3ZSUC0tshJ/uUMlI1XD4QzsV9YWSmagGwtldRrp4/5ev5Y+uYty9dGTIzSfzrL+J+W4QuMhIApZsbbj174tqlC0oHy1hhPK84H5rI9+tP0CTmN/Tux1ng4oxGIWEjqfg0eBBdy3ZHpRB9X4KQ0/J1QEpNTaVSpUrMnTuXiRMnUrFiRWbOnIksy/j5+TFkyBBGjBgBGM8WeXt7M3XqVPr3709SUhKenp6sWLGCTp06ARAREUFAQADbtm2jSZMmL1WDCEhvl3/7lM7t2EJ6UiLw+n1KWo2eG8ciObcrhORY411jSrWC0jV8qdgoAGdPO1N8hBwjazQk/v03cQsWog0NBUDh7Ixbt264deuK0lmM13hZeoPMyuMP2LrjH3qr5vOHZxonbY13tpV2DGRc3amUdRdjYQQhJ+XrgNSjRw/c3NyYMWMG9erVyw5Id+/epWjRopw9e5bg/xmh0Lp1a1xcXFi2bBl79+6lQYMGxMfH4+rqmr1NhQoVaNOmDRMmTHjmMbOyssjKysr+c3JyMgEBASIgvWV0Wi3Xjxzg7NaN2X1KkqSgfMMm1OzYFTunlw8HBoPM3XMxnNv5gOgHKcZ9KSQqNgjgnZaFUVvl7Utvsk5H8tatxP46H829ewAoXV3xnfgdjg0amLk6yxKdnMn3Wy7jcGUFQS4bmeNuT7JSiQKJb2qMpX2J9uYuURDyjZcNSHm7S/QZ1qxZw9mzZ5k8efJTr0VFRQHg7e392PPe3t7Zr0VFRWFlZfVYOHpym2eZPHkyzs7O2Y+AANEj8DZSqdUE1WtIt2mzaT9mIoUrVkaWDVzY9Q+LP+/Hma1/o3+0OvWLKBQSxSp70X5kFdp8EUzBsm7IBplzu0JY8+0JQq7GmfjTvBlJpcK5dWuKbNlMgRnTsSpWFH1CAmGffkbkuPHZSwUIL+blZMPPXarQtOc3rDXMYFCIL41T0zAgM+HYBH67+BsW+LusIFg0iwpIoaGhfP7556xcuRIbm+cvsPbkXSCyLL/wzpAXbTNq1CiSkpKyH6GPLi0IbydJkggsV5G2oybQadwUPAsVISs9jf3LF7Js2GePNXe/zL4KlHSl5aCKNP+kPA6u1iTHZrJ51gV2LblCRorGhJ/kzUlKJU5Nm1Jk/Xrc+/QGSSJx7VrutW1HxuUr5i7PotQu7sGiT5uzyn08AZF16JNoHJL887mfmX76RxGSBCEXWVRAOnPmDNHR0VSuXBmVSoVKpeLAgQPMmjULlUqVfeboyTNB0dHR2a/5+Pig0WhISEh47jbPYm1tjZOT02MPQQDwLxNE18kzaNTvM2ydnEmICGP9lPGsnzyOuPBXC9KFynvw4bhqVHgvAEmCmyce8vv441w/FpnnvxwlKyu8hg6l4JIlqLy90dy/z/3OnYldsBBZrzd3eRbD3cGa1f1qcKbwJ8RFt+HLuEQAll5dztjDo9EZXu4MpSAIb8aiAlKDBg24dOkS58+fz35UqVKFjz76iPPnz1OkSBF8fHzYtWtX9ns0Gg0HDhygZs2aAFSuXBm1Wv3YNpGRkVy+fDl7G0F4VQqFkvIN3qf3zwuo0rItCqWKe+fPsHzYZ+xbuoDM1NSX3peVjYraHYvTbkQV3P0dyErTsWfZNf6eeZ7E6Lx/2cq+ejWK/L0RxyZNQKcjZvp0Qnp+jPbRnW/Ci9lbq1jU4x2Syn3M2djujItOQCHLbLy7ma/2fk6WPuvFOxEE4Y1YZJP2//rfJm0w3uY/efJklixZQvHixZk0aRL79+9/6jb/LVu2sHTpUtzc3Bg6dChxcXHiNn8hxyREhrN/xSLunjkJgI2jE7U6dqV8gyYoXvJnDIwjTC7sDuXklnvotQaUagXvNC9ExUYFUebxhSZlWSZpw0YeTpyIIT0dhZMTvuPH4dSsmblLsxgGg8zErde4eWwTXZx/4Rsv41IAVT2D+bnhXBysXn6ZCUEQjPL1XWz/68mA9O9CkfPnz39socigoKDs92RmZjJs2DBWrVr12EKRr9J4LQKS8DLuXzzH/mULiQsLAcAjIJB6PfoSWK7iK+0nKSad/b/fyB5f4l7AnnpdS+FTOO/fUq8JCSF82DAyL1wEwLl1a7y/GYPyFdaQepvJssz8g3fZtn0rg51+YoyPA2kKBWWcizHv/UW42biZu0RBsChvTUAyFxGQhJdl0Ou5sPsfjv7xO5mpxtv5i71Tnbpde+Pi4/vS+5FlmZsnojj8520y07QgQbl6/lRvXQQrm7y9oKCs1RI771dif/0VDAbU/v74/TANu/9ZjkP4b3+eDmX++h2Mtp/COF8rEpRKCtn7seD9pfg6vPzPkSC87URAMjERkIRXlZGawrE/V3F+51ZkgwGlSkWlZq2p9kEnrO1efnHIjFQNR9bd5sZx480IDq7WvPthSQqX9zBV6Tkm/exZIoYNRxseDkolHgMG4DFwANIrjG55m+259pAJq3Yz3moSk/0MRKlUeFu7sqDpUoo4FzF3eYJgEURAMjERkITXFRcWwr5lC3lw8RwAds4u1P6wO0F1GyIpXr6vKPRaPPt/v569GnfRSp7U6VQCe+e8PURWn5LCw4kTSfp7EwC2FSvi98M0rMTaYi/lzIMEhizZyxhpMr/4pXLPSo2Lyo5fmyymrIdYdVsQXkQEJBMTAUl4E7Isc/fsKQ6s+I2EyAgAvAoXpX7PfviXevkvOa1Gz+mt9zi3KxTZIGNlq6LGB0UpW9sPSZG3p8InbdlK1IQJGFJSUNjZ4f3NNzi3aS2m2b+EWw9T6LvoEF9kTWF1gSiuWFtjp7BiVsO5VPOtZu7yBCFPEwHJxERAEnKCXqfl3D+bOfbXGjQZxlv4S9aow7tdP8bJw+ul9xMblsK+FdezR5b4FnOm3kelcPPN2wNkteHhRIwYSfpp48Kajk3fx3f8eDHP7SVEJGbw8aKj9Ej6ib1+tzhha4MaBT/Um06DQDHqRRCeRwQkExMBSchJ6UmJHFm7kot7d4Aso1JbUaVVO6q2aof6P1aN/18Gg8ylfWEc33QXXZYehVKi8vuBVH6/EEp13l0SQNbrifttETGzZ4NOh8rHB7+pU7GvVtXcpeV5iekaei85wXtRv3DL9xR77O1QAONrTOCDEm3NXZ4g5EkiIJmYCEiCKUTfv8u+ZQsIu3oZAAc3d97t0pNSteu99KWnlPhMDqy+wYNLxllurj521PuoFH7FXUxVdo7IuHSZiKFD0Tx4AJKEe5/eeA4ahGRlZe7S8rQMjZ5PV52lyK3f0PruZL2jcfmEryoNoWe53mauThDyHhGQTEwEJMFUZFnm1smjHFixmOSYhwD4lijFez364VOsxEvv487ZGA6uvUlGsnGWW5k6ftT8oCjWdmqT1f6mDGlpPJwylcQ//wTApkwZ/H78Eesihc1cWd6m1RsYtf4S8vmV+Hr9yTIX46K4vUp3Z8g7Q0VflyD8DxGQTEwEJMHUdBoNZ7Zu5MSGP9BmGe9UK/Pue9T5sAcObu4vtY/MNC3HNtzh6mFjI7idkxV1OpWgaCXPPP2lmbxrF1HfjEWfmIhkY4P3yJG4dOqYp2s2N1mWmbbjBjcP/kE1j0XMdjf+u9SucAu+qT0RpeLlV3AXhPxMBCQTEwFJyC2p8XEcXrOcKwf2AKC2tqHaBx2p3LwNqpe8/BRxK4F9K2+Q+NDYCF6onDvvflgSR7eX628yB+3DaCJHjSLt6FEAHN57D9+J36FyEytH/5dFh+/xz9b1tHGfzQ8eDhgkiUZ+tZny3s9YKcXlSkEQAcnEREASclvk7RvsW7aQyJvXAXDy9KZu148pXq3WS51Z0WsNnNl+nzPbH2DQy6itlVRrXYRy9fxR5NElAWSDgfjly4n5aTqyVovS0wO/SZNxqFPb3KXlaX+fD2f+n5v52PlHJnvZoJUkqnuU5+fGC7FTv/yipIKQH4mAZGIiIAnmIMsy148c4OCqpaTGxQLgXyaI+j364VXo5VZSjo9IY//v14m8kwSAV6Aj9buVwsPf0WR1v6nM69eJGDaMrFu3AXDt3g2vr75CYZ23F8U0p4M3Y/h25T98YjuJKT5KMhQKyjkVYW7TZbjYuJi7PEEwGxGQTEwEJMGctJmZnNz0F6c3/YVOqwFJotx7jandqRt2zi4vfL9skLlyOIJj62+jydQjKSSCGwXwTvPCqKzyZq+KITOT6B9/ImHlSgCsixfH78cfsSn5co3rb6MLoYl8uWQ3nym/Y7qvlkSlkiK23sxvvhIfex9zlycIZiECkomJgCTkBckx0Rz8fQk3jh0CwMrWjhrtOhPctCVK1YvvVktLzOLQHze5czYGACdPW+p1KUlA6bzb55N64AARX49GHxeHZGWF19CvcO3a9ZXGtLxN7sak0v+3A/TTfsuvBZKJVqnwtXJmQbOVFHIuZO7yBCHXiYBkYiIgCXlJ2PUr7Fu6gOh7dwBw9fWjbrfeFKlU9aX6k+5diOHA6pukJWYBULK6D7XaF8PWIW829eri4ogcPYbU/fsBsK9dG99J36P2evnVx98mD5Mz6bPoCB2TJ/GHXzj3rdS4KW2Z13QpZdzLmLs8QchVIiCZmAhIQl4jGwxcPrCbw6uXk56UCEBg+WDq9+iLu3/BF75fk6Hj+Ka7XNofBjLYOKip3aE4Jap658nb62VZJnHNGh5OmYqclYXS1RXfid/h2ECM2XiWpAwt/ZadoG7kj+wvcI1r1lbYSypmN1rAO77vmLs8Qcg1IiCZmAhIQl6VlZ7OiY1/cHbrRvQ6HZJCQcXGzanRoQu2Di9uxI66l8T+ldeJC08DIKC0K3W7lMLZ09bUpb+WrDt3CB86jKxr1wBw6dQJ7xHDUdiJu7WelKnV8/nqsxS+9Qs3ChzhtK0NVij4sd506ov5bcJbQgQkExMBScjrEqMiObByEbdPHQfAxsGRmh26UKFRMxTK/27E1usNnN8Vwqkt99HrDKjUCt5pUZgKDQNQKvNer49BoyHm55+JX7wEZBmrQoXw+/FHbIPKmru0PEdvkBmz8TLy2YWk+W1jv70tSuDbGuNpVaKducsTBJMTAcnEREASLEXI5QvsW7aQ2JD7ALj7F6Rej74UKh/8wvcmPkxn/6obhN9IePReB+p3LYV3obz5M592/DgRI0aie/gQVCo8Px+Me69eSC8IhG8bWZaZsfsWN/ctx9VvNVscjWfbhlUcRPcK/cxcnSCYlghIJiYCkmBJDHo9F/fs4MgfK8lMSQagSOWq1OvWG1ffAv/5XlmWuXE8isPrbpGVpkOSoHz9AKq2KoyVjSo3yn8l+sREIseOI2XnTgDs3nkHv2lTUfv6mrmyvGfFsfts27yWIO8FrHExhqS+pT5iUNURebLvTBBygghIJiYCkmCJMlNTOfbXas7v2IJBr0ehVBHctCU12nXG2s7+P9+bkaLh8Lpb3DxhHKDr4GZN3Q9LUqicR26U/kpkWSZp/Qaivv8eOT0dhZMTvuPH4dSsmblLy3O2XYpkwZq/qOcxk0Vuxj6zjoHv8/W7U8T8NiFfEgHJxERAEixZXHgoB5b/xr3zZwCwdXKmduduBNVvhOIFX4ohV+M4sOoGybHGAbrFKntRu2Nx7J3z3qrWmgcPCB82nMyLFwFwbt0a72/GoHRwMHNlecvRO7FMXL6F1o6T+cVDjSxJvO9TnUkN56JWvng9LUGwJCIgmZgISEJ+cPfcKfYvX0RCRBgAnoWKUL9HXwLKlPvP92mz9Jzaco/ze0KRDTLWdipqti1G6Zq+SHlsrpus1RI7bx6xv84HgwG1vz9+P0zDLvjFPVhvk8vhSQxdvIMOVt8yxxt0kkRN1zLMaLpEzG8T8hURkExMBCQhv9DrdJzfsZVj61aRlW68tb9EtVq827UXzl7e//nemJAU9q28TkxICgB+xV2o91FJXH3++3KdOaSfOUPE8BFow8NBqcRjwAA8Bg5AUuW9PipzCYlLZ+CiPbTVT2C+TwYZCgXlHQoyt8UqnK2dzV2eIOQIEZBMTAQkIb9JT07i6B8rubh7B7JsQKlWU6VFW6q2aY+VzfPXQDLoDVzaH87xTXfRZelRqCSqNC1EpSaBKFV5a0kAfUoKUd99R/KmzQDYVqyI3w/TsAoIMHNleUdMShb9lxyiafIElvrFkaxUUszag/mt1uJlJ1YqFyyfCEgmJgKSkF/FPLjH/uULCbls7NtxcHWjTpeelK5d7z/nnSXHZXBg1U1CrsQB4OprT/2PSuJbzCU3yn4lSZu3EDVhAobUVBT29nh/Mwbn1q3FnVuPpGRq+WTFSapFfsf6Ag+IUakooHJgQYs1FHQONHd5gvBGREAyMRGQhPxMlmVunz7OgRWLSHoYBYBPsRLU79EPvxKl/vt9Z6I5tPYmGSlaAMq+W4AaHxTF2jZvXcrShocTPmIEGaeNjeqOTd/Hd/x4lM7iUhJAlk7Pl2vPU/DWFA76XyJErcZdYc38piso6VHa3OUJwmsTAcnEREAS3gY6rZaz2/7m+Pq1aDMzAChdux51uvTE0f35t/dnpmk5tv42V49EAmDnbMW7nUtQpKJnnjpLI+v1xC38jZg5c0CnQ+Xjg9/UqdhXq2ru0vIEg0Hm2y1X0Z6eyQ3/g9ywtsIRJXMaL6CSr/hvJFgmEZBMTAQk4W2SlpjA4TXLubx/N8gyKmtrqrZuT5WWbVFbPf/2/vAbCexfdYPEh+kAFK7gwbudS+DgapNbpb+UjEuXiBg6DM2DByBJuPfpjeegQUhWVuYuzexkWWbu/jtc3fMryf6bOG9rjQ0SP9X9iXcLNTJ3eYLwykRAMjERkIS30cO7t9m7dAERN64C4OjhybsffUzJGnWee2ZIp9Vz5p8HnN3xAINeRm2jpHrrogTVLYAiDy0JYEhL4+GUKST+uQ4AmzJl8PvxR6yLFDZzZXnDmpMhbNu0BDu/lRyxt0Elw3fVxtCidCdzlyYIr0QEJBMTAUl4W8myzI2jBzn4+1JS4mIAKFCqDPV79MO7SLHnvi8uIpX9K28QdTcJAO/CTtTvWgr3Anlr0cbknTuJ+mYs+qQkJBsbvEeOxKVTxzx1adBcdl19yMJVqwjwmcdOR+OZw1HlB9Il+BMzVyYIL08EJBMTAUl422mzMjm9eQMn/16HTpMFkkRQvYbU7twdexfXZ75HNshcORTOsQ130GTqUSgkghsXpEqzQqis8s5YC+3Dh0SOGkXa0WMAOLz3Hr4Tv0Pl5mbmyszv5L14Ji37i3JuP7LR2XgJ8pPiHRlQY4wIkYJFEAHJxERAEgSj5NgYDq1ayvUjBwCwsrWl2gedqNSsNSr1s8dUpCZkceiPm9w9ZzwD5expS72PSuJfKu8EENlgIH7ZcmKmT0fWalF6euA3aTIOdWqbuzSzuxGVwtBFm6lhN5HVbsZg+6F/A0a+Nx2FlLfWvhKEJ4mAZGIiIAnC48JvXGPf0gU8vHsLABdvX97t1otiVao/98zC3fMxHFxzk7TELABK1fSlVtti2DjknflfmdeuET50GJo7dwBw7d4Nr6++QmGd92bP5aawhHQ++203taRvWOGhR5YkmnlUYmLT31Ar8s7/foLwJBGQTEwEJEF4mmwwcPXQPg6tXkZaQjwABYMqUL9HXzwKFnrmezQZOo5vvMOlg+Egg62jmtodilP8He88c8nGkJlJ9A8/kvD77wBYFy+O348/YlOyhJkrM6/4NA0DlxykatpoVnqnoZMk6jgV46eWq7BVPX/1dUEwJxGQTEwEJEF4Pk1mBic3/snpLRvQa7VIkoLyjZpSs0MX7JyevRBj1N0k9q28TnyEcR5cwTJu1O1SEiePvPNFm3rgABFfj0YfF4dkZYXX0K9w7dr1P1cYz+/SNTo+W3GC0tGj+cMnhkyFgkq2vsxusw4nK/Fvo5D3iIBkYiIgCcKLJUVHcWDlYm6dOAqAtb09Ndt3oULj5iifMSRWrzNwbmcIp7fdR68zoLJSULVlESq8549CmTdCiC42lojRo0k7cBAA+9q18Z30PWqvt3dOmVZvYMSf53G7PZZtfvdIUSoooXZmfpsNeNh5mrs8QXiMCEgmJgKSILy80CsX2bd0ATEh9wFw8/OnXo++FK5Y+ZnbJz5MZ//v1wm/mQiAR4AD9buWwiswb/xdk2WZhNWriZ46DTkrC6WrK74Tv8OxQQNzl2Y2BoPM5G1XST3zPcf9zxOrUhKgsGFBq3X4i/ltQh7yst/feeNXspc0fvx4JEl67OHj45P9uizLjB8/Hj8/P2xtbalXrx5Xrlx5bB9ZWVkMGjQIDw8P7O3tadWqFWFhYbn9UQThrRJQtjxdp/5Mo76fYevoRHxEGOsnj2P9lPHERzz998/F247WXwTzXvdSWNupiA1NZd2U0xxedwttlt4Mn+BxkiTh1qULhf9ah3WpUugTEgj79DMix43HkJ5u7vLMQqGQGN2iLIXrf0dQaF38tTpCDZl039iGmzGXzF2eILwyiwpIAGXLliUyMjL7cenS///FmzZtGtOnT2fOnDmcOnUKHx8fGjVqREpKSvY2Q4YMYcOGDaxZs4bDhw+TmppKixYt0OvN/4+uIORnCoWS8g3fp9fPC6jcvA0KpZJ7506zbOin7F++kMy01Me2lySJ0jX96DK+OsXf8UaW4cLuUFZPOMGDy3Fm+hSPsy5WjEJ/rMWtVy8AEteu5V679mRcvvKCd+Zf/d4tSv1Wo/ELaU2xLC0x6Oi59SPOhx0xd2mC8Eos6hLb+PHj2bhxI+fPn3/qNVmW8fPzY8iQIYwYMQIwni3y9vZm6tSp9O/fn6SkJDw9PVmxYgWdOhmXx4+IiCAgIIBt27bRpEmTl65FXGIThDcTHxHOgRW/cffsKQBsHZ2o1akr5Ro0QaF4etHIB5fjOLDqBinxmQAUf8eb2h2KY+eUN+alpR09SsTIUeiio0GlwvPzwbj36oWkzDsLYOamfTeiWbhqEfgt45KNGhsZZtaeRK1iLc1dmvCWy5eX2ABu3bqFn58fhQsXpnPnzty9exeAe/fuERUVRePGjbO3tba2pm7duhw9amwQPXPmDFqt9rFt/Pz8CAoKyt7mebKyskhOTn7sIQjC63PzK8AHI8bRbtQE3AoEkJGSzO7f5rJm7HCSoh8+tX1gkDsfjqtGxYYBSBLcOvWQ1d+eIPJ2Yu4X/wz2NWtS+O+NODZqBDodMT9NJ2zw5xg0GnOXZhb1S3oxtPcAtA8/o2q6lkwJPjv8Ncfv7zZ3aYLwUiwqIFWrVo3ly5ezY8cOFi5cSFRUFDVr1iQuLo6oqCgAvL29H3uPt7d39mtRUVFYWVnh6ur63G2eZ/LkyTg7O2c/AgICcvCTCcLbq1DFynSfNpv6PftjbWdP5K0brBgxmBvHDj+1rdpaSa32xWk/sgruBRzITNWyceY5bpz477+/uUXl6kqBWT/j+/1EJCsrUvfsIWzQIAxZWeYuzSwqFXRl8oCexMWNonaqDp0EQw98RWjifXOXJggvZFEBqWnTprRr145y5crRsGFDtm7dCsCyZcuyt3lyYTlZll+42NzLbDNq1CiSkpKyH6Ghoa/5KQRBeJJSpaJS05Z0mzoL3xKlyEpPY8vMKexaOAet5ulw4RXoRLvhlSkS7IlBJ7N7yVVObLqLbDB/x4AkSbi0a0fAr/OQbGxIO3CQsIEDMWRkmLs0syjm5cCEHq0JjfqUMplakjAweMuHpGnTzF2aIPwniwpIT7K3t6dcuXLcunUr+262J88ERUdHZ59V8vHxQaPRkJCQ8Nxtnsfa2honJ6fHHoIg5CxnL286jZtC1TYdQJK4uHs7v4/6gtjQB09tq7ZW8n7fICo1KQjA6W332bnoCjpN3rjhwr5mTQIWzEeysyPt6DFC+w/AkPZ2hoIKAS70a98Wu7BWeOp03NanMmpLVwyywdylCcJzWXRAysrK4tq1a/j6+lK4cGF8fHzYtWtX9usajYYDBw5Qs2ZNACpXroxarX5sm8jISC5fvpy9jSAI5qVUqajzYQ/af/0d9i6uxIWF8PuoL7iw6x+evKdEUkjU+KAY73UvhUIpcftMNBtnnCM9OW/0/dhXrUrB3xaisLcn/eRJQvr2Q5+a+uI35kOtKvgRVKc31SLKY2WQ2Zd8m18OfG3usgThuSwqIA0dOpQDBw5w7949Tpw4Qfv27UlOTqZHjx5IksSQIUOYNGkSGzZs4PLly/Ts2RM7Ozu6dOkCgLOzM7179+arr75iz549nDt3jq5du2ZfshMEIe8ILF+R7tNmU6hiZXRaDbt/+4UtM6Y8tRwAQOmafrT6vCLW9ioe3kvmzymniAvPG0HErlIlCi5ZjMLJiYyzZwnp1Rt9UpK5yzKLLxqWID5wKK1jXABY8GAr26/8bt6iBOE5LCoghYWF8eGHH1KyZEnatm2LlZUVx48fJzDQuErr8OHDGTJkCJ988glVqlQhPDycnTt34ujomL2PGTNm0KZNGzp27EitWrWws7Nj8+bNKN/SW3EFIS+zc3ah7YhxvNu1FwqlkpsnjrBixGAibl57atsCJVxpP7wKLt52pMZn8de0M9y/FGuGqp9mW748BZcsRunsTObFizz4+GN0T1zqfxsoFBLTOwVz1moczRONz31zagrXos6atS5BeBaLWgcpLxHrIAlC7oq8fYOts34g6WEUkkJBrU7dqNqq3VODYjPTtGxfcInwG4lIEtTqUJzy9f1feCNGbsi8cZOQjz9GHx+PdYkSFFyyGJW7u7nLynVhCen0m7MeX4+JnLRT44Oa1e134GEv5rYJppdv10ESBOHt5FusJN2mzKJkzXeRDQYOr17GukljSUt8/EyMjb2aloMqUrqWL7IMh/+4xcE1NzHozd8QbFOyBIErlqPy9CTr5k0edO+BNjra3GXlOn9XO77t1ozEyI8J1GiJQsuXmzuh1WvNXZogZBMBSRAEi2FtZ0fzwcNoPGAwKmtrQi6dZ/nwQdw/f+ax7ZQqBfW7lqJm22IgweUD4Wz95SJZGTozVf7/rIsWNYYkHx80d+4Q0q072hesw5YfVSnkRudWXQgIr4+DwcC5rBi+397vqUZ8QTAXEZAEQbAokiRRrn5juk6aiWfBQqQnJfLX5HEcWLkYvU772HbBjQvStH85VFYKQq7G89e0MyTHmn89IqtChQhcuQK1nx+aBw940K072vBwc5eV6zpUCcD/nUE0iCyEJMv8FXuaNSd/MndZggCIHqTXJnqQBMH8dBoNB1Yu4vwO46KxPkWL0/zzEbh4+zy2XUxIClt/uUBakgZbRzVNB5THt6izOUp+jDYiggc9P0YbEoLKz5fApUuxKljQ3GXlKr1Bpu/S4xRIGMxGj0yUssz8d3+iWpGXn40pCK/iZb+/RUB6TSIgCULecevkUXb+OovMtFSsbO1o1PdTStWq+9g2qQlZbJt3kZiQFJQqBe91L0WJqj7P2WPu0T58SEjPj9Hcu4fKy4uCS5diXaSwucvKVcmZWrr+soOC1iM44KjAWZZY3XoDAa5FzV2akA+JJm1BEN4axavWpNu0WfiVLIMmI52ts35gx6+z0GZmZm/j4GrNB19VonAFD/Q6A7sWX+XE5rtm73lRe3sTuHwZVsWKoouO5kH37mTdumXWmnKbk42aWT3q8yD+c0pnakmSZAZt6UKaJm+sZSW8nURAEgQhX3Dy8KLTuMlUb9cZJInL+3ayctQQYh7cy95Gba2kaf9yBDd+NJ5k6312LbqCTmve8SQqT08Cly/HulQp9LGxPOjeg8zr181aU24r5GHPqI/aoo7ogKdOzx1DOqM2dxHjSASzEQFJEIR8Q6FUUqtjVzqM+R4HVzfiI8L4ffSXnN+xNftMkaSQqNm2GPW7lUKhkLh1OpqN080/nkTl5kbg0iXYlC2LPiGBBz16knH5illrym01i3rQtGkfykdUNo4jSb3H3L3DzF2W8JYSAUkQhHynYFB5uk2bTeHgKui1WvYsnsemnyaRkZqSvU2ZWo/Gk9gZx5Osm3La7ONJlC4uFFyyGNsKFTAkJRHy8cdknD9v1ppyW9fqgTiVG07TaOOikfPDdrLj0jIzVyW8jUST9msSTdqCkPfJsszZbX9z8PelGPQ6HN09aTZ4KP6lymZvk/gwnS2/XCApOgO1jZImfYIIDDLv6tb61DRC+/cn48wZFHZ2BCxcgF3lymatKTdp9Qb6LD6MZ/pgdrjosZFhRePFlPJ7x9ylCfmAuIvNxERAEgTL8fDubbb8PJXEqEgkSUHNDl2o+kEHFArjDMbMNC3//HqJiFvG8SS1OxanfP0As9ZsSE8ndOAnpJ84gWRrS8C8edhXr2bWmnJTYrqGj2f/jbPTWM7YqfBFxer2O3EX40iENyTuYhMEQXjEu0gxuk35mdJ16iPLBo78sZJ1E78hNT4OMI4nafV5RUrXNI4nObT2FgdX3zDreBKFnR0Bv87DvlYt5IwMQvv3J/XwEbPVk9tc7Kz44eOmJMf0J0CjIxIdX/zdXowjEXKNCEiCILwVrGztaPbZV7z/yReorW0IvXKR5cMHcffsKeDReJJupajxQVGQ4NKBcLbONe94EoWtLf5zf8Ghbl3krCzCBg4kZf9+s9WT24p5OTC4Uxe8w5sYx5Fo4/l+Wy+zL80gvB1EQBIE4a1Stm4Duk6ZiWehImSkJLNh6gT2L1+ITqtFkiQqNQmkab9yqNQKQq7Es/4H844nUVhb4z97Fo6NGiJrtYQNGkzyrl1mqye31SvpRe2Gn1MrsoRxHEn8edYcn2rusoS3gAhIgiC8ddz8/Oky8SeCm7YE4MzWv1kzdhgJUREAFAn25IOhlbB3tiI+Io11U08TdTfJbPVKVlYUmD4dp2ZNQaslfMgXJP/zj9nqyW29ahVCVXwcTeMcAZh6YyUnb281c1VCfieatF+TaNIWhPzh9ukT7Jg3k8zUFNQ2tjTs8wll6tQHjONJts69QGxoqnE8SY9SlHjHfONJZJ2OyNGjSfp7EygU+E2ZjHOrVmarJzdpdAZ6LdiHo2EIhx3BRZZY1eovAtyKm7s0wcKIJm1BEISXUKxKNbpPm41/6SC0mRn8M+cnts+dgSYz4+nxJIuucnLLPbP1wEgqFb6TJuHcri0YDESMGEniX3+ZpZbcZqVS8HP32kQlD6dkpo5ESWawGEcimJAISIIgvPUc3T3oMPZ7arTvgiQpuHJgDytHDiH6/l2sbFTG8SSNjONJTm25x67FV802nkRSKvH97jtcPuwMskzk6DEkrFljllpym7uDNZN7tUYV1QUPnZ7bciZf/91RjCMRTEIEJEEQBEChUFKzQxc6jp2Eg5s7CZHhrBr9JWf/2QwS1GxXjPpdH40nOfWQv2eYbzyJpFDgM3Ysrt27ARA1fgLxy1eYpZbcVsrHid4d+lEyogZqWWZveijzdn9h7rKEfEgEJEEQhP/hXyaI7tNmU7RKNfQ6HfuWzufvHyeSkZJMmdp+tBxcAWs7FVF3k1k31XzjSSRJwnvUKNz79Abg4aRJxC1aZJZaclujMt6UrzOK9x76AfBrxF52nP/NzFUJ+Y1o0n5NoklbEPI3WZY5t30LB1cuQq/T4eDmTrNBQwkoU844nmTOBZJiHo0n6RtEYFnzjCeRZZnY2bOJnTsPAM/PB+MxcKBZaslNsizz1ZrTGKL7s8dFi40ss6LRb5QqUN3cpQl5nBg1YmIiIAnC2yH6/l22zJxKQmQ4kqSgertOVG/XGU26gX/m//94kjqdSlCunr/Z6oydN4+Yn2cB4PHJQDwGDUKSJLPVkxsytXp6/bodlWo45+wU+MhK1rTfjruD+e40FPI+cRebIAhCDvAqVISuU2ZStm5DZNnAsXWr+fPb0Wizkmj1eUVK1fBBluHgmpscXHvTbONJPAYOxGvYUABi584j5qef8v2K0zZqJTN7NCAjYRABGh1Rkp4v/26PVmee3jAhfxEBSRAE4QWsbGx5/5MhNPvsK9Q2toRdu8zy4YO4d/4U73UvTfU2RQC4tC+MrXMvoTHTeBL33r3x/noUAHG/LeLh5Mn5PiR5OdkwtvuHuEe2xN5g4KwuiUlbe+T7zy2YnghIgiAIL6l0nfp0mzIT7yLFyExN4e8fvmPf0gVUeM+P9/sHPRpPEsdfZhxP4ta9Oz7jxwGQsHwFUd9+i2zI37fBl/N3plObIVSJLIsky6xLvMzaI9+ZuyzBwomAJAiC8ApcfQvw4Xc/ULl5GwDObd/Mqm+G4uqt4YOhlbDLA+NJXDt3xvf7iSBJJK5eQ+TYsch686zblFtalPejSJXvaBDnCsDU239w6ubfZq5KsGSiSfs1iSZtQRDunjvF9l9mkJGSjNrahga9B1KwXE22zbuUPZ6kQY/SFH/H2yz1JW3aRMTIUWAw4Ny6Fb7ff4+kUpmlltxgMMgMXnEMTcoAjjnKuBhgdcs/8fcoZe7ShDxENGkLgiCYWJHgd+g+bTYBZcujzcpk+9wZHFo1l+aflKZQeeN4kp2LrnBqq3nGkzi3akWBH38ApZKkvzcRMXw4slab63XkFoVCYtqHVUnRjqVEpp5EBQze2pX0rBRzlyZYIBGQBEEQ3oCDmzvtx3xHrU7dkBQKrh3ax9rxX1KpsS0VGwYAcHLzPXYvMc94EqdmzSgwcwao1SRv+4fwL79E1uTfu7zsrFT8+HFz1HG9cNPpuUUWX29oL8aRCK9MBCRBEIQ3pFAoqd62E53GTcHR3ZPEqEjWjB2Gje0V6nYpgUIhcfPkQ/6ecd4s40mcGjXCf9bPSGo1Kbt2Ezb4cwxZWbleR24p4GLLsI96UzSyLmpZZk9WBPN2fGbusgQLIwKSIAhCDilQqgzdps2i2Ds1MOh17F/+GzeP/kbD3oUfjSdJYt3U08RHpOV6bY716+M/bx6StTWp+/cT9smnGDIzc72O3FI50JXmTUdT66FxyPCvDw+x6+yvZq5KsCQiIAmCIOQgWwdHWn31NQ16f4JSrebeudPsWTiWmh9Y4+RpS0pcJn9NO03I1bhcr82hdi0C5v+KZGtL2pEjhPYfgCE9PdfryC3tKvvjV+4H3k20AeDri3O4EXrIzFUJlkIEJEEQhBwmSRIVGzfjo++n41YggLSEeP75ZSIBJW7gU9QBTaaeLXMucvlAWK7XZl+9OgUXLkBhZ0f6iROE9OuHPjX3z2jlluHvl0F2nEr5dJlMSWLQ7s+IT4kwd1mCBRABSRAEwUQ8AwvTddIMguo3BlnmzJZ1aJL/pEgFa2SDzIHVNzm09iYGQ+7e4WZXpQoFFy9C4ehIxukzhPbujT45OVdryC1KhcTULnWQM4ZSQKsnUmHgy41iHInwYiIgCYIgmJDaxoYmAwbTfPAwrGxtibh5jTunZlE02Hjr+cV9YWybezHXx5PYVqxIwSVLUDg7k3HhAiEf90KfmJirNeQWRxs1U3p0xCO6PfYGA2cMKUze9JG5yxLyOBGQBEEQckGpWnXpNnU2PsVKkJWWxpW9C/EtdA6lSs+Dy4/Gk8Tl7ngS26CyBC5bitLVlcwrV3jQ82N08fG5WkNuKehux2edP6dcVDCSLPNnynXWHhhr7rKEPEwEJEEQhFzi4u1D5wlTqdKyLQD3zu1DrVyPtW3yo/EkZ4i6l7vjSWxKlSJw+TKUHh5kXb9OSI8e6GJicrWG3FK9iDvvNZjEu3EeAEy5t55T19aZuSohr7K4gBQeHk7Xrl1xd3fHzs6OihUrcubMmezXZVlm/Pjx+Pn5YWtrS7169bhy5cpj+8jKymLQoEF4eHhgb29Pq1atCAvL/WZJQRDePkqVmrpde9Fu1ATsnF1IjAolLXYFNna3SE/KYuP0c9w6/TBXa7IuXpzA5ctReXmRdes2D7r3QPswd2vILR9WLYhn0ZlUTVGhkyS+OD6BsJgrL36j8NaxqICUkJBArVq1UKvV/PPPP1y9epWffvoJFxeX7G2mTZvG9OnTmTNnDqdOncLHx4dGjRqRkvL/S80PGTKEDRs2sGbNGg4fPkxqaiotWrRAn8+HOQqCkHcUqliZ7tNmU7BcRXSaLBLDN2Ol3oNOk8HO33J/PIl1kcIErliOytcXzb17POjWHW1E/rzba3TL8iitJlIs00CSAgZt7UZ6pnkGCwt5l0UNqx05ciRHjhzh0KFnr2MhyzJ+fn4MGTKEESNGAMazRd7e3kydOpX+/fuTlJSEp6cnK1asoFOnTgBEREQQEBDAtm3baNKkyUvVIobVCoKQE2SDgZOb/uLI2hXIBgPW9m7IiiYoVL6UqObNe11Lo1Tn3u+ymrBwQnr2RBsWhrpAAQouW4qVv3+uHT+3JKVr+fSX+YS6zSVepeQ9Ky9mdN6FQrKo8wbCa8iXw2o3bdpElSpV6NChA15eXgQHB7Nw4cLs1+/du0dUVBSNGzfOfs7a2pq6dety9OhRAM6cOYNWq31sGz8/P4KCgrK3eZasrCySk5MfewiCILwpSaGgWpsOdJ4wFSdPL7LS4tGmrUWvvc7NEw/Z8suFXJ3hZuVfgMAVy7EKDEQbHk5I9x75snHb2U7NhJ49CYxuglqW2auJZumuL8xdlpCHWFRAunv3LvPmzaN48eLs2LGDAQMGMHjwYJYvXw5AVFQUAN7e3o+9z9vbO/u1qKgorKyscHV1fe42zzJ58mScnZ2zHwEBATn50QRBeMv5lShNt6mzKF61JrLBgDZ1G7LuHGHXE9ix8Ap6fe4NW1X7+lJwxXLUgQXRRkQQPuQLZF3uLkOQG4p6OtCr7SjeiS4MwC8Re7gbcdLMVQl5xRsFJK1WS2hoKDdu3CA+F37DMBgMVKpUiUmTJhEcHEz//v3p27cv8+bNe2w7SZIe+7Msy08996QXbTNq1CiSkpKyH6Ghoa//QQRBEJ7Bxt6Bll+MpFKz1gBkpexDn3WIexdi2LP0Wq4uKKn28iLgl1+MK26fPEn0Dz/k2rFzU72SXngVm0D5dNBIEt/s+gy9Pv+FQeHVvXJASk1NZf78+dSrVw9nZ2cKFSpEmTJl8PT0JDAwkL59+3Lq1ClT1Iqvry9lypR57LnSpUsTEhICgI+PD8BTZ4Kio6Ozzyr5+Pig0WhISEh47jbPYm1tjZOT02MPQRCEnCYpFNTr3oc6XXoCoE0/hS5jJzdPRnBg9Y3cbdwuVgzfqVMAiF+2nKRNm3Lt2LlpRPPy6JL7Ym8wcJEMVu0fae6ShDzglQLSjBkzKFSoEAsXLuS9995j/fr1nD9/nhs3bnDs2DHGjRuHTqejUaNGvP/++9y6dStHi61VqxY3btx47LmbN28SGBgIQOHChfHx8WHXrl3Zr2s0Gg4cOEDNmjUBqFy5Mmq1+rFtIiMjuXz5cvY2giAI5iRJElVbt6fJgM+RFAr0WVfQpm3iysEHHF1/J1dDklOjRrgPHABA5Ddjybx6NdeOnVscrFUMbteFCjFFAJgVsp3QqPPmLUowu1e6i61Dhw6MHTuWcuXK/ed2WVlZLFq0CCsrK/r06fPGRf7r1KlT1KxZkwkTJtCxY0dOnjxJ3759WbBgAR99ZFw2furUqUyePJklS5ZQvHhxJk2axP79+7lx4waOjo4ADBw4kC1btrB06VLc3NwYOnQocXFxnDlzBqVS+VK1iLvYBEHIDXfOnGTLzKnoNFlISl+sHNpQvU0ZqjQrnGs1yHo9oZ98QtqBg6j9/Cj01zpUT/Rx5gej/zrL3egeXLaDKpIDi7odEXe15UMv+/1tUbf5A2zZsoVRo0Zx69YtChcuzJdffknfvn2zX5dlmQkTJjB//nwSEhKoVq0av/zyC0FBQdnbZGZmMmzYMFatWkVGRgYNGjRg7ty5r9R4LQKSIAi5JfzGNTZOnUBmWiqSwg0rx3bU6VSJCg1y72YRfXIy9zp0QPsgBLvq1Sn420IklSrXjp8bUjK19P/5Z255LSFToWBMYEs61Ztk7rKEHJZvA1JeIQKSIAi5KTb0AX9NHkdqXCxIDlg5tqPhx7UoXdMv12rIunWLe506I6en4/bxx3iPGJ5rx84tB2/G8Pvf3TnqFYadQWZD87X4eZU1d1lCDsq1gHT16lVCQkLQaDSPPd+qVas32W2eJwKSIAi5LTk2hr8mjSU+PBQka6wcPqDpwMYUq+yVezXs2En4558D4Pfjjzi3aJ5rx84tX/9xklvxvbhuK1FD4cz8rodeeCe0YDlMHpDu3r3LBx98wKVLl5AkKbtp8N8fovw+tkMEJEEQzCEjJZkNUycQeesGoMLaqSUtP29DYJB7rtUQPX0GcQsWINnYUGj1KmxKl861Y+eG5EwtA37+iZteK8hSKPi2SAc+qDPW3GUJOcTkK2l//vnnFC5cmIcPH2JnZ8eVK1c4ePAgVapUYf/+/a+7W0EQBOE/2Do60WHM9xSuWAXQkZW8kU0zVxNxK+GF780pnp8Pxr5OHeTMTMI+G4QuIfeOnRucbNT0a9OLynEFAJh2+w8ext00c1VCbnvtgHTs2DG+/fZbPD09USgUKBQKateuzeTJkxk8eHBO1igIgiD8D7WNDa2HjaF0nfqAjCZlO39NXcjD+7kzcFVSKinw4w+oAwLQhocT8dVX+W6l7XolvXAL+JbimQZSFRLf/tMnV5dXEMzvtQOSXq/HwcEBAA8PDyIeTX0ODAx8aq0iQRAEIWcpVSqafvollZu3BUCTcpA/vptBbFjuzIlUOjvjP2cOkp0daUePET1jRq4cNzeNbFUZu4ROqGWZg/oEth6bZu6ShFz02gEpKCiIixcvAlCtWjWmTZvGkSNH+PbbbylSpEiOFSgIgiA8myRJ1Ovei9offgyAJvU0q8dOJD4yd0KSTckS+E36HoD4RYtJ3rYtV46bW5xt1fRuM4B34oxN8FNurCA28b55ixJyzWsHpDFjxmAwGIcnTpw4kQcPHlCnTh22bdvGrFmzcqxAQRAE4b9Va9OOhn0/BxRo0q6y8usxJETmTl+Q0/vv497XuCBwxOgxZOazKwj1S3nhWuBbimQZSFJIfL+tl7lLEnJJjq6DFB8fj6ur61txO6S4i00QhLzm2pHjbJs9FWQtahs/uk7+Hjc/T5MfV9brCe3Xn7QjR1D7+1N43Z8oXVxMftzckpSu5bPZ33LZewM6SeKnUr1pXG2IucsSXpPJ7mJLT0/n008/pUCBAnh5edGlSxdiY2MBcHNzeyvCkSAIQl5UulZ1Wg+dgKSwRZsZwYoRQ4kJCTf5cSWlkgI//Yja3x9tWBjhXw1FzkdLvTjbqenZ6jPeifcA4Purv5GQHGbmqgRTe+WANG7cOJYuXUrz5s3p3Lkzu3btYuDAgaaoTRAEQXhFxaqUp+3ISSiUTug0cfz+9VAib90x+XGVLi74/zIHydaWtCNHiJn5s8mPmZsalPbGxXsCgRoD8QqJKVvFpbb87pUD0vr161m0aBELFixg1qxZbN26lY0bN+b7hSEFQRAsRaEKxWk7ejIKlQd6bQprxo0g5NIlkx/XpmRJfCd+B0DcwoUkb99u8mPmpq8/qIFbfCsUssw2TST7z8wzd0mCCb1yQAoNDaVOnTrZf65atSoqlSr7Nn9BEATB/ALLBtL260ko1AUw6DNZN+kbbh4/avLjOjdvjltv49mViFFfk3kj/yyw6GJnRbeWQ6ia4ArAhItzSU59aOaqBFN55YCk1+uxsrJ67DmVSoUuny0SJgiCYOkCy/rRZsQElFZFkQ06Ns+YzMXdpj+r4/XFF9jXrIGckUHYoEHok3JnAcvc0KiMNy6e4/HXGIhVwLStH5u7JMFEXvkuNoVCQdOmTbG2ts5+bvPmzbz33nvY29tnP7d+/fqcqzIPEnexCYJgKW6fjWLLzJnosy4DULNjV6q37WTSm2p0CQncb98BbXg49nXqEPDrPCSl0mTHy00JaRqGzBnFOe8dyJLErxW+pFZFEZQshcnuYuvRowdeXl44OztnP7p27Yqfn99jzwmCIAh5Q7FKPrz/yecobaoBcPSPlexd8isGg+l6R1WurvjPmY1kY0PaoUPEzJptsmPlNld7K7q0GEbVJOOX67iz00lNjzVzVUJOy9F1kN4m4gySIAiW5vLBcPYsXoMuYx8AJWrUoemnX6JSq012zKTNW4gYNgyAAj//jFOTxiY7Vm4bumInF7O+IFKtoINdYcZ22GTukoSXYLIzSIIgCIJlCnq3AHW6tEdt3xxQcPPYITZMGUdWerrJjuncsgVuPXsCEDFqFFm3bpnsWLnt67b18ItvAMCf6fc4eel3M1ck5KQ3OoO0Z88e9uzZQ3R0dPbYkX8tXrz4jYvLy8QZJEEQLNWJTXc58fcBtKmbAC1ehYvSduR47F1cTXI8WacjpE9f0o8fxyowkEJ//oEyn/y7+c+lSP7c14ZTzukU0Eus73IIOxvRZpKXmfwM0oQJE2jcuDF79uwhNjaWhISExx6CIAhC3lS1ZWEqNq6FlWNHkGyJvneHNWOHkxgVaZLjSSoVBWZMR+3nh+bBA8KHDUN+4pdqS9W0nC/OLuPw0hkIV8rMEgtI5huvfQbJ19eXadOm0a1bt5yuySKIM0iCIFgy2SCzd8U1rh6+hjZ1PbIhCTtnF9qOmoB34aImOWbGlSs86PIRclYWHp8MxHPwYJMcJ7fFpWYxbO4QTnkfRpJlllUdR3CZDuYuS3gOk59B0mg01KxZ83XfLgiCIJiRpJCo37UUxauUwMqxMwqVJ+lJifwxYSQhly+a5Ji2Zcvi+923AMTOnUfyrl0mOU5uc3ewpl2Tb6iSbIMsSYw5PpHMrBRzlyW8odcOSH369GHVqlU5WYsgCIKQixRKBY16lSWwXABqh44orQLQZGSwfvJYbh4/bJJjOrdqhVuP7gBEjhhJ1h3Tz4nLDc0r+OHqNAZ3nYEQpYFftvU1d0nCG3qlS2xffvll9v9vMBhYtmwZ5cuXp3z58qifuE10+vTpOVdlHiQusQmCkF9oNXo2zzpPxK04DFnb0WbcBEmiQa+BVGzcLMePJ2u1hPTuQ/rJk1gVKmRs2nZ0zPHj5LbY1CyGz/2UU94nUMgyv9ecTFCJluYuS3jCy35/v1JAql+//kttJ0kSe/fufdndWiQRkARByE+yMnT8PeMc0Q+SQH+ArJRzAFRv9yE1O3TJ8VW3dfHx3GvXHl1kJA716uE/9xckheWvPLP5fDjrDrfirKOGInoFf3Y9hpWVnbnLEv6HSQKS8P9EQBIEIb/JSNWw4adzxEekolKeJi3uEADlG7xPgz4DUShydlRIxuUrPOjSBVmjwePTT/Ec9FmO7t8cZFnmq6XrOSWPJVGpoJ9LMINaLzd3WcL/MEmTdkhIyCsVER4e/krbC4IgCOZj62BF688r4uxpi97wDs6+zZAkBRf3bGfz9CnoNJqcPV5QWXy+nQBA7C+/kJIPrjxIksSo9i0oEVcFgMUJZ7l+Z6eZqxJexysFpHfeeYe+ffty8uTJ526TlJTEwoULCQoKyvcDawVBEPIbexdrWg8Jxt7ZiqzMUrgHtkehUnH71DH+mjSWzLTUHD2eS5s2uD5aLiZi2HCy7t7N0f2bg6ejNS0bTKRCqhqdJDHm4Ai0ukxzlyW8ole6xBYfH8+kSZNYvHgxarWaKlWq4Ofnh42NDQkJCVy9epUrV65QpUoVxowZQ9OmTU1Zu1mJS2yCIORn8RFpbJh+lsxULa7eCcQ9WIsmIx3PgoVo+/W3OLi65dixZK2WkI97kX76NFaFCxubth0ccmz/5iDLMl8sWcspviNZqeAz96r0b7HI3GUJmLgHKTMzk23btnHo0CHu379PRkYGHh4eBAcH06RJE4KCgt6oeEsgApIgCPldTEgKG6efRZOpxztQQ8z930lPTMDJ05v2o7/F1bdAjh1LFxdnbNqOisKhQQP8Z8+y+Kbt6ORMvp7fmxNeF1HLMn/Un0OxwHrmLuutJ5q0TUwEJEEQ3gYRtxPZ/PN5dFoDAaWVxNxdSWJUJLZOzrQdOR6fosVz7FgZly7x4KOuxqbtQZ/h+emnObZvc1l/JoR1J1pxyV5PWYOa37udQKlSv/iNgsmYfCVtQRAEIf/zK+ZC0wHlUCglQq/p8Q/qh3fhYmQkJ/HHhFHcv3gux45lW64cPuPHAxA7ew4p+/bl2L7N5YNKAXhZfYW9wcAVhZblO/PHeJW3gQhIgiAIwn8qWNadxn3KIklw+0wK/uV6UbBcRbRZmWyYMoFrRw7k2LFc2n6Aa5cuwKOm7Xv3cmzf5iBJEqM6diAoriwAvzw8xP2wY2auSngZIiAJgiAIL1Q02Iv3upcG4MqhWPyDulOy5rsY9Dq2zfqBs9v+zrFjeY8aiW2VyhhSUwn7bBD61LQc27c5eDvZ8H7dHyiTriBLITFm1yAMBr25yxJeQAQkQRAE4aWUquFLnU4lADi7PQy/0h0Jft84SmPfsoUcWr2MnGhrldRq/GfOROXtjebOHSJHjUQ2GN54v+bUrkpBvFVDsDMYuKDIYvWuL1/8JsGs3jgghYeHiwUhBUEQ3hLl6/tTrXURAI6tv4tX0ebU7mwcPnty45/snD8Lg/7Nz46oPDzwn/UzklpNyq7dxC1Y8Mb7NCdJkvi644cExRsD5s8RewiLOGPmqoT/8toB6ciRIxQuXJiCBQtSsGBBvL29GTFiBMnJyTlZnyAIgpDHVH4/kEpNCgJwYPVN3Pzr0rj/YCRJweV9u/j7x4los958YUTbChXwGT8OgJifZ5F6IOd6nczBx9mGJnV+olSGRIZC4pudAy3+zFh+9toBqX///pQtW5ZTp05x8eJFfvjhB/bs2UPlypWJjY3NyRoFQRCEPESSJKq3KUrQuwVAht1LruLoUYlWQ0ejUltx9+wp1n0/lozUlDc+lku7drh82BlkmfChw9Dcv//mH8CMOrxTGF/Fp1gbDJyWMli3d6S5SxKe47UD0p07d5gxYwaVKlWibNmydO/enVOnTlGxYkUGDzbdbYyFChVCkqSnHp8+Wi9DlmXGjx+Pn58ftra21KtXjytXrjy2j6ysLAYNGoSHhwf29va0atWKsLAwk9UsCIKQ30iSxLudS1CimjcGg8z2BZexcSxBuzHfYW1vT8SNq6wdN4KUuDf/hdln1ChsK1XCkJJC6GefWXTTtiRJjOzYnYoJxsuUP4VuI+rhRTNXJTzLawek0qVLExUV9dhzkiTx7bffsnnz5jcu7HlOnTpFZGRk9mPXrl0AdOjQAYBp06Yxffp05syZw6lTp/Dx8aFRo0akpPz/bzJDhgxhw4YNrFmzhsOHD5OamkqLFi3Q58B1c0EQhLeFpJBo0L00hSt4oNcZ2Dr3IiprfzqPn4qDqxtxYSGs/mYYcWGhb3YcKyv8f56JyssLze07RH79dY40g5uLn4stDWtOp3gmpCkkxm7vLy615UGvHZB69uxJv379CAkJeez5pKQknJ2d37iw5/H09MTHxyf7sWXLFooWLUrdunWRZZmZM2cyevRo2rZtS1BQEMuWLSM9PZ1Vq1Zl17do0SJ++uknGjZsSHBwMCtXruTSpUvs3r3bZHULgiDkRwqlgiZ9gvAv5YouS8+W2RdA4cGH3/2Iq58/KXExrBk3nIib19/oOCpPT/xn/QxqNSk7dxK3YGEOfQLz6FStGAXk/lgZZI6RyqYD48xdkvCE1w5IQ4YM4caNG5QoUYIuXbowbdo0Jk+eTO/evfnhhx9yssbn0mg0rFy5kl69eiFJEvfu3SMqKorGjRtnb2NtbU3dunU5evQoAGfOnEGr1T62jZ+fH0FBQdnbPEtWVhbJycmPPQRBEARQqhU0G1genyLOZKXr2DTrPDIOdJ4wFZ9iJchMTeHPiaOJvHXjjY5jW7EiPt+MASBm5kzST53KifLNQpIkRnbuTXCCsdl96v0NJCY+MHNVwv967YAUFRXFP//8w7fffgvA0qVLGTt2LLdu3WLKlCl07dqVadOmsX379hwr9kkbN24kMTGRnj17ZtcE4O3t/dh23t7e2a9FRUVhZWWFq6vrc7d5lsmTJ+Ps7Jz9CAgIyMFPIgiCYNnU1kpafFYejwAHMpI1bPr5PLJsQ8dvJhFYPhhdVhYbpk4gISrijY7j2rEjzu3agiwTOW48Bo0mhz5B7ivgYkvdqtMJzJJJUUgs3C3WRspLXjsgeXl50aRJE4YPH86qVau4evUqKSkpHDlyhM8++wwXFxc2bdpE586dc7LexyxatIimTZvi5+f32POSJD32Z1mWn3ruSS/aZtSoUSQlJWU/QkPf7Jq6IAhCfmNtp6bloIo4edqSHJvJ5lkXMBiUtPrqa7yLFCMjJZn1k8aRnpz0RsfxHjECpYcHmrt3ifvttxyq3jw61yiBb9p7AKxNuUHUw8tmrkj4V46upG1jY8M777xD3759mTNnDocPHyYxMTEnD5HtwYMH7N69mz59+mQ/5+PjA/DUmaDo6Ojss0o+Pj5oNBoSEhKeu82zWFtb4+Tk9NhDEARBeJydkxWtBlfEzsmKuPBUts69iEJhxQcjxuHs5U3iw0g2TJ3wRuskKZ2c8B5lvD0+7tf5Fn3rv1qpoHX9EZTIkMhSSPyyZ6i5SxIesdhRI0uWLMHLy4vmzZtnP1e4cGF8fHyy72wDY5/SgQMHqFmzJgCVK1dGrVY/tk1kZCSXL1/O3kYQBEF4fc6etrQcXBErWxWRt5PY8dsVbB2daTtqAjYOjkTdvsnWWT+80Twyp2bNsK9dG1mjIXLCBIu+q615BT88Na0B2KwJ417IITNXJICFBiSDwcCSJUvo0aMHKpUq+3lJkhgyZAiTJk1iw4YNXL58mZ49e2JnZ0eXR9OhnZ2d6d27N1999RV79uzh3LlzdO3alXLlytGwYUNzfSRBEIR8xcPfgeaflEepVnD/Yiz7Vl7H1bcAbYZ9g1Kt5s7pE+xdPP+1g40kSfiMG4tkbU36seMkm3B5GVOTJIluzT4nKE2FXpL4+cBoc5ckYKEBaffu3YSEhNCrV6+nXhs+fDhDhgzhk08+oUqVKoSHh7Nz504cHR2zt5kxYwZt2rShY8eO1KpVCzs7OzZv3oxSqczNjyEIgpCv+RV3oUnfICSFxPVjURxbf4cCpcrQbNBQkCQu7NrGqU1/vfb+rQIC8PjkEwAeTpmK3kQtHbmhVjEPPKXuSLLMHkMCV278be6S3nqSbMnnJc0oOTkZZ2dnkpKSRD+SIAjCf7h2NJK9y68BUKNtUSo1DuTsP5vYt9Q4gLbZZ19Ruk7919q3rNFwr107sm7dxqVDe3y/+y7H6s5tl8KSmLahEeedMqgq27Go5wlzl5Qvvez3t0WeQRIEQRAsR+mavtRsWwyAY+vvcO1oJJWatqJy8zYAbJ/3MyGXL7zWviUrK3wmTAAg8c91pJ8+nSM1m0M5f2e8HT9BJcuclNI5cX6JuUt6q4mAJAiCIJhccOOCBDcyLoq4b+V17l2IoW7XXpSoUQeDXsffP35PTMj919q3XaVKuDwaNxU5bjyyBa+N9GmLDlRIcgFg+tlZYgSJGYmAJAiCIOSKGm2LUqqmL7JBZsdvV4i8k0TTT76gQKmyaDLSWT9l/GsPt/X66kuU7u5o7twhbrHlnnkp7GFPoM8wbA0Grip17D0x3dwlvbVEQBIEQRByhSRJ1P+oJIXKe6DXGtg69xKJ0Vm0HjYGtwIBpMbFsn7KeLLS015530oXF7xHjgAgdt48NA8sd2zHp02bUC7RF4CZ15aj12nNXNHbSQQkQRAEIdcYh9uWxbeYM5oMHZtnXUCToaLdqAnYu7gSG3KfTT9Neq1Q4NSiBfY1ayBnZRE14VuLXRvJy8mGMkVH46Q3cF8p8/fBseYu6a0kApIgCIKQq1RWSpp/Uh53fwfSkzVsmnUepZUzH4wcj9rGlpDLF9jx66xXDjjGtZHGIVlZkXb0KMlbt5noE5he38a1KZ1UBIB59zejyUo1c0VvHxGQBEEQhFxnnNtWAScPG5JjMtg8+wIuPoG0+mIkkkLBtUP7OLJ2xSvv1yowEI+BAwB4OHky+qQ3m/tmLk42aqqW/xYPnYEopcTqPcPNXdJbRwQkQRAEwSzsna1p9XlFbJ2siAtLZdvci/iXrUjjfoMAOLHhDy7sevWzQG69e2NVtCj6uDiif7LcJufu75aneHI5AH6LOkhaWrSZK3q7iIAkCIIgmI2zpx0tB1XAykZJxK1Edv52hTLvNqBGe+N4qD2LfuXOmVdbMFFhZYXv+HEAJP7xB+lnz+V43bnBRq2kQc3vKKAxkKiUWLzzC3OX9FYRAUkQBEEwK88AR5p9Uh6lSsG9C7Hs//0G1dt1Jqh+I2TZwJafpxF5+8Yr7dPunXdwbt8OgKhx45C1lnknWLsqRQlMMw5SX5l4gfiEu2au6O0hApIgCIJgdgVKuNK4T1kkyTia5MTfd2nY51MKVayMLiuLDVO/JTEq8pX26fXVVyhdXcm6dYu4JUtNU7iJqZQK2jQYR5FMSFdIzNs5xNwlvTVEQBIEQRDyhCIVPanXtRQAZ3eEcHFfBC2HjMCrUFEykpP4a/JY0pNfvula5er6/2sj/fILmtBQk9Rtau8HFSBA8z4Af2XcJTLSMi8ZWhoRkARBEIQ8o0wtP2p8UBSAo3/d5u6FJD4YOQ4nTy8SoyLZOO1btFmZL70/p1atsKte3aLXRpIkia5Nh1MqXYFWkvh5zzBzl/RWEAFJEARByFOCGxekYsMAAPYuv05sqIG2IydgY+9A5K0bbJv9IwaD/qX2ZVwbaSySWk3a4cOk/POPKUs3merFPAlQdATgH10Ud+7tM3NF+Z8ISIIgCEKeIkkSNdsWo1R1H2SDzPaFl8nKdKT18G9QqtXcPnWcfUsXvPTZIOvChXEf0B+AqEmT0Scnm7J8k+nbahDlUq0wSBLTD44xdzn5nghIgiAIQp4jKSTqdStFoXLuxrltv1zExiGQpp9+BZLE+R1bOb15/Uvvz71vX6wKF0YfG0v0jBkmrNx0Svs6UcihDwpZ5iDJXLq2ztwl5WsiIAmCIAh5klKpoHHfoP+Z23Ye3+KVqdetNwAHf1/CtSMHXmpfCisrfMaPByBxzVrSz1lmo/PAlj2okOIAwA/HplhkT5WlEAFJEARByLPU/85tK2BPerKGv38+T+k6zajUrDUAO+bOIPTKxZfal321qjh/8AHIMlHjxlvk2kgBbnaU8PoStSxzTpnF0TPzzV1SviUCkiAIgpCnWdupaTm4Io7u/85tO0+N9j0oUa0Wep2Ov3/8ntjQBy+1L6/hw1C6uJB18ybxy5ebuHLTGNC8NRWS3QGYceHXl25YF16NCEiCIAhCnpc9t81RTWxoKv/8eplG/YfgV7IMWelprJ88npT42BfuR+Xqitdw4+DXmNlz0ISFm7r0HOfhYE2FwqOxMxi4odKz48gUc5eUL4mAJAiCIFgEFy87Wg6qiPrR3La9y2/R6suvcfXzJyUuhg2Tx5OVnv7C/Th/0Aa7d95Bzswk6jvLXBupT+P3KJfkD8Dsm2vQ6bLMXFH+IwKSIAiCYDE8CzrSfOD/z207sTmStiPHYefsQkzIfTZNn4Re99+9RZIk4TNhvHFtpAMHSdmxI5eqzzkO1ipqlP8WZ72BUBX8tW+0uUvKd0RAEgRBECxKgZKuNO79aG7bkUiuHUun7cjxqK1tCLl0np3zZ7/wrJB1kSK49+0LwMPvJ6FPScmN0nNU13erUCa5JADzQ7eTmZFo3oLyGRGQhHylUKFCzJw5M/vPkiSxcePGl37/+PHjqVixYo7XJQhCzioS7Em9jx7Nbdv+gMi7VrT8YiSSQsHVg3s5+sfKF+7DvX8/rAID0cXEEDNjpokrznnWKiWNa07ES2sgRimxfNdQc5eUr4iAJDzl6NGjKJVK3n///adeu3//PpIkoVKpCA9/vLkxMjISlUqFJEncv38/+/m//vqLatWq4ezsjKOjI2XLluWrr756qVr69euHUqlkzZo1r/VZIiMjadq06Wu99028ajATBOHVlantR/U2RQA4su42mqwCNOzzKQDH16/l4u7t//l+hbU1PhPGA5CwejUZF19uuYC8pG2V0pRMrwzAsthjpCRHmLmi/EMEJOEpixcvZtCgQRw+fJiQkJBnbuPn58fyJ26RXbZsGQUKFHjsud27d9O5c2fat2/PyZMnOXPmDN9//z0ajeaFdaSnp7N27VqGDRvGokWLXuuz+Pj4YG1t/VrvFQQh76vUJJAKDYxz2/Ysv46TV2Wqt/sQgN2L5nL37Kn/fL999eo4t24Fskzk2HHIOp3Ja85JCoVE+wbfE6CRSVYqWLBjiLlLyjdEQBIek5aWxh9//MHAgQNp0aIFS5cufeZ2PXr0YMmSJY89t3TpUnr06PHYc1u2bKF27doMGzaMkiVLUqJECdq0acPs2bNfWMuff/5JmTJlGDVqFEeOHHnsrBRAdHQ0LVu2xNbWlsKFC/P7778/tY8nz+SMGDGCEiVKYGdnR5EiRfjmm2/QPmOxuPnz5xMQEICdnR0dOnQgMTEx+7VTp07RqFEjPDw8cHZ2pm7dupw9ezb79UKFCgHwwQcfIElS9p8FQch5kiRRq10xSlYzzm3bseAyhYObUbZuQ2SDgc0zpxB159Z/7sNrxAiUzs5kXb9O/PIVuVR5zqlfxp9imnoArEm9SmzsDfMWlE+IgJQLZFkmXaMzy+NVb19du3YtJUuWpGTJknTt2pUlS5Y8cx+tWrUiISGBw4cPA3D48GHi4+Np2bLlY9v5+Phw5coVLl++/Mr/3RYtWkTXrl1xdnamWbNmTwWynj17cv/+ffbu3cu6deuYO3cu0dHR/7lPR0dHli5dytWrV/n5559ZuHAhM56Yy3T79m3++OMPNm/ezPbt2zl//jyffvpp9uspKSn06NGDQ4cOcfz4cYoXL06zZs1IedTkeeqU8TfWJUuWEBkZmf1nQRBMQ1JI1O9eisBy7ui0BrbNu0TlFj0JLB+MLiuLDVMnkPgw6rnvV7m54TV8GAAxs2ejDbestZEkSaJH8wkUzYRMhcTsnV+Yu6R8QZItcQGIPCA5ORlnZ2eSkpJwcnL6z23TNTrKjDXPbaRXv22CnZXqpbevVasWHTt25PPPP0en0+Hr68vq1atp2LAhYOxBKly4MOfOnWPZsmUkJSWxePFievXqhYuLC927dyc4OJh79+5RqFAh0tLS6NixI9u2bSMwMJDq1avTuHFjPvroo/+89HXr1i3Kli1LREQEHh4ebNy4kcGDB3P//n0UCgU3b96kZMmSHD9+nGrVqgFw/fp1SpcuzYwZMxgyZAhg/Idjw4YNtGnT5pnH+eGHH1i7di2nT58GjE3aEydO5P79+/j7G9cY2b59O82bNyc8PBwfH5+n9qHX63F1dWXVqlW0aNHipY4rCELO02r0bP75PJF3krBztqLlZ6XZNmcCMffv4upbgA+/+wFbx2f/ey3LMg+6dSPj9Bkc6tXDf95cJEnK5U/wZoYv+IZ/rDeikmU2N1qMf4Gq5i4pT3rZ729xBknIduPGDU6ePEnnzp0BUKlUdOrUicWLFz9z+969e/Pnn38SFRXFn3/+Sa9evZ7axt7enq1bt3L79m3GjBmDg4MDX331FVWrViX9PxZ0W7RoEU2aNMHDwwOAZs2akZaWxu7duwG4du0aKpWKKlWqZL+nVKlSuLi4/OdnXLduHbVr18bHxwcHBwe++eabp/qsChYsmB2OAGrUqIHBYODGDeNp6+joaAYMGECJEiVwdnbG2dmZ1NTU5/ZrCYKQO9RWSpp9Uh43P3vSkzRsX3CTpp9+jaOHJwmR4Wyc9h1azbMXVJQkCd/x40GtJnX/flJ27crd4nNA39bDKZOuRCdJTN8z3NzlWLyXP7UgvDZbtZKr3zYx27Ff1qJFi9DpdI81WsuyjFqtJiEhAVdX18e2DwoKolSpUnz44YeULl2aoKAgzp8//8x9Fy1alKJFi9KnTx9Gjx5NiRIlWLt2LR9//PFT2+r1epYvX05UVBQqleqx5xctWkTjxo2zL/u9ym94x48fp3PnzkyYMIEmTZrg7OzMmjVr+Omnn/7zff8e49//27NnT2JiYpg5cyaBgYFYW1tTo0aNl2o8FwTBtGzs1bQaXJG/fjhDUkwG+1aG0uqLsaybNJKIm9fYNutHWn45EoXi6X8brYsVw71Pb+Lm/crDid9jX7MmSgcHM3yK11Pc25ESdj24ymJ2G2K5cXs7JYs9fTey8HLEGaRcIEkSdlYqszxeNkDodDqWL1/OTz/9xPnz57MfFy5cIDAw8JkN0AC9evVi//79zzx79DyFChXCzs6OtLS0Z76+bds2UlJSOHfu3GO1/Pnnn2zcuJG4uDhKly6NTqfLvjQGxjNg/9tM/aQjR44QGBjI6NGjqVKlCsWLF+fBg6cHXIaEhBAR8f+3yh47dgyFQkGJEiUAOHToEIMHD6ZZs2aULVsWa2trYmMfnwGlVqvR68UASUEwB3sXa1oNNs5tiwlJ4fjmBFp+MRqlSsXtU8fYv/y35/ZnevTvjzqwILroaGJm/pzLlb+5ga0HUD7VBlmS+OnQeHOXY9FEQBIA491mCQkJ9O7dm6CgoMce7du3f+5t9n379iUmJoY+ffo88/Xx48czfPhw9u/fz7179zh37hy9evVCq9XSqFGjZ75n0aJFNG/enAoVKjxWR7t27fD09GTlypWULFmS999/n759+3LixAnOnDlDnz59sLW1fe5nLFasGCEhIaxZs4Y7d+4wa9YsNmzY8NR2NjY29OjRgwsXLmSHoY4dO2b3HxUrVowVK1Zw7do1Tpw4wUcfffTUcQsVKsSePXuIiooiISHhuTUJgmAaLt7/P7ct/EYiV49KNPnkSwDO/bOZM1s3PvN9ChsbfMeNAyDh99/JuHQpt0rOEX4utgR5foZSljmmSOPMxWf/ciu8mAhIAmAMJQ0bNsTZ2fmp19q1a8f58+cfu5X9XyqVCg8Pj8cuhf2vunXrcvfuXbp3706pUqVo2rQpUVFR7Ny5k5IlSz61/cOHD9m6dSvt2rV76jVJkmjbtm12WFuyZAkBAQHUrVuXtm3b0q9fP7y8vJ77GVu3bs0XX3zBZ599RsWKFTl69CjffPPNU9sVK1aMtm3b0qxZMxo3bkxQUBBz587Nfn3x4sUkJCQQHBxMt27dGDx48FPH/emnn9i1axcBAQEEBwc/tyZBEEzHs6AjzQaWR6GSuHsuhqh7Xrzb1Xi2+8CKRVw/evCZ77OvWROnli2NayONs7y1kQY0/5CKKcbm4+mnfkI2GMxckWUSd7G9ple5i00QBEEwnzvnotmx4DKyDJXeL0hG4h7O/bMZpUpF+9ET8S8T9NR7dHFx3GnWHENSEl4jR+Des2fuF/4G5mzZxNKYr8lSSMwu2Zd61Qebu6Q8Q9zFJgiCIAhA0WAv6nYxnrE+uz0EtwLvU+ydGuh1Ojb++B1xYU/fgapyd8frK+MluZhZs9FGRuZqzW+qV+NmVEgxntmeeWURBr1lnQXLC0RAEgRBEPK9snUKUK31o7ltf92hePVu+JYoRVZaGn9NHkdqfNxT73Fp3x7bSpWQ09OJmvh9bpf8RuysVLxbbgL2BgN3VAY2H/zO3CVZHIsKSDqdjjFjxlC4cGFsbW0pUqQI3377LYb/ub4qyzLjx4/Hz88PW1tb6tWrx5UrVx7bT1ZWFoMGDcLDwwN7e3tatWpFWFhYbn8cQRAEIRdVfj+QCu8Z57YdWHWHKi0/w9W3ACmxMayfOgFNxuNrs0kKBb4TxoNKReqePaQ8WofNUnR5txYVUgoDMO/uerTa5689JzzNogLS1KlT+fXXX5kzZw7Xrl1j2rRp/PDDD4/N9Zo2bRrTp09nzpw5nDp1Ch8fHxo1apQ9BgJgyJAhbNiwgTVr1nD48GFSU1Np0aKFuC1bEAQhH5MkiVrti1GimjcGg8y+Ffep03Uods4uxNy/y6bpk9E/0ZBtXbw47o+WMYma+D361GcvT5IXqZUKmtaYhKvOQLgKVu8aae6SLIpFBaRjx47RunVrmjdvTqFChWjfvj2NGzfOXgtHlmVmzpzJ6NGjadu2LUFBQSxbtoz09HRWrVoFQFJSEosWLeKnn36iYcOGBAcHs3LlSi5dupS9SrMgCIKQP0kKife6l6ZgWePctgOrInmv1zBU1tY8uHiOXQvmPLVGksfAAagDAtBFRRE7e5aZKn89rSqXo3y6sQl9cdReMtLjzVyR5bCogFS7dm327NnDzZs3Abhw4QKHDx+mWbNmANy7d4+oqCgaN26c/R5ra2vq1q3L0aNHAThz5gxarfaxbfz8/AgKCsre5lmysrJITk5+7CEIgiBYHqVSwfv9gvAp4kRWuo5jG1Jo0OsLJEnBlQO7ObZu1WPbK2xt8Rk7FoD4FSvJuHzlWbvNkxQKifYNpuCjNRCnlFi0fYi5S7IYFhWQRowYwYcffkipUqVQq9UEBwczZMgQPvzwQwCioozTmr29vR97n7e3d/ZrUVFRWFlZPTU243+3eZbJkydnz91ydnYmICAgJz+aIAiCkIvU1kqaf1oBNz970pI0XNin4t2u/QA4tm41l/bufGx7hzq1cWrWDAwGosaNQ7aglox6ZQpTVlMDgFWJZ0hKCjVzRZbBogLS2rVrWblyJatWreLs2bMsW7aMH3/8kWXLlj223ZPjNWRZfuHIjRdtM2rUKJKSkrIfoaHiB0wQBMGS2diraTmoIo5uNiQ+TOfuRW/eadUBgF0L53Dv3OnHtvceNRKFoyOZV66Q8PuqZ+0yz+rZfBIFs2RSlArm/iPWRHoZFhWQhg0bxsiRI+ncuTPlypWjW7dufPHFF0yePBkgexTEk2eCoqOjs88q+fj4oNFonhr/8L/bPIu1tTVOTk6PPQRBEATL5uBqTavPK2LjYJzbFvewHKVr10c2GNg8YwoP797O3lbl6YnXV18BEDNzJtr/uOqQ11QM9KKcZBxc+1fGLaKjL5u5orzPogJSeno6CsXjJSuVyuzb/AsXLoyPjw+7du3Kfl2j0XDgwAFq1qwJQOXKlVGr1Y9tExkZyeXLl7O3EfKO+/fvI0kS58+fz9Xj7N+/H0mS/nP47ZPq1avHkCFDTFKfIAimY5zbVgG1tZKIm4mgfo+CQRXRZmWyfsp4kqIf/v+2HTtgW7EihvR0Hn5vWWsj9W01lmIZElkKiRk7vjR3OXmeRQWkli1b8v3337N161bu37/Phg0bmD59Oh988AFgvLQ2ZMgQJk2axIYNG7h8+TI9e/bEzs6OLl26AODs7Ezv3r356quv2LNnD+fOnaNr166UK1eOhg0bmvPj5Qk9e/ZEkiQkSUKtVlOkSBGGDh1KWprl3NqaE2rWrElkZOQzZ9OZ0usEM0EQ3pxXoBPNBpZDoZK4dz4Bt4D2eBQsRHpSIn9NHkdGqnGpGEmhwGfCBFCpSNm1m5S9e81c+csr6u1EebvOAGzXR/Ag5IiZK8rbLCogzZ49m/bt2/PJJ59QunRphg4dSv/+/fnuu/9fIXT48OEMGTKETz75hCpVqhAeHs7OnTtxdHTM3mbGjBm0adOGjh07UqtWLezs7Ni8eTNKpdIcHyvPef/994mMjOTu3btMnDiRuXPnMnToUHOXlausrKzw8fF5Ye+aIAj5h38pNxp9XBYkuH48nsKVe+Ho7klCRBgbp32HTqMBwKZkCdw/7glA1HcTMVjQL5CftPmSsulqdJLET3vEukj/xaICkqOjIzNnzuTBgwdkZGRw584dJk6ciJWVVfY2kiQxfvx4IiMjyczM5MCBAwQFPT6I0MbGhtmzZxMXF0d6ejqbN28Wd6X9D2tra3x8fAgICKBLly589NFHbNy4kQsXLlC/fn0cHR1xcnKicuXK2WtQARw9epR3330XW1tbAgICGDx48GNnniRJYuPGjY8dy8XFhaVLl2b/+eTJkwQHB2NjY0OVKlU4d+7cU/UdOHCAqlWrYm1tja+vLyNHjkT3P4u7bd++ndq1a+Pi4oK7uzstWrTgzp07j+3jRcd58kxOXFwcH374If7+/tjZ2VGuXDlWr179VG06nY7PPvss+9hjxox5bE2VlStXUqVKFRwdHfHx8aFLly5ER0cDxst89evXB8DV1RVJkuhpYQMyBcHSFavsRd0PjXPbLu1PpOx7A7C2syfixlX+mfMT8qOWDo9PPkFdoAC6yEhiZs8xZ8mvxNvJhkruxrv19ikSuXJjk5kryrssKiBZLFkGTdr/tXffYVFc7cPHv0vvCKgg1YKggCCKBXvHXhM1NlDsvZdYwJjYIvZHY0ExiS3GEiv2GuyKYm/YIVgQpEg97x+87s+liRXF87muvRJmzpy579mVvTlzZiZ/XpluePY+dHV1SUlJoXPnzlhbW3P69GnOnj3L2LFj0dTUBCAsLAwvLy/atm3LxYsXWb9+PceOHWPgwIF53k98fDzNmzfH0dGRs2fP4u/vn2Xk6tGjRzRt2pRKlSpx4cIFFi9eTGBgID///LNKP8OHD+f06dPs378fNTU12rRpo5yrlpf9ZPbq1SsqVqzI9u3buXTpEr1796Zr166cPHlSpd2qVavQ0NDg5MmTzJ8/nzlz5rB8+XLl+uTkZKZMmcKFCxfYsmUL4eHhyiLIxsaGjRs3AnD9+nUiIiKYN29eno+fJEkfh0stK6q0zHhER+i+eCo074e6hgY3Tv7L4T8Dgf9/byS/1/dG+oNXV67kW7zvqk8LX8rH6QEQcEw+oy0nGvkdwDchJQGmWubPvn98DFr67735qVOnWLNmDfXr12fXrl2MGjWKMmXKAFC6dGllu19//ZVOnTopJymXLl2a+fPnU7t2bRYvXoyOjs5b97V69WrS0tJYsWIFenp6ODs78/DhQ/r166dss2jRImxsbFi4cCEKhYIyZcrw+PFjxowZw6RJk1BTU6Ndu3Yq/QYGBlK0aFGuXLmCi4tLnvaTmZWVlUoRNWjQIIKDg9mwYQNVqlRRLrexsWHOnDkoFAocHR0JCwtjzpw59OrVC4Ae//+RBQAlS5Zk/vz5VK5cmbi4OAwMDDA1NQWgaNGiFCpU6K3HTJKkT6Nik+Ikvkzh4sGHXNgvqNiyJ6c2/cbZHf9gaFaEis1aY1CrFoZNGvNyVzARfv4UX7cWxVcwVcNYV5NqdiO49PQnTmu8IuTcCqpV6PH2Db8xcgRJymL79u0YGBigo6ODp6cntWrVYsGCBQwfPpyePXvSoEEDpk+frnLa6uzZswQFBWFgYKB8eXl5kZ6eTnh4eJ72e/XqVdzc3NDT01Mu8/T0zNLG09NTZW5Q9erViYuLUz5w+Pbt23Tq1ImSJUtiZGREiRIZfwnev38/z/vJLC0tjV9++QVXV1fMzMwwMDBgz549yj5fq1q1qkpsnp6e3Lx5U/mcv/Pnz9OqVSvs7OwwNDSkTp06KrFJkvRlUCgU1Pi+NKUrZTy37cq/Brg3ybgp8aE/Arl+/BgA5uPGoWZgwKuwMKLXrsvPkN9Jd692uMdl3DB53rkFylOH0v+RI0ifg6ZexkhOfu37HdWtW5fFixejqamJpaWl8jSav78/nTp1YseOHezatQs/Pz/WrVunPH3Vp08fBg/OegMyW1tbIOMXTuZnHKWkpCj/P/O67GR3Q8/X271e3qJFC2xsbFi2bBmWlpakp6fj4uJC8v+fYJmX/WQWEBDAnDlzmDt3LuXKlUNfX5+hQ4cq+8yL+Ph4GjVqRKNGjfjzzz8pUqQI9+/fx8vL6536kSTp81CoKajvXZakhBTuX37O7QvWlKnRiGvH9rDrfwHom5hgXcaZIsOH8d9PU3gyZw6GDRugmcs99b4UOprq1HP24+LdoVzRTGVPSABeNUbld1hfFDmC9DkoFBmnufLj9R5XYenr62Nvb4+dnZ2yOHrNwcGBYcOGsWfPHtq2bcvKlSsBqFChApcvX8be3j7L6/Uk+iJFihAREaHs6+bNmyQkJCh/dnJy4sKFCyQmJiqXnThxQmX/Tk5OhISEqBQ5ISEhGBoaYmVlxbNnz7h69SoTJkygfv36lC1bNstNQfOyn8yOHj1Kq1at6NKlC25ubpQsWZKbN29maZe5nxMnTlC6dGnU1dW5du0aT58+Zfr06dSsWZMyZcooJ2i/9vpYpX1FjzGQpIJMXUONxr3LYV7CiOTENKIeumPnWom0lBT+mTmFZ48eYNKhAzpurqTHx/Pf1Gn5HXKedaxVjwrxGdM//nftd9JS5R9qb5IFkpQniYmJDBw4kEOHDnHv3j3+/fdfTp8+TdmyZYGM5+QdP36cAQMGEBoays2bN9m6dSuDBg1S9lGvXj0WLlzIuXPnOHPmDH379lUpwDp16oSamhq+vr5cuXKFnTt3MmvWLJU4+vfvz4MHDxg0aBDXrl3jn3/+wc/Pj+HDh6OmpoaJiQlmZmYsXbqUW7duceDAAYYPV70hWl72k5m9vT179+4lJCSEq1ev0qdPn2yf3ffgwQOGDx/O9evXWbt2LQsWLGDIkCFAxkialpYWCxYs4M6dO2zdulXlFhUAdnZ2KBQKtm/fzpMnT4iLi8vDuyNJ0qekqa1O84FumBTTJyEmhVev6mFe0oFX8XFsmuZHwstYik2eDOrqvNy9m5cHD+Z3yHmioa5G8yrTMEhLJ1wT/t4/Kb9D+qLIAknKE3V1dZ49e0a3bt1wcHCgffv2NGnShMmTJwPg6urK4cOHuXnzJjVr1sTd3Z2JEydSrFgxZR8BAQHY2NhQq1YtOnXqxMiRI1XmARkYGLBt2zauXLmCu7s748ePZ8aMGSpxWFlZsXPnTk6dOoWbmxt9+/bF19eXCRMmAKCmpsa6des4e/YsLi4uDBs2jF9//VWlj7zsJ7OJEydSoUIFvLy8qFOnDhYWFrRu3TpLu27dupGYmEjlypUZMGAAgwYNonfvjEtqixQpQlBQEBs2bMDJyYnp06dnKcysrKyYPHkyY8eOxdzc/J2uApQk6dPR0dek5WA3DEy1iXmSgoZeS4zNixH7JIpN0/1Rs7PF1NsbgMgpU0h/Y3T8S9bCowIVEzMuuFn+cDspSV/PPZ0+NYV4nwkZErGxsRgbGxMTEyOfyyZJkvSNiI6MZ9Osc7yKS8G8uCDq9goSY2MoXr4iLQeM4G7r1qQ+jsDUtwfmo76OOT1Hr95iYkgrnmmoMbhQNXq1WpLfIX1Sef3+liNIkiRJkpRHJhb6NB/ohoa2Ov/dVWDh0AUNLS3uhp7lwJogzP//aPbzoFW8unYtn6PNm5pl7amQ4g7AH8+OkRAX9ZYtvg2yQJIkSZKkd2Be3Iimfcuhpq4g4rY2du5dUCjUuHRwD5ef/4dho0aQlkaEnx/iK7ngwqdpAMVS0olWV2PxziH5Hc4XQRZIkiRJkvSObMqa0rBHxnPbHt0oRMlK3wEQsmE1z+rXQk1fn1cXLvLir7/yOdK8cbU1pyJ1ANgQf5Ho6Dv5G9AXQBZIkiRJkvQe7CsWpXZHBwAe3bSmuHtjAPavW0Vy544ARAXMJiXq6zhl1bf1NIonQbyaGvN2ZL2n3bdGFkiSJEmS9J5caltTuUXG3foj7pbFyqkqIj2dgxdO8MrFifS4OP6b9nXcG8musBGVdFoDsC3lLhGRWR8W/i2RBZIkSZIkfQCPpsUpV8caBQqeR1alaAknUl694oSxFonaWrzcFUzckSP5HWae9G31I46JaiSrKQgIHpHf4eQrWSBJkiRJ0gdQKBTUbF+a0h5FEUKN+Lj6FLKwISHuJefKO5Csrkbk5J9If+Pu/V+qosa6VDHNuJ/TXqK4cftAPkeUf2SBJEmSJEkfSKGmoL6PEzZOpqSlapJGc/SMTYl5lcg5B1tePX7M00WL8jvMPOnbchDl4rVIVyiYfXhCfoeTb2SBJEmSJEkfQcZz21wwL2FESpIuGvqt0dTR5bmWOuftzIlaGUTc4cP5HeZbGepoUtN2CAoh+Ff9JReubM7vkPKFLJCkAsHf35/y5csrf/bx8cn2USBvqlOnDkOHDv2kcUmS9G3R0tGg+QA3TC31SU4shIZuC9Q0NIky1ue0XVHuDB7My/378zvMt+rRuDPlE/QBWHYiIJ+jyR+yQJJU+Pj4oFAoUCgUaGhoYGtrS79+/YiOjs7v0HI1cuRI9n8Fv3QkSSr4dAw0aTuyAlaOhRBYo6HXBnVNHZ4b6HLKtgh3hg8nNjg4v8PMlbaGOpWtfAE4pvaCR4/O5HNEn58skKQsGjduTEREBHfv3mX58uVs27aN/v3751s8aWlppKen59rGwMAAMzOzzxSRJElS7rT1NGkxqDyOVSxQU7dGXacdGtr6xOjpcKK4ObdGjyZm69b8DjNX3l7dKZOoTppCwZIDfvkdzmcnCyQpC21tbSwsLLC2tqZRo0Z06NCBPXv2KNevXLmSsmXLoqOjQ5kyZVj0xsRDT09Pxo4dq9LfkydP0NTU5ODBgwAkJyczevRorKys0NfXp0qVKhw6dEjZPigoiEKFCrF9+3acnJzQ1tbm3r17HDp0iMqVK6Ovr0+hQoWoXr069+7dA7KeYntt8uTJFC1aFCMjI/r06UNycnKOeb8tLkmSpHehrqFGfZ+yeDQtjpqGOWra36OpbUycjhYnShXj5sQJvNi4Mb/DzJGhjiblDZoDsDv1Li9jH+VzRJ+XRn4H8C0QQpCYmj+Xd+pq6KJQKN57+zt37hAcHIympiYAy5Ytw8/Pj4ULF+Lu7s758+fp1asX+vr6eHt707lzZ3799VemTZum3O/69esxNzendu3aAHTv3p27d++ybt06LC0t2bx5M40bNyYsLIzSpUsDkJCQwLRp01i+fDlmZmaYmpri7u5Or169WLt2LcnJyZw6dSrX3Pbv34+Ojg4HDx7k7t27dO/encKFC/PLL79k2z4vcUmSJL0LhUJBlZYlMTTT4fDq66TxPZpsJpFnHC9lSdqUn3BITsbkhx/yO9RseTcdw7GNW3iopcbKPeMZ/F1Qfof02cgC6TNITE2kypoq+bLvk51Ooqep907bbN++HQMDA9LS0nj16hUAs2fPBmDKlCkEBATQtm1bAEqUKMGVK1dYsmQJ3t7edOjQgWHDhnHs2DFq1qwJwJo1a+jUqRNqamrcvn2btWvX8vDhQywtLYGM+UPBwcGsXLmSqVOnApCSksKiRYtwc3MD4Pnz58TExNC8eXNKlSoFQNmyZXPNQ0tLixUrVqCnp4ezszM//fQTo0aNYsqUKaipqQ6e5jUuSZKk9+FU3RIDE22Cl14iWfEdGmwhmf84UcqStF9nUCY5GVNv7/wOMwtrU0PcFJV5yGn+iTlDv5QENN/xO+VrJU+xSVnUrVuX0NBQTp48yaBBg/Dy8mLQoEE8efKEBw8e4Ovri4GBgfL1888/c/v2bQCKFClCw4YNWb16NQDh4eEcP36czp07A3Du3DmEEDg4OKj0cfjwYWUfkFHcuLq6Kn82NTXFx8cHLy8vWrRowbx584iIiMg1Dzc3N/T0/u8fsqenJ3FxcTx48CBL27zGJUmS9L5sncxoO7IiBqamqOu0Q13bmlQNdU6WsuTSwnk8XbYsv0PM1g/1f8IkNZ0oDQWbD2Q/Al8QyRGkz0BXQ5eTnU7m277flb6+Pvb29gDMnz+funXrMnnyZAYOHAhknGarUkV1RExdXV35/507d2bIkCEsWLCANWvW4OzsrBwJSk9PR11dnbNnz6psAxkTrZVx62Y9Nbhy5UoGDx5McHAw69evZ8KECezdu5eqVau+U37ZnZbLa1ySJEkforC1Ad+Nqcj2hRd5+rANiG2kJd/lTPFipC5fQrnkZAr37/9BUyM+NrcS1rgll+SQxl3WPtjG9+lTUKgV/PEVWSB9BgqF4p1Pc31J/Pz8aNKkCf369cPKyoo7d+4oR4Sy07p1a/r06UNwcDBr1qyha9euynXu7u6kpaURFRWlPAX3Ltzd3XF3d2fcuHF4enqyZs2aHAukCxcukJiYiK5uRpF44sQJDAwMsLa2zrbfD4lLkiQprwxMdGg7sgLByy5x/3IrYBdpyTc4b2dO6upVlE9OocjQIV9UkdSiyiSOX+jOLU04emY5tSr3zu+QPrmCXwJKH6xOnTo4OzszdepU/P39mTZtGvPmzePGjRuEhYWxcuVK5RwlyBiBatWqFRMnTuTq1at06tRJuc7BwYHOnTvTrVs3Nm3aRHh4OKdPn2bGjBns3LkzxxjCw8MZN24cx48f5969e+zZs4cbN27kOg8pOTkZX19frly5wq5du/Dz82PgwIFZ5h99SFySJEnvQ0tXg2YDXHGqbo2GXlPUtcqBQkGYTVFOb1pP1IyZCCHyO0ylhu4elE8wBSDo4vJ8jubzkAWSlCfDhw9n2bJleHl5sXz5coKCgihXrhy1a9cmKCiIEiVKqLTv3LkzFy5coGbNmtja2qqsW7lyJd26dWPEiBE4OjrSsmVLTp48iY2NTY7719PT49q1a7Rr1w4HBwd69+7NwIED6dOnT47b1K9fn9KlS1OrVi3at29PixYt8Pf3z7H9+8QlSZL0vtTV1ajbtQxVW5VCQ68B6tqVALhmacbx4K1E/jQF8ZZ7wH0uCoWCOmWGohCC05qJXL+1L79D+uQU4ksqUb8isbGxGBsbExMTg5GRUX6HI0mSJH3Frp+M5MDvV0mOP0lq4jEAbJ/GUM2zNpY//fRFzPlJTk2n+9LKXNRPomF6EWZ3P5DfIb2XvH5/5/8RlyRJkqRvnGMVC1oMLo+eSTU09BoAcL+wMYdPHeXR2LGI1NR8jhC0NNSobJ4xZeIwUTx5cj2fI/q0ZIEkSZIkSV8Aa0cT2o2qiEmxymjqNwPUiDAx5EDYae6PHIlIScnvEPFpMoBSrxQkqylYumd8fofzSckCSZIkSZK+EKaW+rQbUxELew80DVoBGjwx0mf/zTDChw5F5PK4pM/BWE+bCrr1AQhOusqrxC/7QeYfQhZIkiRJkvQF0TfWpvVwd0pW8EDLsB0otIk20GX//RvcGjCA9KSkfI2ve9NJmKek80Jdjd93T8jXWD4lWSBJkiRJ0hdGS0eDpn3L4VqvMloG34NCl1g9bfZH3eNGnz6kJ+bP8z0BbAqbUEFkPOlg89PDpKfl//yoT0EWSJIkSZL0BVJTV6PWDw5U/94TLcOOoGZIvI4W+2MiudKrF+nx8fkWW8e6P2GQls5DTQVbD/+ab3F8SrJAkiRJkqQvlEKhoIKXHY371EC30A8o1Ex4paXBgcTnXPDtQdrLl/kSVwX70lRIyngqwfrbf+VLDJ+aLJAkSZIk6QtX2sOc1iNqYWDeGYV6UVI01DicGse5Hj6kxcTkS0zNPH5EQwguaaVyKnRdvsTwKX11BdLLly8ZOnQodnZ26OrqUq1aNU6fPq1cL4TA398fS0tLdHV1qVOnDpcvX1bpIykpiUGDBlG4cGH09fVp2bIlDx8+/NypSJIkSVKeWdoX4vuxNTGz64pCw4o0dQXHSOJkD29Soz//1WRNPGpRPsEQgBVn5n/2/X9qX12B1LNnT/bu3csff/xBWFgYjRo1okGDBjx69AiAmTNnMnv2bBYuXMjp06exsLCgYcOGvHxjGHLo0KFs3ryZdevWcezYMeLi4mjevDlpaWn5ldZXS6FQsGXLllzb+Pj40Lp16zz3effuXRQKBaGhoQAcOnQIhULBixcv3jvOj+FLieNLlpfPw9euePHizJ07V/nzu+bs7+9P+fLlP3pc0rfBxEKf78dVx9rFBzXNEqSrwXH1VP7t3o3Up08/aywKhYI6JfsCcEIjlrv3T33W/X9qX1WBlJiYyMaNG5k5cya1atXC3t4ef39/SpQoweLFixFCMHfuXMaPH0/btm1xcXFh1apVJCQksGbNGgBiYmIIDAwkICCABg0a4O7uzp9//klYWBj79hX8Z8vk5l0LGYCIiAiaNGkCZC1sXps3bx5BQUEfJ8j3FBUVRZ8+fbC1tUVbWxsLCwu8vLw4fvx4vsaV2fu8Bx8qP4qakJAQ1NXVady4cZZ1rz9HGhoayj98XouIiEBDQwOFQsHdu3eVyzdu3EiVKlUwNjbG0NAQZ2dnRowYkadYevfujbq6OuvWvd8pgjf/DXxO30IxKmVPz0iLNiMq41jNFzWtMqCAM1qCg77epPwX9Vlj+aFBV5wSNUhTKFhy0O+z7vtT+6oKpNTUVNLS0tDR0VFZrqury7FjxwgPDycyMpJGjRop12lra1O7dm1CQkIAOHv2LCkpKSptLC0tcXFxUbbJTlJSErGxsSovCSwsLNDW1s61jbGxMYUKFfo8AeWgXbt2XLhwgVWrVnHjxg22bt1KnTp1eP78eb7G9amkpaWR/oU85DI7K1asYNCgQRw7doz79+9n28bS0pLff/9dZdmqVauwsrJSWbZv3z46duzId999x6lTpzh79iy//PILyXm4oV5CQgLr169n1KhRBAYGvlcuefk3IEkfm6aWOo37ulGxeU/Utd1AARd1FOzp5U1ypj8sPiUtDTWqmrYG4ED6fWJisv/3/DX6qgokQ0NDPD09mTJlCo8fPyYtLY0///yTkydPEhERQWRkJADm5uYq25mbmyvXRUZGoqWlhYmJSY5tsjNt2jSMjY2Vr3d5wrsQgvSEhHx5fciziOvUqcPgwYMZPXo0pqamWFhY4O/vr9Lmzb9iS5QoAYC7u3vG0GudOkDWUZHg4GBq1KhBoUKFMDMzo3nz5ty+fTtPMcXHx2NkZMTff/+tsnzbtm3o6+urnEp97cWLFxw7dowZM2ZQt25d7OzsqFy5MuPGjaNZs2ZA9qNfL168QKFQcOjQIZX+/v33X9zc3NDR0aFKlSqEhYUp1927d48WLVpgYmKCvr4+zs7O7Ny5E8goWnx9fSlRogS6uro4Ojoyb9485bb+/v6sWrWKf/75B4VCodx3dqf2QkNDVUZRgoKCKFSoENu3b8fJyQltbW3u3bvH6dOnadiwIYULF8bY2JjatWtz7tw5ZT/FixcHoE2bNigUCuXPr49pxYoV0dHRoWTJkkyePJnUN54HdfPmTWrVqoWOjg5OTk7s3bs35zfuDfHx8fz111/069eP5s2b5zi66O3tzcqVK1WWBQUF4e3trbJs+/bt1KhRg1GjRuHo6IiDgwOtW7dmwYIFb41lw4YNODk5MW7cOP7991+VUSnIGHls0aIFurq6lChRgtWrV2fpI/NIzpgxY3BwcEBPT4+SJUsyceJEUrJ5RMSSJUuwsbFBT0+P77//XuX9/ZD3Tfp2qKkpqNWhDHW69UFdpwoA13TV2dGvF0kPHny2OHo0H4ttsiBBTY2lwT9+tv1+ahr5HcC7+uOPP+jRowdWVlaoq6tToUIFOnXqpPLLQ6FQqGwjhMiyLLO3tRk3bhzDhw9X/hwbG5vnIkkkJnK9QsU8tf3YHM+dRaGn997br1q1iuHDh3Py5EmOHz+Oj48P1atXp2HDhlnanjp1isqVK7Nv3z6cnZ3R0tLKts/4+HiGDx9OuXLliI+PZ9KkSbRp04bQ0FDU3vLEan19fTp27MjKlSv57rvvlMtf/2xoaJhlGwMDAwwMDNiyZQtVq1b94L/2R40axbx587CwsODHH3+kZcuW3LhxA01NTQYMGEBycjJHjhxBX1+fK1euYGBgAEB6ejrW1tb89ddfFC5cmJCQEHr37k2xYsVo3749I0eO5OrVq8TGxioLA1NT01xHNt+UkJDAtGnTWL58OWZmZhQtWpTw8HC8vb2ZPz9jAmVAQABNmzbl5s2bGBoacvr0aYoWLcrKlStp3Lgx6urqAOzevZsuXbowf/58atasye3bt+nduzcAfn5+pKen07ZtWwoXLsyJEyeIjY1l6NCheYpz/fr1ODo64ujoSJcuXRg0aBATJ07M8u+vZcuW/Pbbbxw7dowaNWpw7Ngxnj9/TosWLZgyZYqynYWFBWvWrOHSpUu4uLjkKYbXAgMD6dKlC8bGxjRt2pSVK1cyefJk5XofHx8ePHjAgQMH0NLSYvDgwURF5X4Kw9DQkKCgICwtLQkLC6NXr14YGhoyevRoZZtbt27x119/sW3bNmJjY/H19WXAgAHKAuzly5fv9b5J36byDWwxMuvLjgU6JMcf5o6uGpsH9qP1nPnolCz5yfdvrKdNJc1q3Oc4O+POMzQpHk1t/U++309OfKXi4uLE48ePhRBCtG/fXjRt2lTcvn1bAOLcuXMqbVu2bCm6desmhBBi//79AhDPnz9XaePq6iomTZqU5/3HxMQIQMTExLy1bVp8vLjiWCZfXmnx8XnOydvbW7Rq1Ur5c+3atUWNGjVU2lSqVEmMGTNG+TMgNm/eLIQQIjw8XADi/PnzufabWVRUlABEWFhYtv0cPHhQACI6OloIIcTJkyeFurq6ePTokRBCiCdPnghNTU1x6NChHPfx999/CxMTE6GjoyOqVasmxo0bJy5cuKBcn13s0dHRAhAHDx5UiWPdunXKNs+ePRO6urpi/fr1QgghypUrJ/z9/XOMI7P+/fuLdu3aKX/O7lhlzl8IIc6fPy8AER4eLoQQYuXKlQIQoaGhue4vNTVVGBoaim3btimXvfkevlazZk0xdepUlWV//PGHKFasmBBCiN27dwt1dXXx4MED5fpdu3Zl21dm1apVE3PnzhVCCJGSkiIKFy4s9u7dq1z/5nsxdOhQ0b17dyGEEN27dxfDhg3LkntcXJxo2rSpAISdnZ3o0KGDCAwMFK9evco1jhs3bghNTU3x5MkTIYQQmzdvFjY2NiItLU0IIcT169cFIE6cOKHc5urVqwIQc+bMyfX4vWnmzJmiYsWKyp/9/PyyPXZqamoiIiIi2z7y+r5J37aIOy/E//osELPaNxez2jcTq1q1EPFXr36WfYdH/idqLXcSLkEuImjbyM+yz/eV1+/vr24E6TV9fX309fWJjo5m9+7dzJw5kxIlSmBhYcHevXtxd3cHIDk5mcOHDzNjxgwAKlasiKamJnv37qV9+/ZAxiTLS5cuMXPmzE8Sq0JXF8dzZz9J33nZ94dwdXVV+blYsWJv/Qv6bW7fvs3EiRM5ceIET58+Vc6VuX//fp5GACpXroyzszO///47Y8eO5Y8//sDW1pZatWrluE27du1o1qwZR48e5fjx4wQHBzNz5kyWL1+Oj4/PO8Xv6emp/H9TU1McHR25evUqAIMHD6Zfv37s2bOHBg0a0K5dO5Vj+Ntvv7F8+XLu3btHYmIiycnJH+2KJi0trSzvV1RUFJMmTeLAgQP8999/pKWlkZCQkOO8n9fOnj3L6dOn+eWXX5TL0tLSePXqFQkJCVy9ehVbW1usra2V6988Ljm5fv06p06dYtOmTQBoaGjQoUMHVqxYQYMGDbK09/X1xdPTk6lTp7JhwwaOHz+ucpoPMn4X7Nixg9u3b3Pw4EFOnDjBiBEjmDdvHsePH0cvhxHUwMBAvLy8KFy4MABNmzbF19eXffv20ahRI65evYqGhgYeHh7KbcqUKfPW+XR///03c+fO5datW8TFxZGamoqRkZFKm+yOXXp6OtevX8fCwuK93zfp22ZRwpjOU3qw4WcdYiK38kQ7nbU/jqX95J8wLOf69g4+QHHzonikObBH4xabInfTLX0GirecEfjSfXXR7969m+DgYMLDw9m7dy9169bF0dGR7t27o1AoGDp0KFOnTmXz5s1cunQJHx8f9PT06NSpE5AxYdjX15cRI0awf/9+zp8/T5cuXShXrly2v6A/BoVCgZqeXr683nZq8W00NTWz5PKhk39btGjBs2fPWLZsGSdPnuTkyZMAeZpU+1rPnj2Vp6FWrlypfP9zo6OjQ8OGDZk0aRIhISH4+Pjg55dx1cXrU3vijTlb2c0bycnrfffs2ZM7d+7QtWtXwsLC8PDwUM6F+euvvxg2bBg9evRgz549hIaG0r1797fmndfYdHV1sxwDHx8fzp49y9y5cwkJCSE0NBQzM7O37jM9PZ3JkycTGhqqfIWFhXHz5k10dHSynduWl89aYGAgqampWFlZoaGhgYaGBosXL2bTpk1EZ3MfFxcXF8qUKcMPP/xA2bJlcy2gS5UqRc+ePVm+fDnnzp3jypUrrF+/Ptu2aWlp/P777+zYsUMZh56eHs+fP1dO1n6d47v8Gzpx4gQdO3akSZMmbN++nfPnzzN+/Pi3Hu/X+3j93/d93yTJuIgeXX7xxrxkR0CDF5qprPb3J/rM6bdu+6E61pqCTrrgjqZgz/HFn3x/n9pXVyDFxMQwYMAAypQpQ7du3ahRowZ79uxRfpGPHj2aoUOH0r9/fzw8PHj06BF79uxRmZsyZ84cWrduTfv27alevTp6enps27ZNnsf/QK/nHOV2P6lnz55x9epVJkyYQP369Slbtmy2X4xv06VLF+7fv8/8+fO5fPlylom7eeHk5ET8/3+WUZEiRYCM0cTXMt+u4LUTJ04o/z86OpobN25QpkwZ5TIbGxv69u3Lpk2bGDFiBMuWLQPg6NGjVKtWjf79++Pu7o69vX2WyelaWlpZjt+7xJbZ0aNHGTx4ME2bNsXZ2RltbW2eZrpXiqamZpZ9VqhQgevXr2Nvb5/lpaamhpOTE/fv3+fx48fKbd52y4TU1FR+//13AgICVAqvCxcuYGdnl+0EaIAePXpw6NAhevTokaecIWMSs56envL9zWznzp28fPmS8+fPq8SyYcMGtmzZwrNnzyhbtiypqamcOXNGud3169dzvQ/Wv//+i52dHePHj8fDw4PSpUtz7969LO2yO3Zqamo4ODgA7/++SRKAjoEmHX/qQIny3UGhTbxGMqtnzODpsaOfdL+VyrhQ8VXGiOyaKyvf0vrL99WdYmvfvr3y1Fh2FAoF/v7+Wa62epOOjg4LFizI01UuUt4VLVoUXV1dgoODsba2RkdHB2NjY5U2JiYmmJmZsXTpUooVK8b9+/cZO3bsO+/LxMSEtm3bMmrUKBo1aqRyuiKzZ8+e8f3339OjRw9cXV0xNDTkzJkzzJw5k1atWgEZoy9Vq1Zl+vTpFC9enKdPnzJhwoRs+/vpp58wMzPD3Nyc8ePHU7hwYeVVekOHDqVJkyY4ODgQHR3NgQMHKFu2LAD29vb8/vvv7N69mxIlSvDHH39w+vRp5dV/kPHFvnv3bq5fv46ZmRnGxsbY29tjY2ODv78/P//8Mzdv3iQgICBPx8ne3p4//vgDDw8PYmNjGTVqFLqZTrsWL16c/fv3U716dbS1tTExMWHSpEk0b94cGxsbvv/+e9TU1Lh48SJhYWH8/PPPNGjQAEdHR7p160ZAQACxsbGMHz8+11i2b99OdHQ0vr6+WT4X3333HYGBgQwcODDLdr169eL777/P8dSWv78/CQkJNG3aFDs7O168eMH8+fNJSUnJ9mICyBjJatasGW5ubirLnZ2dGTp0KH/++SdDhgyhcePG9OrVi6VLl6KhocHQoUOzHL832dvbc//+fdatW0elSpXYsWMHmzdvztJOR0cHb29vZs2aRWxsLIMHD6Z9+/ZYWFgo+3mf902SXtPQVKfNmJbsXWZA2MElJKklsHr+PNonvqJYDv8uPoZmbqMJuTGac1pJXLwWjGuZrPc6+2p8hvlQBdK7TNL+WmQ3SXvIkCEqbVq1aiW8vb2VP5NpouiyZcuEjY2NUFNTE7Vr1862371794qyZcsKbW1t4erqKg4dOpTrZO/sJikL8X8T7v/6669c83r16pUYO3asqFChgjA2NhZ6enrC0dFRTJgwQSQkJCjbXblyRVStWlXo6uqK8uXLiz179mQ7SXvbtm3C2dlZaGlpiUqVKqlMjB44cKAoVaqU0NbWFkWKFBFdu3YVT58+Vcbh4+MjjI2NRaFChUS/fv3E2LFjhZubm3L7qKgo0bBhQ2FgYKCy72PHjoly5coJHR0dUbNmTbFhw4Ysk7SNjY2z5H7u3Dnh4eEhtLW1RenSpcWGDRuEnZ2dyiTjrVu3Cnt7e6GhoSHs7OyUy4ODg0W1atWErq6uMDIyEpUrVxZLly5Vrr9+/bqoUaOG0NLSEg4ODiI4ODjXicPNmzcXTZs2zXbd2bNnBSDOnj2b42T/1zJP0j5w4IBo166dsLGxEVpaWsLc3Fw0btxYHD16NNvtIyMjhYaGRo6fm0GDBoly5coJIYSIiIgQzZo1E9ra2sLW1lb8/vvvWY5f5pxHjRolzMzMhIGBgejQoYOYM2eOynvj5+cn3NzcxKJFi4SlpaXQ0dERbdu2Vblw5EPeN0nK7PiGEyKg4w9iVvtmYnb7duL25n8+2b7S09NFl0UewiXIRQxeXvuT7edD5PX7WyHEB9wo5xsWGxuLsbExMTExWSZgSp/H6tWrGTJkCI8fP87xlgKSJEkSXD54md1LZyDSn6NAi8YtO+LUOeezMR8icMdC5j5dgqYQbG+8HksL50+yn/eV1+/vr24OkiQlJCRw+fJlpk2bRp8+fWRxJEmS9BbOdZ35btwU1NWLIkhm19Y1nP5t1SfZV1ev/pR+pUaKQsGSPbmfev+SyQJJ+urMnDmT8uXLY25uzrhx4/I7HEmSpK+CrasdXaZOQ1OjGJDKkYObOPzrko++Hy0NNTyNvADYn3qThIRnH30fn4M8xfae5Ck2SZIk6WsU9yyWVUPG8CrlAaCgrGNdmv40/K3bvYvncfF0WFeFSE0FvfSrMfi7j1+IvS95ik2SJEmSpCwMzIzotWQOhjrFAcHV6wfYOPynj7oPUwN9Kqtl3Jxy74sQxBf88OycyAJJkiRJkr4xWvo6+C6bg5mhIwB3H51idd9xH/XeWh3r+qGTLrirCftPrfho/X4uskCSJEmSpG+QupYmXZfMxLJIxv3AIqPDWNVrBKlJH+eO7eVKOOKelHF/rr8vfX03jpQFkiRJkiR9o9TV1flh4S+UsqsGQHT8LQJ7DiUp9uVH6b+ufcYd8E9pxBAZdf2j9Pm5yAJJkiRJkr5xrWf+iItLI0CNuOT7LO83jLjIJx/c7/d1vSmVpCBFoWDFXv8P7u9zkgWSJEmSJEl4TRxM5WptAQ1epUayYtgont28+0F9aqirUUk3Y3Tq4Ksw0tNSPzzQz0QWSNI7USgUbNmy5aP26e/vT/ny5T9qnx/iU+T4LTtw4ABlypQh/Qu8iiUpKQlbW1vOnj2b36FI0heh5hAfajftBmiTkv6UPyZN4NHZyx/UZ1evSRikpROpoWDLwTkfJ9DPQBZIklJUVBR9+vTB1tYWbW1tLCws8PLyUnlKe0REBE2aNMnHKL8MDx48wNfXF0tLS7S0tLCzs2PIkCE8e6Z6Q7Q6deoQFBSksuz8+fN06NCBYsWKoa2tjZ2dHc2bN2fbtm0UxNuSjR49mvHjx6OmlvHrZtOmTTRs2JAiRYpgZGSEp6cnu3fvzrLdxo0bcXJyQltbGycnpywPfT1y5AgtWrTA0tIyx6LW39+fMmXKoK+vj4mJCQ0aNODkyZPK9dra2owcOZIxY8Z83KQl6Svm4d2WJp37o1DokZb+gr9+ncLtA8ffvmEObItaUjGlGABbw//6WGF+crJAkpTatWvHhQsXWLVqFTdu3GDr1q3UqVOH58+fK9tYWFigra2dj1Hmvzt37uDh4cGNGzdYu3Ytt27d4rfffmP//v14enqqHK/M/vnnH6pWrUpcXByrVq3iypUrbNiwgdatWzNhwgRiYmLeO67k5I9z5cnHFBISws2bN/n++++Vy44cOULDhg3ZuXMnZ8+epW7durRo0YLz588r2xw/fpwOHTrQtWtXLly4QNeuXWnfvr1KcRMfH4+bmxsLFy7Mcf8ODg4sXLiQsLAwjh07RvHixWnUqBFPnvzf3IrOnTtz9OhRrl69+pGzl6Svl1PL+rTpPwo1hSHpIo5/ls7m0uY9791fM9fBAJzXTOTm3VMfK8xP69M/N7dgyuvTgIXIeLpx8qvUfHmlp6fnKZ/o6GgBiEOHDuXajjeeXP76qesbN24UderUEbq6usLV1VWEhISobLN06VJhbW0tdHV1RevWrUVAQEC2Tzd//aR0IyMj0aFDBxEbG5tjHE+fPhUdO3YUVlZWQldXV7i4uIg1a9aotKldu7YYNGiQGDVqlDAxMRHm5ubCz89Ppc2NGzdEzZo1hba2tihbtqzYs2dPrk+kF0KIxo0bC2tra5GQkKCyPCIiQujp6Ym+ffuqxLBy5UohhBBxcXHCzMxMtGnTJse+33y/Dh06JCpVqiS0tLSEhYWFGDNmjEhJSVHpe8CAAWLYsGHCzMxM1KpVSxw8eFAAIjg4WJQvX17o6OiIunXriv/++0/s3LlTlClTRhgaGoqOHTuK+Ph4ZV+7du0S1atXF8bGxsLU1FQ0a9ZM3Lp1S7k+r+91ZoMGDRLfffddrm2EEMLJyUlMnjxZ+XP79u1F48aNVdp4eXmJjh07Zrv9296z117/u923b5/K8jp16oiJEye+dXtJ+tZEhF4Rczp2EbPaNxOz2rcRpwLXv1c/6enpov1v5YVLkIsYH9TyI0f5bvL6/a2RX4XZtyQ1OZ2lQw7ny757z6uNprb6W9sZGBhgYGDAli1bqFq16juNEo0fP55Zs2ZRunRpxo8fzw8//MCtW7fQ0NDg33//pW/fvsyYMYOWLVuyb98+Jk6cmKWP27dvs2XLFrZv3050dDTt27dn+vTp/PLLL9nu89WrV1SsWJExY8ZgZGTEjh076Nq1KyVLlqRKlSrKdqtWrWL48OGcPHmS48eP4+PjQ/Xq1WnYsCHp6em0bduWwoULc+LECWJjYxk6dGiuuT5//pzdu3fzyy+/oKurq7LOwsKCzp07s379ehYtWoRCoVBZv2fPHp49e8bo0aNz7P/1No8ePaJp06b4+Pjw+++/c+3aNXr16oWOjg7+/v4q+fXr149///0XIQSRkZFAxqmlhQsXoqenR/v27Wnfvj3a2tqsWbOGuLg42rRpw4IFC5SnluLj4xk+fDjlypUjPj6eSZMm0aZNG0JDQ5WnxiD39zo7R44c4Ycffsj1mKanp/Py5UtMTU2Vy44fP86wYcNU2nl5eTF37txc+8pNcnIyS5cuxdjYGDc3N5V1lStX5ujRo+/dtyQVVBZuZfGeOpU/xk8iJe0JR3avISHmJbWH+b5TPwqFgqomDbmSuIujabdITopDS9vgE0X9cchTbBIAGhoaBAUFsWrVKgoVKkT16tX58ccfuXjx4lu3HTlyJM2aNcPBwYHJkydz7949bt26BcCCBQto0qQJI0eOxMHBgf79+2c7hyk9PZ2goCBcXFyoWbMmXbt2Zf/+/Tnu08rKipEjR1K+fHlKlizJoEGD8PLyYsOGDSrtXF1d8fPzo3Tp0nTr1g0PDw9lv/v27ePq1av88ccflC9fnlq1ajF16tRcc7158yZCCMqWLZvt+rJlyxIdHa08hXPo0CF8fHwAuHHjBgCOjo7K9qdPn1YWpwYGBmzfvh2ARYsWYWNjw8KFCylTpgytW7dm8uTJBAQEqEx2tre3Z+bMmTg6OlKmTBnl8p9//pnq1avj7u6Or68vhw8fZvHixbi7u1OzZk2+++47Dh48qGzfrl072rZtS+nSpSlfvjyBgYGEhYVx5coVlfxye6+zc/fuXSwtLXM9pgEBAcTHx9O+fXvlssjISMzNzVXamZubKwvAd7F9+3YMDAzQ0dFhzpw57N27l8KFC6u0sbKy4u7du+/ctyR9C0xK2NBj7ix0NSyBVM6c+Idg/7nv3I9PkwmYpabzXF2N1Xty/137JZAjSJ+BhpYavefVzrd951W7du1o1qwZR48e5fjx4wQHBzNz5kyWL1+u/JLPjqurq/L/ixXLmIgXFRVFmTJluH79Om3atFFpX7lyZWUh8Frx4sUxNDRU6ScqKirHfaalpTF9+nTWr1/Po0ePSEpKIikpCX19/Rxjy9zv1atXsbW1xdraWrne09Mzx33mhfj/k6wzjx7lxNXVldDQUABKly5NamqqMjZPT0+VfqpXr05cXBwPHz7E1tYWAA8Pjxz7fc3c3Bw9PT1KliypsuzUqf+bB3D79m0mTpzIiRMnePr0qbIIu3//Pi4uLtn2m/m9zk5iYiI6Ojo55r927Vr8/f35559/KFq0qMq6zMdQCJHn4/qmunXrEhoaytOnT1m2bJlyLtOb+9PV1SUhIeGd+5akb4VBUTN8l8whqP9o4pLucfnqPhJHxNMmYHye+zAxNMJDlGQ3d9kdsYvufNlFkhxB+gwUCgWa2ur58nrXLxQdHR0aNmzIpEmTCAkJwcfHBz8/v1y30dTUVMkVUH7BZvelJrK5UuvNPl73k9tl4QEBAcyZM4fRo0dz4MABQkND8fLyyjJRObd+s4vjbcfL3t4ehUKRZWTltWvXrmFiYpJlhAIyCiCA69f/726y2tra2NvbY29vr9I2t+P25vLMBeFrmd+Ttx3fFi1a8OzZM5YtW8bJkyeVk6FzO56Z3+vsFC5cmOjo6GzXrV+/Hl9fX/766y8aNGigss7CwiLLaFFUVFSWUaW80NfXx97enqpVqxIYGIiGhgaBgYEqbZ4/f06RIkXeuW9J+pZoG+jTc/lcTA0cALjz8Dhr+v/4Ts9va1tlDGpCcFk7lXOXd32qUD8KWSBJuXJyciI+Pv69ty9TpozKSAXAmTNnPjQsjh49SqtWrejSpQtubm6ULFmSmzdvvlMfTk5O3L9/n8ePHyuXvXlLg+yYmZnRsGFDFi1aRGJiosq6yMhIVq9eTYcOHbIttBo1aoSpqSkzZszIU2whISEqRVxISAiGhoZYWVm9dft38ezZM65evcqECROoX7++8jThx+Du7p5tMbl27Vp8fHxYs2YNzZo1y7Le09OTvXv3qizbs2cP1apV++CYhBAkJSWpLLt06RLu7u4f3LckFXTqWpp0W/orxcwy5vFFPLvI771Gkpackqftq5WrgeurjPmbq0982fdEkgWSBGR8SdarV48///yTixcvEh4ezoYNG5g5cyatWrV6734HDRrEzp07mT17Njdv3mTJkiXs2rXrvU6VvMne3p69e/cSEhLC1atX6dOnzzvPT2nQoAGOjo5069aNCxcucPToUcaPf/tw8cKFC0lKSsLLy4sjR47w4MEDgoODadiwIVZWVjlOLDcwMGD58uXs2LGDZs2asXv3bu7cucPFixeZOXMmkPFcJID+/fvz4MEDBg0axLVr1/jnn3/w8/Nj+PDhKpOmPwYTExPMzMxYunQpt27d4sCBAwwfPvyj9O3l5cWxY8dUlq1du5Zu3boREBBA1apViYyMJDIyUuUWB0OGDGHPnj3MmDGDa9euMWPGDPbt26cyiT4uLo7Q0FDlKcrw8HBCQ0O5f/8+kDHx/Mcff+TEiRPcu3ePc+fO0bNnTx4+fKhy2wHIKLgbNWr0UXKWpIJOXV2dTot+oaRNxpSE5/E3Wd5zCElxeftjupZlxrSLEMUjXr7MeSpFfpMFkgRkfHlXqVKFOXPmUKtWLVxcXJg4cSK9evXK9T4zb1O9enV+++03Zs+ejZubG8HBwQwbNizXeSl5MXHiRCpUqICXlxd16tTBwsKC1q1bv1MfampqbN68maSkJCpXrkzPnj1zLG7eVLp0ac6cOUOpUqXo0KEDpUqVonfv3tStW5fjx4+rXI2VWZs2bQgJCUFPT49u3brh6OhIvXr1OHDgAOvWraN58+ZAxqThnTt3curUKdzc3Ojbty++vr5MmDDhnXLMCzU1NdatW8fZs2dxcXFh2LBh/Prrrx+l7y5dunDlyhWV04pLliwhNTWVAQMGUKxYMeVryJAhyjbVqlVj3bp1rFy5EldXV4KCgli/fr3KFYpnzpzB3d1dOfIzfPhw3N3dmTRpEpDxS/zatWu0a9cOBwcHmjdvzpMnTzh69CjOzs7Kfo4fP05MTAzffffdR8lZkr4VbWaNx9mpIaBGXNJ9lvcZSlzUs7du16XxCIqlCOLU1Vi5e/KnD/Q9KUR2EzGkt4qNjcXY2JiYmBiMjIzyO5yvSq9evbh27Zq8rPobMXr0aGJiYliyZEl+h5Kt77//Hnd3d3788cf8DkWSvkpH5qzg9ImtQCqa6kXo+stPmJSwyXWbCSs78I/aFUolK9jS6+1XS39Mef3+liNI0ic3a9YsLly4wK1bt1iwYAGrVq3C29s7v8OSPpPx48djZ2f3ThM5P5ekpCTc3Nyy3HNJkqS8qzWsB7WbdAG0SEl7wqoffyTifPYXsrzWue5EtNIFt7UE+0/++XkCfUdyBOk9yRGkvGvfvj2HDh3i5cuXynsW9e3bN7/DkiRJkj6iy1v2snvdUoRIRE1hSOt+wyhRu3KO7XsuqcZJnZfUTDZhUa8jny3OvH5/y/sgSZ/cX399PQ8nlCRJkt6Pc+uG6BYy4p/f5pIuXrJ58a80ftEHp1YNsm3fsFQ3Tj76H6c0nhP5JByLIiU+c8S5k6fYJEmSJEn6KErWqULHMRNRVyuEEInsWrOIM0Gbsm37XZ1eFE+GJDUFK/fmfr+9/CALJEmSJEmSPppi7k54/zwVTbXCQDKHd/3O0Xkrs7RT11Cnqm7GKbgjCedI/8LmKcoCSZIkSZKkj8qklC095vyKjkYxIJVTIZvZ/dP8LO18vCajl57OQ00FWw69/y1lPgVZIEmSJEmS9NEZWBSh5+LZGGjbAulcuryHLaNVn79mVcSaSikZz0XcfntNPkSZM1kgSZIkSZL0SWgbGdJz+TxM9DOeN3n7Xghr+49Xue1HS9dBAJzXiufmvfP5Emd2ZIEkSZIkSdIno66lifeyACxMywHw+NkFfu89Svn8toZV2uCYpE6qQsHvB6fkZ6gqZIEkFWgTJ06kd+/e+R1GtsLCwrC2tv6ghwF/CB8fH5XHswgh6N27N6ampigUCuUzzr4lxYsXZ+7cuR+tvzp16qg8P+5rlN3noiDkJX1e6urqdF48jRLWGY8Leh53g8CeQ0mKi0ehUFCzUD0AjqVdJzk5MbeuPhtZIElKPj4+KBQKFAoFGhoa2Nra0q9fv4/2ZPfP7b///mPevHkqj5CYNm0alSpVwtDQkKJFi9K6dWuV54RBxheCv78/lpaW6OrqUqdOHS5fvqzSZunSpdSpUwcjIyMUCgUvXrzIMY6kpCTKly+fpegoV64clStXZs6c/Hmi9bx58wgKClL+HBwcTFBQENu3byciIgIXF5d8ietzCAoKolChQlmWnz59+ostqPPLt/S5kD69tgETcSpTH1DwMukegX2HkfA0Gp8mkyiUls5TDTX+3DM9v8MEZIEkZdK4cWMiIiK4e/cuy5cvZ9u2bfTv3z+/w3ovgYGBeHp6Urx4ceWyw4cPM2DAAE6cOMHevXtJTU2lUaNGKqM4M2fOZPbs2SxcuJDTp09jYWFBw4YNefnypbJNQkICjRs3ztPzu0aPHo2lpWW267p3787ixYvz5TEcxsbGKkXC7du3KVasGNWqVcPCwgINjXe/j6wQgtTU1I8Y5ceXkpKS47oiRYqgp6f3GaP58n2Mz4UkvanJ5GFUrNwKUCcx5TGBg4eT/vQlVdLtANj/eFv+BviakN5LTEyMAERMTMxb26anp4vkxMR8eaWnp+c5J29vb9GqVSuVZcOHDxempqbKn9PS0sTkyZOFlZWV0NLSEm5ubmLXrl3K9eHh4QIQ69evFzVq1BA6OjrCw8NDXL9+XZw6dUpUrFhR6OvrCy8vLxEVFZVl3/7+/qJIkSLC0NBQ9O7dWyQlJSnbbNiwQbi4uAgdHR1hamoq6tevL+Li4nLMp1y5cmLhwoW55hwVFSUAcfjwYSFExntlYWEhpk+frmzz6tUrYWxsLH777bcs2x88eFAAIjo6Otv+d+7cKcqUKSMuX74sAHH+/HmV9UlJSUJbW1vs378/1zjfts/z588LQISHhwshhFi5cqUwNjYWwcHBokyZMspj/vjxY+U2b77f3t7eAlC+7OzslLkPGjRIFClSRGhra4vq1auLU6dOZYklODhYVKxYUWhqaooDBw6I2rVri4EDB4ohQ4aIQoUKiaJFi4olS5aIuLg44ePjIwwMDETJkiXFzp07c8xz7NixokqVKlmWlytXTkyaNEn584oVK0SZMmWEtra2cHR0FP/73/+U6978PNauXVtoa2uLFStWqOQKCD8/PyGEEHZ2dmLOnDnK7aOjo0WvXr1E0aJFhba2tnB2dhbbtm0TQgjx9OlT0bFjR2FlZSV0dXWFi4uLWLNmjUqstWvXFkOGDMkxRz8/P+Hm5iYCAwOFjY2N0NfXF3379hWpqalixowZwtzcXBQpUkT8/PPPKtsFBAQIFxcXoaenJ6ytrUW/fv3Ey5cvlevv3r0rmjdvLgoVKiT09PSEk5OT2LFjhxBCiOfPn4tOnTqJwoULCx0dHWFvby9WrFiRbXw5fS4y5wWIzZs3q2xrbGwsVq5cKYQQYtWqVUJfX1/cuHFDuX7gwIGidOnSuf4blgq2k8vXi1nt24hZ7ZuJOR27iIP/rBPlVjoLlyAXcfrSvk+237x+f8s/BT6D1KQk5nt/ly/7HrzqbzR1dN5r2zt37hAcHIympqZy2bx58wgICGDJkiW4u7uzYsUKWrZsyeXLlyldurSynZ+fH3PnzsXW1pYePXrwww8/YGRkxLx589DT06N9+/ZMmjSJxYsXK7fZv38/Ojo6HDx4kLt379K9e3cKFy7ML7/8QkREBD/88AMzZ86kTZs2vHz5kqNHjyJyeJRgdHQ0ly5dwsPDI9ccY2JiADA1NQUgPDycyMhIGjVqpGyjra1N7dq1CQkJoU+fPnk+fv/99x+9evViy5YtOY5KaGlp4ebmxtGjR6lXr16e+86LhIQEZs2axR9//IGamhpdunRh5MiRrF69OkvbefPmUapUKZYuXcrp06dRV1cHMka/Nm7cyKpVq7Czs2PmzJl4eXlx69Yt5TF73W7WrFmULFlSOSq1atUqRo8ezalTp1i/fj39+vVjy5YttGnThh9//JE5c+bQtWtX7t+/n+3x6dy5M9OnT+f27duUKlUKgMuXLxMWFsbff/8NwLJly/Dz82PhwoW4u7tz/vx5evXqhb6+vsoDkceMGUNAQAArV65EXV2duXPnMmnSJOXpVQMDgyz7T09Pp0mTJrx8+ZI///yTUqVKceXKFeWxefXqFRUrVmTMmDEYGRmxY8cOunbtSsmSJalSpUqe36fbt2+za9cugoODuX37Nt999x3h4eE4ODhw+PBhQkJC6NGjB/Xr16dq1aoAqKmpMX/+fIoXL054eDj9+/dn9OjRLFq0CIABAwaQnJzMkSNH0NfX58qVK8ocJ06cyJUrV9i1axeFCxfm1q1bJCZmP+cjp8/Fu+rWrRvbt2+nc+fOhISEsG/fPpYsWcK///6Lvr7+e/Upff0q+7ZHr5ARezYEkpYezfk1W2joaM6eklGsO/ErHs718zW+L+oU25EjR2jRogWWlpYoFAq2bNmisl7kYW5IUlISgwYNonDhwujr69OyZUsePnyo0iY6OpquXbtibGyMsbExXbt2zXUOybdk+/btGBgYoKurq/xCGDNmjHL9rFmzGDNmDB07dsTR0ZEZM2ZQvnz5LBNbR44ciZeXF2XLlmXIkCGcO3eOiRMnUr16ddzd3fH19eXgwYMq22hpabFixQqcnZ1p1qwZP/30E/Pnzyc9PZ2IiAhSU1Np27YtxYsXp1y5cvTv3z/bLzaAe/fuIYTI8dQWZHyehg8fTo0aNZTzKiIjIwEwNzdXaWtubq5clxdCCHx8fOjbt+9bizQrKyvu3r2b577zKiUlhd9++w0PDw8qVKjAwIED2b9/f7ZtjY2NMTQ0RF1dHQsLC4oUKUJ8fDyLFy/m119/pUmTJjg5ObFs2TJ0dXUJDAxU2f6nn36iYcOGlCpVCjMzMwDc3NyYMGECpUuXZty4cejq6lK4cGF69epF6dKlmTRpEs+ePePixYvZxuTi4oKrqytr1vzfvVFWr15NpUqVcHBwAGDKlCkEBATQtm1bSpQoQdu2bRk2bBhLlixR6Wvo0KHKNra2thgbG6NQKLCwsMDCwiLbz9G+ffs4deoUmzZtomHDhpQsWZLmzZvTpEkTION9GzlyJOXLl1c+hNnLy4sNGzbk8R3KkJ6ezooVK3BycqJFixbUrVuX69evM3fuXBwdHenevTuOjo4cOnRIJZ+6detSokQJ6tWrx5QpU1SeeXj//n2qV69OuXLllHHXqlVLuc7d3R0PDw+KFy9OgwYNaNGiRbaxZfe5eF9LliwhIiKCwYMH4+Pjg5+fH5UqVXrv/qSCwaVdY1r1Ho6awoB08RKr62ZUuFWME4oHxMY/z9fYvqgRpPj4eNzc3OjevTvt2rXLsv713JCgoCAcHBz4+eefadiwIdevX8fQ0BDI+MWxbds21q1bh5mZGSNGjKB58+acPXtW+ddPp06dePjwIcHBwQD07t2brl27sm3bpznvqaGtzeBVf3+SvvOy73dRt25dFi9eTEJCAsuXL+fGjRsMGpRxj4rY2FgeP35M9erVVbapXr06Fy5cUFnm6uqq/P/XxUa5cuVUlkVFRals4+bmpjKS4OnpSVxcHA8ePMDNzY369etTrlw5vLy8aNSoEd999x0mJibZ5vH6L2KdXEbPBg4cyMWLFzl27FiWdQqFQuVnIUSWZblZsGABsbGxjBs37q1tdXV1SUhIyHPfeaWnp6cceQEoVqxYlmOem9u3b5OSkqLyfmtqalK5cmWuXr2q0ja7IvDNz4C6ujpmZmZZPgNArjF17tyZFStWMHHiRIQQrF27Vnn11JMnT3jw4AG+vr706tVLuU1qairGxsZvje9tQkNDsba2VhZjmaWlpTF9+nTWr1/Po0ePSEpKIikp6Z1HRIoXL678/QUZx0VdXR01NTWVZW8ep4MHDzJ16lSuXLlCbGwsqampvHr1ivj4ePT19Rk8eDD9+vVjz549NGjQgHbt2infj379+tGuXTvOnTtHo0aNaN26NdWqVXunmN+HiYkJgYGBeHl5Ua1aNcaOHfvJ9yl9HUrV86S9sREbZk0jLf0FrjcM0UsqQdDOnxj8/dx8i+uLGkFq0qQJP//8M23bts2yTgjB3LlzGT9+PG3btsXFxYVVq1aRkJCg/AszJiaGwMBAAgICaNCgAe7u7vz555+EhYWxb98+AK5evUpwcDDLly/H09MTT09Pli1bxvbt27NczfSxKBQKNHV08uX1Ll/qAPr6+tjb2+Pq6sr8+fNJSkpi8uTJWfJ5U3bFw5un5V6vy7wsPT09z8dPXV2dvXv3smvXLpycnFiwYAGOjo6Eh4dnu03hwoUBcrwCb9CgQWzdupWDBw9ibW2tXG5hYQGQZbQoKioqy6hSbg4cOMCJEyfQ1tZGQ0MDe/uMm6R5eHionPoBeP78+Tv9Zf76i/PN04vZTTx+83hDxnHM6ZRkdl63zcv7nV1RkN3+s/tc5PY56NSpEzdu3ODcuXOEhITw4MEDOnbsqLLdsmXLCA0NVb4uXbrEiRMn3hrf2+jq6ua6PiAggDlz5jB69GgOHDhAaGgoXl5eJCcnv9N+3nacXi97ne+9e/do2rQpLi4ubNy4kbNnz/K///0P+L/PQc+ePblz5w5du3YlLCwMDw8PFixYAGT8nr137x5Dhw7l8ePH1K9fn5EjR75TzJll99nK7jN55MgR1NXVefz4cb7d3kL6MllVdKbrTz///+e3JWF/T4MXh+/la0xfVIGUm7fNDQE4e/YsKSkpKm0sLS1xcXFRtjl+/DjGxsYqcwSqVq2KsbGxsk12kpKSiI2NVXl9C/z8/Jg1axaPHz/GyMgIS0vLLCMuISEhlC1b9oP3deHCBZW5ECdOnMDAwEBZwCgUCqpXr87kyZM5f/48WlpabN68Odu+SpUqhZGREVeuXFFZLoRg4MCBbNq0iQMHDlCiRAmV9SVKlMDCwoK9e/cqlyUnJ3P48OF3+it7/vz5XLhwQfmlvXPnTgDWr1/PL7/8otL20qVLuLu757nv18VURESEctmnuGeRvb09WlpaKu93SkoKZ86c+Sjvd15YW1tTq1YtVq9ezerVq2nQoIGyUDU3N8fKyoo7d+5gb2+v8sr8vmampaX11isHXV1defjwITdu3Mh2/dGjR2nVqhVdunTBzc2NkiVLcvPmzfdL9B2cOXOG1NRUAgICqFq1Kg4ODjx+/DhLOxsbG/r27cumTZsYMWIEy5YtU64rUqQIPj4+/Pnnn8ydO5elS5d+UExFihRR+TzevHkzy6hoSEgIM2fOZNu2bRgZGSlHpiXpNbPSxekx51e01c2BVPSfpLF2zMR8i+eLOsWWm9zmhty7d0/ZRktLK8tplzfnj0RGRlK0aNEs/RctWjTXOSbTpk3LMpLyLahTpw7Ozs5MnTqVhQsXMmrUKPz8/ChVqhTly5dn5cqVhIaGZjvx910lJyfj6+vLhAkTuHfvHn5+fgwcOBA1NTVOnjzJ/v37adSoEUWLFuXkyZM8efIkxy9qNTU1GjRowLFjx1RuhjhgwADWrFnDP//8g6GhofI9NzY2RldXF4VCwdChQ5k6dSqlS5emdOnSTJ06FT09PTp16qTsJzIyksjISG7dugVk3PTR0NAQW1tbTE1NsbW1VYnn9RyXUqVKqYxY3b17l0ePHtGgQYM8Hyd7e3tsbGzw9/fn559/5ubNmwQEBOR5+7zS19enX79+jBo1SpnTzJkzSUhIwNfX96PvLyedO3fG39+f5OTkLPeM8vf3Z/DgwRgZGdGkSROSkpI4c+YM0dHRDB8+PMc+ixcvTlxcHPv371ee2s08Ubx27drUqlWLdu3aMXv2bOzt7bl27RoKhYLGjRtjb2/Pxo0bCQkJwcTEhNmzZxMZGfnJi8dSpUqRmprKggULaNGiBf/++y+//fabSpuhQ4fSpEkTHBwciI6O5sCBA8q4Jk2aRMWKFXF2diYpKYnt27d/cMz16tVj4cKFVK1alfT0dMaMGaMyCvby5Uu6du3KoEGDaNKkCba2tnh4eNC8eXO+//77D9q3VLAYWBSh129zWdJnCCnpL0g0+vjTD/LqqxlBeu195oZkbpNd+7f1M27cOGJiYpSvBw8evGPkX6/hw4ezbNkyHjx4wODBgxkxYgQjRoygXLlyBAcHs3XrVpUr2N5X/fr1KV26NLVq1aJ9+/a0aNECf39/AIyMjDhy5AhNmzbFwcGBCRMmEBAQoJwwm53evXuzbt06lVM4ixcvJiYmhjp16lCsWDHla/369co2o0ePZujQofTv3x8PDw8ePXrEnj17VOaJ/Pbbb7i7uyvnvtSqVQt3d3e2bt36TjmvXbuWRo0aYWdnp1zm7++vcu+mzDQ1NVm7di3Xrl3Dzc2NGTNm8PPPP7/TfvNq+vTptGvXjq5du1KhQgVu3brF7t27c5z79Sl8//33PHv2jISEBJViFzJOJS1fvpygoCDKlStH7dq1CQoKeusIUrVq1ejbty8dOnSgSJEizJw5M9t2GzdupFKlSvzwww84OTkxevRo5cjTxIkTqVChAl5eXtSpUwcLC4ss8X0K5cuXZ/bs2cyYMQMXFxdWr17NtGnTVNqkpaUxYMAAypYtS+PGjXF0dFRe4aalpcW4ceNwdXWlVq1aqKurs27dug+KKSAgABsbG2rVqkWnTp0YOXKkSsE5ZMgQ9PX1mTo140Glzs7OzJgxg759+/Lo0aMP2rdU8GgbGdJw8gAade1Hj/Ef/4+/PPskNxn4CMh0X43bt28LQJw7d06lXcuWLUW3bt2EEELs379fAOL58+cqbVxdXZX3TQkMDBTGxsZZ9mdsbJzjvUCy8y73QZLeLrt7MH2o9PR0Ubly5Sz3pvlSvHr1StjY2Ihjx46pLPf29hbe3t75E5QkSVIBl9fv769mBCkvc0MqVqyIpqamSpuIiAguXbqkbOPp6UlMTAynTp1Stjl58iQxMTGf5UoO6fNRKBQsXbr0i72z87179xg/fnyWqwIPHz7MlClfzgMbJUmSvkVf1BykuLg45ZwOyJiYHRoaqpz/8La5IcbGxvj6+jJixAjMzMwwNTVl5MiRlCtXTjnH4/WQc69evZT3SunduzfNmzfH0dHx8yctfVJubm64ubnldxjZcnBwyPYS8pyuzJMkSZI+H4UQ73Dd7yd26NAh6tatm2W5t7c3QUFBCCGYPHkyS5YsITo6mipVqvC///1P5eGJr169YtSoUaxZs4bExETq16/PokWLsLGxUbZ5/vw5gwcPVs4XadmyJQsXLsz24ZU5iY2NxdjYmJiYGIyMjN4/aUmSJEmSPpu8fn9/UQXS10QWSJIkSZL09cnr9/dXMwdJkiRJkiTpc5EFkiRJkiRJUiayQJIkSZIkScpEFkiSJEmSJEmZyAJJkiRJkiQpE1kgSZIkSZIkZSILJEmSJEmSpExkgSRJkiRJkpSJLJAkSZIkSZIy+aKexfY1eX0D8tjY2HyORJIkSZKkvHr9vf22B4nIAuk9vXz5EkDlGW+SJEmSJH0dXr58ibGxcY7r5bPY3lN6ejqPHz9GCIGtrS0PHjwo0M9ki42NxcbGpsDnCTLXgkrmWjDJXAumT5mrEIKXL19iaWmJmlrOM43kCNJ7UlNTw9raWjlUZ2RkVOA/sPDt5Aky14JK5lowyVwLpk+Va24jR6/JSdqSJEmSJEmZyAJJkiRJkiQpE1kgfSBtbW38/PzQ1tbO71A+qW8lT5C5FlQy14JJ5lowfQm5yknakiRJkiRJmcgRJEmSJEmSpExkgSRJkiRJkpSJLJAkSZIkSZIykQWSJEmSJElSJrJAymTatGlUqlQJQ0NDihYtSuvWrbl+/bpyfUpKCmPGjKFcuXLo6+tjaWlJt27dePz4sUo/SUlJDBo0iMKFC6Ovr0/Lli15+PDh504nV2/LFcDf358yZcqgr6+PiYkJDRo04OTJkyptCkqub+rTpw8KhYK5c+eqLC8oufr4+KBQKFReVatWVWlTUHIFuHr1Ki1btsTY2BhDQ0OqVq3K/fv3lesLSq6Z39PXr19//VXZpqDkGhcXx8CBA7G2tkZXV5eyZcuyePFilTYFJdf//vsPHx8fLC0t0dPTo3Hjxty8eVOlzdeQ6+LFi3F1dVXe/NHT05Ndu3Yp1wsh8Pf3x9LSEl1dXerUqcPly5dV+viseQpJhZeXl1i5cqW4dOmSCA0NFc2aNRO2trYiLi5OCCHEixcvRIMGDcT69evFtWvXxPHjx0WVKlVExYoVVfrp27evsLKyEnv37hXnzp0TdevWFW5ubiI1NTU/0srW23IVQojVq1eLvXv3itu3b4tLly4JX19fYWRkJKKiopRtCkqur23evFm4ubkJS0tLMWfOHJV1BSVXb29v0bhxYxEREaF8PXv2TKWfgpLrrVu3hKmpqRg1apQ4d+6cuH37tti+fbv477//lG0KSq5vvp8RERFixYoVQqFQiNu3byvbFJRce/bsKUqVKiUOHjwowsPDxZIlS4S6urrYsmWLsk1ByDU9PV1UrVpV1KxZU5w6dUpcu3ZN9O7dO8vx+Bpy3bp1q9ixY4e4fv26uH79uvjxxx+FpqamuHTpkhBCiOnTpwtDQ0OxceNGERYWJjp06CCKFSsmYmNjlX18zjxlgfQWUVFRAhCHDx/Osc2pU6cEIO7duyeEyCiiNDU1xbp165RtHj16JNTU1ERwcPAnj/l95SXXmJgYAYh9+/YJIQperg8fPhRWVlbi0qVLws7OTqVAKki5ent7i1atWuW4TUHKtUOHDqJLly45blOQcs2sVatWol69esqfC1Kuzs7O4qefflJpV6FCBTFhwgQhRMHJ9fr16wJQFhFCCJGamipMTU3FsmXLhBBfb65CCGFiYiKWL18u0tPThYWFhZg+fbpy3atXr4SxsbH47bffhBCfP095iu0tYmJiADA1Nc21jUKhoFChQgCcPXuWlJQUGjVqpGxjaWmJi4sLISEhnzTeD/G2XJOTk1m6dCnGxsa4ubkBBSvX9PR0unbtyqhRo3B2ds6yTUHKFeDQoUMULVoUBwcHevXqRVRUlHJdQck1PT2dHTt24ODggJeXF0WLFqVKlSps2bJFuU1ByTWz//77jx07duDr66tcVpByrVGjBlu3buXRo0cIITh48CA3btzAy8sLKDi5JiUlAaCjo6Nso66ujpaWFseOHQO+zlzT0tJYt24d8fHxeHp6Eh4eTmRkpEoO2tra1K5dW5nD585TFki5EEIwfPhwatSogYuLS7ZtXr16xdixY+nUqZPygXqRkZFoaWlhYmKi0tbc3JzIyMhPHvf7yC3X7du3Y2BggI6ODnPmzGHv3r0ULlwYKFi5zpgxAw0NDQYPHpztdgUp1yZNmrB69WoOHDhAQEAAp0+fpl69espfxgUl16ioKOLi4pg+fTqNGzdmz549tGnThrZt23L48GGg4OSa2apVqzA0NKRt27bKZQUp1/nz5+Pk5IS1tTVaWlo0btyYRYsWUaNGDaDg5FqmTBns7OwYN24c0dHRJCcnM336dCIjI4mIiAC+rlzDwsIwMDBAW1ubvn37snnzZpycnJRxmpubq7R/M4fPnafGR++xABk4cCAXL15UVumZpaSk0LFjR9LT01m0aNFb+xNCoFAoPnaYH0VuudatW5fQ0FCePn3KsmXLaN++PSdPnqRo0aI59ve15Xr27FnmzZvHuXPn3jnury1XgA4dOij/38XFBQ8PD+zs7NixY4fKF2pmX1uu6enpALRq1Yphw4YBUL58eUJCQvjtt9+oXbt2jv19bblmtmLFCjp37qwy8pCTrzHX+fPnc+LECbZu3YqdnR1Hjhyhf//+FCtWjAYNGuTY39eWq6amJhs3bsTX1xdTU1PU1dVp0KABTZo0eWt/X2Kujo6OhIaG8uLFCzZu3Ii3t7fyjxUgS7x5yeFT5SlHkHIwaNAgtm7dysGDB7G2ts6yPiUlhfbt2xMeHs7evXuVo0cAFhYWJCcnEx0drbJNVFRUlur4S/C2XPX19bG3t6dq1aoEBgaioaFBYGAgUHByPXr0KFFRUdja2qKhoYGGhgb37t1jxIgRFC9eHCg4uWanWLFi2NnZKa+MKSi5Fi5cGA0NDZycnFTaly1bVnkVW0HJ9U1Hjx7l+vXr9OzZU2V5Qck1MTGRH3/8kdmzZ9OiRQtcXV0ZOHAgHTp0YNasWUDByRWgYsWKyqIiIiKC4OBgnj17RokSJYCvK1ctLS3s7e3x8PBg2rRpuLm5MW/ePCwsLACyjAS9mcNnz/Ojz2r6yqWnp4sBAwYIS0tLcePGjWzbJCcni9atWwtnZ2eVq7leez2RbP369cpljx8//uImzOUl1+yUKlVK+Pn5CSEKTq5Pnz4VYWFhKi9LS0sxZswYce3aNSFEwck1O0+fPhXa2tpi1apVQoiClaunp2eWSdqtW7cWP/zwgxCiYOX6mre3d5Yra4UoOLm+vlhk586dKst79+4tGjZsKIQoOLlm58aNG0JNTU3s3r1bCPH15JqdevXqCW9vb+Uk7RkzZijXJSUlZTtJ+3PlKQukTPr16yeMjY3FoUOHVC6XTUhIEEIIkZKSIlq2bCmsra1FaGioSpukpCRlP3379hXW1tZi37594ty5c6JevXpf3CWXb8s1Li5OjBs3Thw/flzcvXtXnD17Vvj6+gptbW2VKyoKQq7ZyXwVmxAFI9eXL1+KESNGiJCQEBEeHi4OHjwoPD09hZWVVZbLab/2XIUQYtOmTUJTU1MsXbpU3Lx5UyxYsECoq6uLo0ePKtsUlFyFyCge9PT0xOLFi7Ptp6DkWrt2beHs7CwOHjwo7ty5I1auXCl0dHTEokWLlG0KSq5//fWXOHjwoLh9+7bYsmWLsLOzE23btlXp52vIddy4ceLIkSMiPDxcXLx4Ufz4449CTU1N7NmzRwiRcZm/sbGx2LRpkwgLCxM//PBDtpf5f648ZYGUCZDta+XKlUIIIcLDw3Nsc/DgQWU/iYmJYuDAgcLU1FTo6uqK5s2bi/v37+dPUjl4W66JiYmiTZs2wtLSUmhpaYlixYqJli1bilOnTqn0UxByzU52BVJByDUhIUE0atRIFClSRGhqagpbW1vh7e2dJY+CkOtrgYGBwt7eXujo6Ag3NzeVe+UIUbByXbJkidDV1RUvXrzItp+CkmtERITw8fERlpaWQkdHRzg6OoqAgACRnp6ubFNQcp03b56wtrZW/nudMGGCyh/kQnwdufbo0UPY2dkJLS0tUaRIEVG/fn1lcSRExmian5+fsLCwENra2qJWrVoiLCxMpY/PmadCCCE+4hk7SZIkSZKkr56cpC1JkiRJkpSJLJAkSZIkSZIykQWSJEmSJElSJrJAkiRJkiRJykQWSJIkSZIkSZnIAkmSJEmSJCkTWSBJkiRJkiRlIgskSZIkSZKkTGSBJEmSJEmSlIkskCRJkiRJkjKRBZIkSdIbnj17RtGiRbl79+47bffdd98xe/bsTxOUJEmfnSyQJEkqkIKDg1EoFLm+du3alWW7adOm0aJFC4oXL65c5uPjQ+vWrVXa/f333+jo6DBz5kwAJk2axC+//EJsbOynTEuSpM9EFkiSJBVItWvXJiIiQvkyMzPjxx9/VFnWsGFDlW0SExMJDAykZ8+eufa9fPlyOnfuzMKFCxk9ejQArq6uFC9enNWrV3+ynCRJ+nxkgSRJUoGkq6uLhYUFFhYWpKWl8ezZM2rUqKFcZmFhgYaGhso2u3btQkNDA09Pzxz7nTlzJgMHDmTNmjVZCqmWLVuydu3aT5KPJEmflyyQJEkq8M6fPw9AxYoVc2135MgRPDw8clw/duxYpkyZwvbt22nXrl2W9ZUrV+bUqVMkJSV9WMCSJOU7jbc3kSRJ+rqdO3cOKysrihYtmmu7u3fvYmlpme26Xbt28c8//7B//37q1auXbRsrKyuSkpKIjIzEzs7ug+OWJCn/yBEkSZIKvHPnzlGhQoW3tktMTERHRyfbda/nGE2aNImXL19m20ZXVxeAhISE9w9WkqQvgiyQJEkq8M6dO/fW02sAhQsXJjo6Ott1VlZWHD58mIiICBo3bpxtkfT8+XMAihQp8mEBS5KU72SBJElSgfbs2TMePHiQpxEkd3d3rly5kuN6W1tbDh8+TFRUFI0aNcpySf+lS5ewtramcOHCHxy3JEn5SxZIkiQVaGfPngXIU4Hk5eXF5cuXcxxFArC2tubQoUM8e/aMRo0aERMTo1x39OhRGjVq9OFBS5KU72SBJElSgXb+/HmKFi2KlZXVW9uWK1cODw8P/vrrr1zbvT7d9uLFCxo2bMiLFy949eoVmzdvplevXh8rdEmS8pFCCCHyOwhJkqQvxc6dOxk5ciSXLl1CTS3vf0P+73//459//mHPnj2fMDpJkj4XeZm/JEnSG5o2bcrNmzd59OgRNjY2ed5OU1OTBQsWfMLIJEn6nOQIkiRJkiRJUiZyDpIkSZIkSVImskCSJEmSJEnKRBZIkiRJkiRJmcgCSZIkSZIkKRNZIEmSJEmSJGUiCyRJkiRJkqRMZIEkSZIkSZKUiSyQJEmSJEmSMpEFkiRJkiRJUib/D0ZwKZWbzqgNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 160, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ax.plot(r14,1e-2*pa,label='Romps (2014), uniform vertical mass flux')\n", + "ax.legend(frameon=False)\n", + "fig" + ] + }, + { + "cell_type": "markdown", + "id": "ac2eb2a4-2a0d-436d-8b28-09cb95d802c1", + "metadata": {}, + "source": [ + "However, the script also works for vertically-varying profiles of entrainment and detrainment rates:" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "id": "7525fa07-6622-4c5c-92f2-8ca2de1d175e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[300.0 293.39145714174094 287.0123181832683 278.2177800669178 270.671522320217 260.97985070068006 247.9812767430812 230.09234341512152] kelvin\n" + ] + } + ], + "source": [ + "pa_r14=pa.data # for simplicity use same pressure levels as output levels to define entrainment and detrainment rate profiles\n", + "ep=0.5e-3*np.ones_like(pa_r14) # keep entrainment rate profile constant with height\n", + "de=np.linspace(ep[0],1.5e-3,len(pa_r14)) # for simplicity increase detrainment linearly (for pedagogical purposes only; the detrainment profile in the paper is more complicated than this)\n", + "r14v=parcel_profile(pa,t1,td,lapse_type='r14',params={'ep':ep,'de':de,'pa':pa_r14})\n", + "print(r14v)" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "id": "41111c66-eac7-4962-83c4-d22d3663ab37", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGyCAYAAAAf/ztNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QV1drH8e+cmn7Se6HX0HsHaQIKKFJEFBQQUFG8gogNsNDsBRCQXlUEpEnvvXcIPT2k9+TUef84mFekJSGHkGR/1sq61zkze57RQH6ZeWZvSZZlGUEQBEEQBCGPorgLEARBEARBeNKIgCQIgiAIgvAfIiAJgiAIgiD8hwhIgiAIgiAI/yECkiAIgiAIwn+IgCQIgiAIgvAfIiAJgiAIgiD8h6q4CyipLBYLMTExODs7I0lScZcjCIIgCEI+yLJMRkYG/v7+KBT3v08kAlIhxcTEEBQUVNxlCIIgCIJQCJGRkQQGBt73cxGQCsnZ2Rmw/gt2cXEp5moEQRAEQciP9PR0goKC8n6O348ISIX0z2M1FxcXEZAEQRAEoYR5WHuMaNIWBEEQBEH4DxGQBEEQBEEQ/kMEJEEQBEEQhP8QAUkQBEEQBOE/REASBEEQBEH4DxGQBEEQBEEQ/kMEJEEQBEEQhP8QAUkQBEEQBOE/REASBEEQBEH4DxGQBEEQBEEQ/qNEBaSZM2dSu3btvOU9mjVrxt9//533uSzLTJgwAX9/f+zt7Wnbti3nz5+/Ywy9Xs/IkSPx9PTE0dGR7t27ExUV9bgvRRAEQRCEJ1iJCkiBgYFMmTKFY8eOcezYMZ566il69OiRF4KmTZvGt99+y88//8zRo0fx9fWlY8eOZGRk5I0xatQoVq9ezYoVK9i3bx+ZmZk888wzmM3m4rosQRAEQRCeNHIJ5+bmJv/666+yxWKRfX195SlTpuR9lpubK+t0OvmXX36RZVmWU1NTZbVaLa9YsSJvn+joaFmhUMibNm0q0HnT0tJkQE5LSyuaC7ktJS5WToqOKtIx/xF5KVk2GkyFPj43PE02ZxmKsKJHZ4iJkXPCwoq7DOE/TGaLvOPiLdmSkyrLN/bJsizLFotF3h25W7ZYLMVcnSAIZVl+f36XqDtI/2Y2m1mxYgVZWVk0a9aMGzduEBcXR6dOnfL20Wq1tGnThgMHDgBw/PhxjEbjHfv4+/sTGhqat8/96PV60tPT7/iyhYN/LGX+/4azetpnRJ4/gyzLRTJuelIOa384xeKPDnJ8001ys4wFOl42WUhecpHYKUdIXXcNU0pukdT1qBJnzOBG9x5EjRxJzn8epwrFZ/mRCF5dcJQtP78NC7rC6hFsuLSCN7e/yeAtg7mZdrO4SxQEQXigEheQzp49i5OTE1qtluHDh7N69Wpq1KhBXFwcAD4+Pnfs7+Pjk/dZXFwcGo0GNze3++5zP5MnT0an0+V9BQUFFeFVWcmyjMlgAOD68SP8/tmHLPlgFBf27MBsKlig+a+MxFwcdRqy0w0cWnOdRR8eYN/KK2Qk5y/omNP0KBzUyAYLmftjiPvqKEnLL2GIznykuh6FLMtYcnJBksjYuo2bvV4gcthwck6dKraaBKtcoxmNSiIuNQuLLMHpZeRs+QR7ScXRuKP0WtuL2WdmYzQ/2ve1IAiCrUhyUd2ieEwMBgMRERGkpqby559/8uuvv7J7925SU1Np0aIFMTEx+Pn55e0/dOhQIiMj2bRpE8uWLePVV19Fr9ffMWbHjh2pWLEiv/zyy33Pq9fr7zguPT2doKAg0tLScHFxKdJrTI6J5sTfazm/axsmg/Wcjm7u1Ov8DLU7dsHeyblQ45pNFq4eu8WJLREkx2QBoFBIVG7kQ71OwXgEOD3weFmW0V9JJWNPFPqrqXnbtRV0OLUJxK6KG5IkFaq2R6G/epXEWbNJ37ABLBYAHJo1xXPECBwbN37s9QhWNxOz+HTteTKuHOBL9TxqKMKJUin5IqA8+xXWXwQquVZifLPx1PWuW7zFCoJQZqSnp6PT6R7687vEBaT/6tChAxUrVmTs2LFUrFiREydOUK9evbzPe/TogaurKwsXLmTHjh20b9+e5OTkO+4i1alTh549ezJx4sR8nze//4IfRU5mBme2/s3JzevJSkkGQKXVUrNNB+p36Y67f0ChxpVlmYjzyZzcGk50WGre9uCa7tTrFEJAFdeHBh1DTCaZe6PJPp0AFuu3kMrHAedWgTjU9UJSPf6bk4bwcBJnzybtr7VgMgFg37ABnsNH4NiiebGEt7JOlmX+PhfHF2vP8HT2Ov6n+gNHKZcNTk585eNLssWAhETfqn15p/47OGkeHNIFQRAeVZkJSO3btycoKIj58+fj7+/Pu+++y/vvvw9Y7zZ5e3szdepUhg0bRlpaGl5eXixZsoQ+ffoAEBsbS2BgIBs3bqRz5875Pu/jCEj/MJuMhB3Yy7ENa0i4ed26UZKoUL8RDbv1JLBGrUL/8L91M52TWyK4fjKef74TvEOcqdsxmIr1vFAoHxx0TKl6MvdHk3UkDllvfRNQ4azBqYU/Tk38UNirClXXozBGR5P466+krfwT2Wh9hGNXuzaew4fj1K6tCErFIFNv4rutl9l04DgfKRfRVXmEVIWCr338+cvO+j3m7eDNR00+4qngp4q5WkEQSrNSGZA+/PBDunTpQlBQEBkZGaxYsYIpU6awadMmOnbsyNSpU5k8eTLz58+ncuXKTJo0iV27dhEWFoazs/Wx1IgRI1i/fj0LFizA3d2d0aNHk5SUxPHjx1Eqlfmu5XEGpH/IskzUhbMc27CG68eP5G33LleRBt16ULV5K5QqdaHGTkvI5tS2SC4eiMVstD6mcvG0o26HYKo190OtefC/G0uuiazDcWTsj8aSbn18ImmUODb2xamFPyo3u0LV9SiMt+JJnjeXlN9+R8619lppq1XDc/hwnDt1RFKUuBa8Eu9CTDofrzmLS9ROPlctIEiRwGE7LZ/5BRGB9fumQ3AHxjUZh7eDdzFXKwhCaVQqA9LgwYPZvn07sbGx6HQ6ateuzdixY+nYsSNgDRATJ05k1qxZpKSk0KRJE6ZPn05oaGjeGLm5uYwZM4Zly5aRk5ND+/btmTFjRoGbrosjIP2brfqUcjIMnN0Vxdld0Xlvutk5qanVNpBabQOwd9I88HjZZCH7dAKZe6MwxmVbNyrAvrYXzq0C0Tykz8kWTElJJC9YQMrSZViyrTVpKlbEc/gwXLp0QVI9/rtcZZnFIvP7sUi+//s0A4x/8LpyPRaFhVnuHixwccSEjJPaiXcbvMsLVV5AIYkgKwhC0SmVAelJUtwB6R85Gemc2bapyPuUjHozFw/Ecnp7BOmJ1rsvKrWC6s39qNMhGJ2X/QOPv29DdyVXnFsFoC2Ghm5TSgopi5eQvHgxltuTh6pDgvF8/XV03bsjqQt3900onKRMPVP+vsTJE4f4Uj2PJopLhKnVTPAL4JzSeheznnc9xjcbT0XXisVcrSAIpYUISDb2pASkf9yvT6lig8Y06Nqj0H1KFrOFaycTOLklgoSIjH+GpWIDb+p1DMY75OHXbojOJGNvFDlnEsD6c8/a0N06EIc6j7+h25yRQcrSZSQvWIA5NRUAtb8/HkOHoHv+eRRa7WOtp6w7ejOZj1edJTRxIx+ql+IqZbDCxYkfPbzIxoxKoWJIrSEMqTUErVL8txEE4dGIgGRjT1pA+scD+5Se6UnVZi0L1ackyzLRYSmc3BJBxIXkvO0BVd2o3ymYoBruDw1gptRcMvfFWBu6Dbcbul00OLfwx7GJHwq7x/uoy5KVRcpvv5M0bx7mxEQAVN7eeAx+Ddc+fVDYP/gumVB0jGYL8/ffYP62k4y0LKG/aidxSiVfePuw+/b3RTmXcoxvNp6Gvg2LuVpBEEoyEZBs7EkNSP+WHBPFiY1rOb97e16fkpObO3UfsU8pMSqDk1sjuHI0Hvn2K/4eAU7U6xRMpYbeKB/y5pslx0Tm4Vgy98dgybjd0K1V4tjIF6eWAahcH+9dAktuLqkr/yTp118x3Z4wVOnujvurg3B7sT9KJ8fHWk9ZFpOaw8R150m4sJcv1XOppohkq4M9k719SJSstx97Ve7Fuw3eRafVFXO1giCURCIg2VhJCEj/sFWfUnpSDme2R3F+fwym26/4O7lpqdshmOot/NA85I6QbLKQfSqBjL1RmG7909At4VDbE6fWgWj8H29Dt8VgIG3NGpJmz8EYFWUtR6fD/ZWXcX/5ZZRP+H/n0mTHpVtMXHOajhlreFe1ErPSwPfu7vzhbA2rHnYefNDkAzqHdBbTNgiCUCAiINlYSQpI/7BVn1JulpFze6I5syOSnAzrm29aBxWhrQOo1S4QR92D7wjJskzu5RQy90Shv5aWt11byRXn1oFoKz984sqiJBuNpG3YQNIvszDcvAmAwskJt5dewn3QQFT/WapGsI0cg5npO6+yds9hPlIspLPyGMe1WiZ6e3NDZf1+aBPYho+afISfk99DRhMEQbASAcnGSmJA+ocsy0SeP8vxjUXbp2Qymgk7FMfJrRGkxecAoFQpqNrUl7odgnDzffijKkNUBhl7o8k5+/8N3WpfR5xaB+BQ+/E2dMtmMxmbN5M48xf0V64AINnb49avHx6vvYrKy+ux1VKWXY3P5JM153C4uYWJ6oV4S4nMdXVhtpsbJmQcVA68Xf9t+lXth1KR/7nMBEEom0RAsrGSHJD+zRZ9ShaLzM3TiZzYEs6tG+nWjRJUqONFvU7B+FZ4eO+IKTnXOkP30ThkgzUpKV00OLUMwLGx72Nt6JYtFjJ37CBxxkxyL1wAQNJqce3dG4/Br6H2E3cvbE2WZf46FcPX60/ykn4FQ5QbidRITPDy4qTWGuZDPUKZ0HwCVd2rFnO1giA8yURAsrHSEpD+8aA+pQZdu+PmV/A+JVmWib2WxsktEdw8k5i33a+SjnqdQigX6oGkePCjM0u2kczDcWQeiMZy+/GdpFXi2MQXpxYBqB7y+K4oybJM1t69JM6YSc6pU9aNajWuzz2Hx9AhaAo42ahQcGk5Rr7ZEsahw/v5XDWPRopL/OnsyHceHmRIoJSUDKo5iOF1hmOnevyztwuC8OQTAcnGSltA+scD+5S69SSwemih+oGSY7I4tS2CsMNxWMzWbzk3XwfqdgymamNflOoHPzqzNnTHk7EnGlP8vxq663jh1CrgsTZ0y7JM9uHDJM6YSfaR248olUp0zz6Lx+uvo61Q/rHVUladiUrlo1VnqXprHR+qlmJWZTPZw52tjg4ABDkH8UnTT2jm36yYKxUE4UkjApKNldaA9I+8PqUNq7l+4mjedu/yFWnQrfB9Slmpek7viOT8nmgMudY33xx0Guo8FUTNVv5oHR48pmz5V0P39X81dFe+3dBd6fE2dGcfP07izF/I2rfPukGScOnSBY/hw7CrUuWx1VEWmS0yyw6HM2vzMd4yLaafahc7Hez5wtOD+NtTTXSv2J3RDUfjZica6wVBsBIBycZKe0D6t/v2KT39LLU7PF2oPiVDjonze2M4vT2CrDTrXEhqOyU1WwVQ56lAnPKxuK0hKoOMPVHknE2E29/Faj9HnFoH4lDbE+kh8zEVpZwzZ0j8ZRaZO3bkbXPu2AGPYcOxD6352Oooi+Izcpm04SKRp3fypXoegcoofnJzZbmLM7IEblo3xjQawzMVnhFTAgiCIAKSrZWlgPQPW/QpmU0Wrhy9xcmtESTHZAGgUEhUaexD3Y7BeORjcVtTci6Z+6LJOvavhm6dBqcWj7+hO/fSJRJ/mUXG5s1w+4+WY5vWeA4fjkO9eo+tjrLowNVExq85RbuUlYxSreKKncwETw+uaqx3JZv7N+fjph8T5Cx6xQShLBMBycbKYkD6hy36lGSLTPj5JE5uiSDmSmre9pBQD+p1CsY/H3MhWRu6b8/Qnfnvhm4/nFv4o3yMDd36q1dJnD2b9PUbwGINbQ7NmuI5fAQOjRuJOxk2ojeZ+XXvDVZuP8CH0gLaKo+zUOfCTDdXDBLYKe14o+4bvFzjZVSKx7u0jSAITwYRkGysLAekf9iqTynuRhqntkRw7VRC3qMz7xBn6nUKoUI9LxQPefNNNv7T0B2FKcE6HxMKCYe6Xji3DkSdj/mYioohPJzE2bNJ+2stmEwA2DdogOeIETi2aC6Cko1EJmczfu15lJc3MkG9EJM6jc893Tlsb310W829GhOaTaCmp3j8KQhljQhINiYC0p2sfUp/cX73jiLrU0q9lc2p7ZFcOhCL2WS9C+PiZU+9jsFUa+qLSvPgSQFli0xuWDIZe6Ix3PhXQ3cVN5xbB6Ct+Pgauo3R0STNnUvqHyuRjda7W3a1a+M5fDhO7dqKoGQDsiyz+fwtpq09Rp/s5QxWbmSDsz1febiRrlCgkBS8VP0l3qr7Fg5qh+IuVxCEx0QEJBsTAene8vqUNq0jKzUFsPYphba1rvtWmD6l7HQDZ3dFcXZXFPrs23dhnNXUahtIrTaB2Dk9/C6VITKDjL3/aej2d8S5dSD2tR5fQ7fxVjzJ8+aR8ttvyLm5AGirVcNz+DCcO3VCUjy+xvKyIktv4sftV9i7fzcTlXOpoLrKNA83Nt5ehNjf0Z+Pm35Mq8BWxVypIAiPgwhINiYC0oOZjEbCDuzh+IY1JITfsG58xD4lQ66JiwdiOb0tkoxka7hQaRTUaOFPnfZBuHjaP7yupBwy98dYZ+g23m7odtXebuj2QaF9PH0ppqQkkhcsIGXpMizZ1nmdNBUr4jl8GC5duiCpRH9MUQuLy+CT1acpF7WGcarlnHcw8YWHO9Fq67/rLuW68H7j9/G09yzmSgVBsCURkGxMBKT8eVCfUsNuPalSiD4li9nC1RPxnNwSQWJkJgCSQqJSA2/qdQzGK/jhj/PMWUayDseSeeBfDd12Spya+OHUwh+ly+Np6DanppK8eAnJixdjSbcuy6IOCcbz9dfRPfsskkbzWOooKywWmZUnovhlwyFGGBfRTb2XGW46Frs4Y5EkXDQujG44mp6VeorHnoJQSomAZGMiIBXcPfuU3D2s674Vok9JlmWiLqVwcks4kRdT8rYHVnOjfqcQAqu7PfSHnGy0kH0ynoy9/2roVko41PXGuVXAY2voNmdkkLJsOckLFmBOuf1o0t8Pz6FD0T3/PArt43sDryxIyTIwbfMlrh3dwhfqeRjt4pno6cFFrTWQNvJtxKdNP6WcrlzxFioIQpETAcnGREAqPFv0KSVEZHByawRXj8cjW6zf0p5BTtTrGEylBt4oHtJjJFtkci8lk7EnCsPN9LztdlXdcGoViLai7rHcUbBkZ5Oy4jeS5s3DnGhdv07l7Y3H4Ndw7dMHhf3DHyMK+Xc8PIUJq0/SMuE33lCtYpVOy89uOnIVCjQKDcPqDOPVmq+iVhb8bUxBEJ5MIiDZmAhIj84WfUrpiTmc3hHJhX0xmG5PGunsbked9kFUb+GHJh+TRuoj0sncG03OuX81dAc44dwqAPtaXkjKxxCUcnNJXfknSb/+iikuDgCluzvurw7C7cX+KJ0e31QFpZ3JbGHBgZv8tnUfH8jzqKo9wxce7ux3sIbRSq6VmNB8AnW86hRzpYIgFAURkGxMBKSiY+1TOsPxDWuKrE8pN9PIuT1RnNkZRU6GtcdI66CyvvnWNhAHl4f39piScsjYF032sVt3NnS3DMCx0eNp6JYNBlLXrCFp9hyMUVEAKHQ63F95GfcBA1DqdDavoayIS8vl83XnMV1Yx6fqhZxyymWahxvJSiUSEn2r9uWd+u/gpHl8CyMLglD0RECyMRGQbCMpOpKTf68tsj4lk8HMpUNxnNoaQdrtHiOlSkG1Zr7U7RCMq8/D578xZxnJOnS7oTvrn4ZuFU5NfXFqHoAyH2HrUckmE2nr15M0azaGG9a7bQonJ9xeegn3QQNRuYnFWIvKrrB4pvx1jOfTl/C8ejPfe7jwl7M1FHk7ePNRk494KvipYq5SEITCEgHJxkRAsq3s9DTObNvEqc3ri6RPyWKRuXE6gRObI4j/p8dIggp1vajXKRjf8g+/EyMbzWSdiCdzbzSmxP80dLcOQO1j+8destlMxubNJM78Bf2VKwBI9va49euHx2uvovLysnkNZUGu0cyMXdfYtWsHE5RzMDpEMtHTnUi19U5mh+AOjGsyDm8H72KuVBCEghIBycZEQHo87t+n1ISG3XoSUL1mgfqUZFkm9moqJ7dEcPNsUt52/8qu1OsYTEioB9LDljKxyOReTCZj7z0aulsHoq1g+4Zu2WIhc8cOEmfMJPfCBQAkjQbX3r3xGDIYtZ+fTc9fVtxIzGL8mjP431jJu+rlrHBTsUDngkmScFI78m6D//FClRdQSGKCT0EoKURAsjERkB6vh/cptUJZwMkVk2IyObU1gstHbmExW/8YuPk5Uq9jMFUa+6BUPfyHnj4incw9UeScT7qzobt1IPahnjZv6JZlmay9e0mcMZOcU6duF6DGtWdPPF4fiiZIrFz/qGRZZv2ZWH5ed5DX9fMJtTvERE93ztpZp16o51WP8c3HU9G1YjFXKghCfoiAZGMiIBWfvD6lXdsxGQ2AtU+p3tPPUrv909g5FayJNjNFz5kdkZzbG40x1wyAo05D7fZB1GwVgNb+4cHLlHi7ofv4vxq63W43dDf0RaF98Lpxj0qWZbIPHyZxxkyyjxyxblQq0T3zDB7DhqGtUN6m5y8LMnKNfLv1MpcObmSCah7HXNP50c2VbIUClaRiSO0hDK01FI1STO4pCE8yEZBsTASk4lfUfUr6HBPn90Rzekck2WnW4KWxU1KzdQB1ngrC0fXhkzWas4xkHYwh82AMlizrunGSvQqnpn44NfdH6Wz7H57Zx4+TOPMXsvbts26QJFy6PI3HsOHYVa1i8/OXduei05iw+iSNY5fSR/sX33g6s8vR2uxfziWE8c0m0NC3YTFXKQjC/YiAZGMiID058vqU1q8mIeKmdeMj9CmZjRYuH43j5JYIUuKs66QplBJVmvhSr0Mw7v4Pb8a+b0N3PW+cWwei9rb96vE5Z8+S+MssMrdvz9vm1KE9nsNHYB9a0+bnL80sFpnlRyNY8vduxpjnYHK+wmQPdxJV1juFvSr34t0G76LTimkYBOFJIwKSjYmA9OQp6j4l2SITfi6JE1vCib2alre9XC0P6nUKwa/Sw5uxrQ3dSWTsicYQ/q+G7mruOLcOQFPe9g3duZcukfjLLDI2b4bbf9wdW7fCc8QIHOrVs+m5S7vETD2TN1wk6/RqRmsXstQdVrpYp6Lw0LoxrulHdArpJNZ1E4QniAhINiYC0pMtKTqSExv/4sLuHUXSpxR3PY2TWyO4fiohrxnbp7wL9ToFU76OF4qHvPkGoA9PJ2NPFLkX/tXQHXi7obum7Ru69deukThrFunrN4DF2ifl0LSpNSg1biR+iD+Cw9eT+HL1EXqkLKS24w4+93TnhsY6JUCbgNZ83OwTfB19i7lKQRBABCSbEwGpZLh/n1JH6nftjpuvf4HGS72VzcltEYQdjMNssoYMnbc99ToGU7WpLyr1w5uxjYk5ZO6NIut4PNweQ+luh3MLfxwa+aLQ2Lah2xAeTuKcOaSt+QtM1j4p+wYN8Bw+HMeWLURQKiSDycLcfTfYun0L46TZHHVPYo6rdUoAB6UdbzcYRb+q/VAqbPvfVxCEBxMBycZEQCpZirpPKTvdwJmdkZzbHY0++3bIcFZTu10QoW0CsHN8+NIo5kwDmQdjyToYgyX78Td0G6OjSZo7l9SVfyIbrHfZ7GrVwnPEcJzatRNBqZCiUrL5bO1ZvC6voK/9H3ztZc9JOzsAarlXZ3yLz6nqXrWYqxSEsksEJBsTAalkkmWZiHOnOb5hDTdOHsvb7lOhEg269aRK05YF6lMy5Jq4uD+WU9sjyEy2Lo2i0iqp0cKPOu2DcPGwf+gYFoOZ7BO3yNgbjTkp17pRJeFYzwenVgE2b+g23ooned48Un77DTnXen5t1ap4jhiOc6dOSAoxCWJhbLtwi+//2s+g7F+xuJ7mO3dXMhUKVCgYGPoqw+sMx05lV9xlCkKZIwKSjYmAVPIVZZ+S2Wzh6rF4Tm6NICkqEwBJIVG5oTf1OgXjGfjwNeRki0zuhSQy9kRhiMjI225X3R3n1oFoyrnY9K6OKSmJ5AULSVm6FEu29e09TcWKeA57HZeuXZEKOBGnADkGMz/tuMLZfWt5Wz2P5V5Gtt6eEiDIwZdPWnxGM/9mxVylIJQtIiDZmAhIpUd2ehpntv7NqS0bHrlPSZZlIi8mc3JLBFGXUvK2B9Vwp16nYAKruuUr5OhvppGxJ5rci/9q6A5yxrl1gLWhOx9N4YVlTk0lefESkhcvxpJuffNOHRyM5+tD0XXvjqQREyEW1NX4DCasPkHdiMXUdvmbqZ4uxN8OnN3Ld2NM4w9wtXMt3iIFoYwQAcnGREAqfYq6TykhIoOTW8K5ejz+n7fr8Qxyon6nECrW90KhfPijK2NCNpn7osk6fgtM1kGU7nY4twrAoYGPTRu6zRkZpCxbTvKCBZhTbgdHfz88hgzBtVcvFNqHT5wp/D9ZlllzKpqF63cw3DibE55RrHBxQpYk3FSOvN/sY7qV7yZ6vwTBxspEQJo8eTIffvgh77zzDt9//z1g/Uto4sSJzJ49m5SUFJo0acL06dOpWfP/J8bT6/WMHj2a5cuXk5OTQ/v27ZkxYwaBgYH5PrcISKVXUfcppSfmcGp7JBf3xWC6vQyJs4cddTsEUb25P+p8LENizjSQeSCGrEOxeQ3dCgcVjk39cGpm24ZuS3Y2Kb/9TtK8uZgTEgFQeXnhPvg13Pr2RWH/8D4r4f+lZRv5avNFUo79wQuOS/nRS83V23flmns34OOWnxPkLNbQEwRbKfUB6ejRo/Tp0wcXFxfatWuXF5CmTp3Kl19+yYIFC6hSpQpffPEFe/bsISwsDGdnax/IiBEjWLduHQsWLMDDw4P33nuP5ORkjh8/jlKZv9/IRUAqG4qyTykn08C53dGc2RlFbqYRAK2jilptA6ndNhD7fIQci8FM9vHbDd3J/2rorn+7odvLdg3dltxcUv/8k6Rf52KKjQVA6e6O+6BBuPXvj9Lp4TOMC//vVGQqX646TOeEXzF7HGK2qw6DQsJOUvFmvZEMqPkKKoXo+xKEolaqA1JmZib169dnxowZfPHFF9StW5fvv/8eWZbx9/dn1KhRjB07FrDeLfLx8WHq1KkMGzaMtLQ0vLy8WLx4MX379gUgJiaGoKAgNm7cSOfOnfNVgwhIZcs/fUonN68nOy0VKHyfktFgJuxgLCe3RpCeaA05SrWC6s38qNsxCF0+Qo5skck5n0TmnigMkbcbuiWwq+6Bc+sAtOVst8SFbDCQ+tdfJM2egzEyEgCFTof7yy/j/vIAlDqxvEZ+mS0ySw6Fs2Hz3wxWzeJ3ryyO2FvfbKvuHML4NlOp6SGWhRGEolSqA9LAgQNxd3fnu+++o23btnkB6fr161SsWJETJ05Q719LKPTo0QNXV1cWLlzIjh07aN++PcnJybi5ueXtU6dOHXr27MnEiRPveU69Xo9er8/75/T0dIKCgkRAKmNMRiOX9u/mxIY1eX1KkqSgdofONO8zAAeX/IcDi0Xm+skETm4JJz7cGnIkhUTd9kE0erY86nz0F8myjCE8nYzdUeReTM7bblfdHdceFVG52u41ctlkIn3DBhJ/mYXhxg0AlG5u+H3xOc7t29vsvKVRfHouX64/h9P5xYS6ruFnD0fSlUoUSHzS7FNeqPJCcZcoCKVGfgNSibt/u2LFCk6cOMHRo0fv+iwuLg4AHx+fO7b7+PgQHh6et49Go7kjHP2zzz/H38vkyZPvG56EskOlVhPatgM127S39imtX82NU8c5vfVvLu3fQ7MX+lO3c7d89SgpFBKVGnhTsb4XMZdTObElnIjzyZzcGsG1k/G06V+V4BoeDxxDkiS05XRoy+kwxv9/Q3fuxWRuXUvFpWM5nJr722QZE0mlQtejBy7PPEPGli0kTJ+O4eo1ot58C9e+ffEZ+z4KB9svylsaeLvY8UP/huy7Uo6vV7VhZMR0jnrdYIuTIxMPTiQ1N5XBtQaLBm5BeIxK1AxwkZGRvPPOOyxZsgQ7u/v/Zvzfv0RkWX74oqIP2WfcuHGkpaXlfUXefrQglE2SJBFSqy7Pj5tI3/FT8CpXAX12FrsWzWHhmLfuaO7Oz1gBVd14dmRdur1RGyc3LemJuaz78TRb558nJ8OQr3HU3g64PV8Zn7froSnngmywkLbhOvHTT2KIynj4AIUkKZW4dOlChVWr8BgyGCSJ1N9+48bzvcg5d95m5y2NWlb2ZO6b3VjmMYGg2FYMSbUukvzDyR/49tjXlMAb/oJQYpWogHT8+HHi4+Np0KABKpUKlUrF7t27+fHHH1GpVHl3jv57Jyg+Pj7vM19fXwwGAykpKffd5160Wi0uLi53fAkCQGCNUAZM/o6Or7+FvYuOlJgoVk2ZwKrJ40mKLliQLlfbkxfHN6HOU0FIElw+fIulEw5x6WBsvn84qn0c8Xq9Nm7PV0ayU2GMySJ++ilS117DojcV5hLzRdJo8B49muD581H5+GC4eZOb/fqROHsOstlss/OWNh5OWpa/3ozj5d8gKb4n/0tKBWDBhUV8uu8jTBbb/TcUBOH/lagepIyMjLxHZf949dVXqVatGmPHjqVmzZr4+/vz7rvv8v777wNgMBjw9va+q0l7yZIl9OnTB4DY2FgCAwNFk7bwyPTZWRxa9RsnNq7FYjahUCqp26kbzV7oX6A33gBu3Uxn55JLeTNzB1R1o+1LVXEtwNIj5gwDqRuuk3MqAQCliwbXHhWxr+lZoFoKypyaSuz4CWRs3gyAQ6NG+E+bitrPz6bnLU0MJgtjVp7GcmYlbdwW8rmXKxZJ4qmA1kxr9y1apZiHShAKo1Q3af/bv5u0wfqa/+TJk5k/fz6VK1dm0qRJ7Nq1667X/NevX8+CBQtwd3dn9OjRJCUlidf8hSKTEhvNrsVzuX78CAB2zi606DOA2u07o8jn9xhYlzA5vS2SI+tvYDZaUKoVNOpWjrodg1HmY6LJf+ReTiFlzdW8qQHsanjg2r0iKlfb/ZCVZZm01Wu49cUXWLKzUbi44DdhPC5du9rsnKWNxSLzxYaLXD64lv666XzibZ0KoLFXPX7oMAMnTcFCtyAIZTgg/TNR5KxZs+6YKDI0NDTvmNzcXMaMGcOyZcvumCgyKCj/k7OJgCTkx80zJ9m1cA5JUREAeAaF0HbgUEJq1S3QOGkJ2exaGpa3fIlHgCNtB1TDt3z+35qTjWbSt0eSsScKLDKSRolLpxBrE7cNly4xREQQPWYMuafPAKDr0QOfTz5GWcA7amWVLMvM2nOdjZs28LbLN3zs60SWQkENXSVmPj0Xdzv34i5REEqUMhOQiosISEJ+WcxmTm/7mwO/LyU309osXalRU9oMGIyrb/4fOcmyzOXDcez74yq5WUaQoFbbQJr2qIDGLv8vpBrjskhZfRVD+O111gKccHu+MpoA2wUW2WgkceYvJP7yC1gsqAMD8f9qGg7/mo5DeLA/jkUya9VmPnKcwng/DSlKJeUc/Zn99AL8nMSjS0HILxGQbEwEJKGgcjIzOPjHMk5t2YBssaBUqajftQdNnuuLtgCvw+dkGti/8iphh6wvIzi5aWn9YlXK185/X5Fskck6Gkfa3zeQc80ggVOLAFw6hqDIx9InhZV94gQxY97HGB0NSiWew4fjOWI4UgGWbinLtl+8xcRl25igmcRkfwtxKhU+Wjdmd1lABV2F4i5PEEoEEZBsTAQkobCSoiLYuXAO4WdOAuCgc6Xli68Q2qYDkiL/fUWRF5PZtfRS3mzcFet70apvFRx1+e8rMmcYSF1/nZzTt5u4dVprE/dD5l96FOaMDG598QVpf60FwL5uXfy/moamAI+4y7Lj4SmMmr+Dj6XJTPfP5IZGjavKgV86z6Omp5h1WxAeRgQkGxMBSXgUsixz/cRRdi/+lZTYGAC8y1ek3aDXCayW/x9yRoOZYxtucHJrJLJFRmOvotlzFanZsmB9RTlhyaSuuYo5xTpbvH1NaxO3sgBhq6DS1m8gbuJELBkZKBwc8PnkE3Q9e4jJEPPhyq0Mhs7dy7v6KSwPiOO8VouDQsOPHWbQxK9JcZcnCE80EZBsTAQkoSiYTUZO/r2Og3+uwJCTDUDVZq1oPeBVXDy98z1OYlQGOxdfyluyxK+SjrYvVcPdL/8LyFoMZjK2R5CxNwosIGmV6DqXw7Gpn82auI3R0cSM/YDsY9aJNZ27PI3fhAliPbd8iEnN4dW5BxiY9g07/K9w2N4ONQq+avst7UPEUi+CcD8iINmYCEhCUcpOS2X/b0s4s2MzyDIqtYaG3XvRuHsv1A+YNf7fLBaZszujOLT2Oia9GYVSosHTITR4uhxKdf4f3Rlis0hddSVvEVx1kDNuz1VC42+bJm7ZbCbp17kk/PQTmEyofH3xnzoVxyaNbXK+0iQ128Dg+Yd5Km46V/yOst3RAQUwodlEnqvyfHGXJwhPJBGQbEwEJMEW4m9eZ+fC2URdOAeAk7sHrfsPolrLtvl+9JSRnMvu5WGEn00CwM3XgbYvVcO/smu+65AtMllHYkn7+yay3gwKcGoZgEuHEBT5WES3MHLOniNm9GgM4eEgSXgMGYzXyJFIGo1Nzlda5BjMvLnsBBWu/IrRbwurnK1B9r36oxhUa3AxVycITx4RkGxMBCTBVmRZ5sqRA+xePI/0hFsA+FWpxlMDX8e3UpV8j3HtRAJ7frtMTrp1Lbcarfxp/lxFtA7qfNdiTteTuu46OWcTAVC6anHtWQn7araZe8eSlcWtKVNJ/eMPAOxq1MD/66/RVihvk/OVFkazhXGrziKfWoKf9x8sdLVOivta9VcY1Wi06OsShH8RAcnGREASbM1kMHB8wxoOr/4do976plqN1k/R6sWBOLnn7y2z3CwjB1df48I+ayO4g4uGVn2rULG+V4F+aOZcut3EnXq7ibuWJ67PVkDpYpsm7vStW4n75FPMqalIdnb4fPABrn37iB/0DyDLMtM2h3F5z+808ZzLTx7Wv5d6lX+GT1p+gVJhu+kbBKEkEQHJxkRAEh6XzOQk9q1YxPnd2wFQa+1o8lwfGnTriSqfj59irqSwc0kYqbesjeDlannQ+sWqOLvnr78JrE3c6dvCydwX/f9N3E+Xw7GJbZq4jbfiiR03jqwDBwBweuop/L74HJW7mDn6Qebuu8HfG1bR0+MnvvJ0wiJJdPRvyZSnfkCjFI8rBUEEJBsTAUl43GKvhrFz4RxiL18CwMXLhzYDXqVykxb5urNiNlo4vukmxzeFYzHLqLVKmvSoQK22gSgKEHAMMZmkrLqC8fYiuppgZ1yfq4ymAG/M5ZdssZC8aBEJ33yLbDSi9PLEf9JknFq1LPJzlSZ/nYpm1h/reFX3NZO97TBKEk09a/NDpzk4qPM/KakglEYiINmYCEhCcZBlmUv7d7Nn2QIyk6x9QYE1Qmk38HW8y+VvJuXkmCx2Lb1E7LU0ALxDnGn3cjU8A53zX4dFJutQLGmb/2nilnBuFYBz+2CbNHHnXrpEzJgx6K9cBcDtlZfxfu89FFqxov397LmcwGdL/uYN+0lM8VWSo1BQy6UCM7osxNXOtbjLE4RiIwKSjYmAJBQnY24uR9b+ybG1f2IyGkCSqPVUJ1r2fRkHnetDj5ctMuf3xXBw1VUMuWYkhUS9jkE06lYeVQECjjlNT+q6a+Scs74xp3TT4tazEnZVi/4xmCU3l/ivvyFlyRIAtJUr4//119hVzV/jell0OjKV/83fxlvKz/nWz0iqUkkFex9mdVuCr6NvcZcnCMVCBCQbEwFJeBKkJ8SzZ+l8wg7uBUBj70CzXv2o1+VZlKqHv62Wlapn7++XuXbCutSIi5c9bftXJah6wQJOzoUkUv+6hjntdhN3bU9cn62I0rnoe14yd+8m5sOPMCclIWk0eI9+D7cBAwq0TEtZcj0hk2G/7uZ142f8EpBOvEqFn0bH7K5LKKcrV9zlCcJjJwKSjYmAJDxJoi6dZ+eC2cTfuAaAm58/bV4eTIX6jfPVn3TjdAK7l18m6/ZbalWb+tLihUrYO+U/4Fj0ZtK3hpO5PxpkkOyU6LqUx7GRb5E3cZuSkoj96GMyd+0CwLFlS/wmfYnaO/+zj5clt9JzGTJ3P33SJ/G7fzQ3NWrclfbM7LKAGh41irs8QXisRECyMRGQhCeNbLFwbvc29i1fRHZaKgAhtevRbuBQPAKDH3q8IcfEobXXObsrCmSwc1LTsndlqjT2KdDr9Ybo203c0bebuENccHuuEmrfom3ilmWZ1BUruDVlKrJej9LNDb8vPse5vVhm417Scoy8vvAwbWK/ZlfARS5qNThKKn7qOJtGfo2KuzxBeGxEQLIxEZCEJ5U+O5vDa37nxIY1mE0mJIWCup260ax3f+ydHt6IHXcjjV1LLpEUnQVAUHU32vSvhs7LPt81yBaZzIMxpG8ORzbcbuJuHYhL+yAkddE2ceuvXSN69Bj0Fy8C4Nq3Lz5j30fhIN7W+q9co5l3lp+g/JXphAXs55i9HRoUfN32W9qJ9duEMkIEJBsTAUl40qXGxbJ7yVyuHj0EgJ2TM81796dOx64olA8OKWazhVNbIzi6/iZmkwWVWkGjZ8pTp0MQSmX+e31MqXpS114j98LtJm53O9yeq4RdZbfCX9g9WAwGEn74geR580GW0ZQrh//XX2MfWrNIz1MamC0yH685h3xiDln+G9nlaI8S+KzZBLpX6VXc5QmCzYmAZGMiIAklRcS50+xcOIfEiJsAeAQG03bgUMrVrvfQY1NvZbNrWRjRYSm3j3Wi3YBq+JQr2Pd8zvlEaxP37WVP7Ot64fpMBZQF6HHKj6xDh4gZ+wGmW7dApcLrnbfxeO01pIcEwrJGlmW+23aFyzsX4ea/nPXO1rttY+qO5JU6rxdzdYJgWyIg2ZgISEJJYjGbObN9M/t/X0JuRjoAFRo0pu3Lg3HzC3jgsbIsE3Yojn0rr6DPMiFJULtdEI27l0djp8p/DXoT6VvCyTwQY23itlfh2qU8Dg19irSJ25yaSuyn48nYsgUAh0aN8J82FbWfX5Gdo7RYfPAmG9f9RqjPbFa4WkPS0GovMbLxWLGsi1BqiYBkYyIgCSVRbmYmB/9czqnN67GYzSiUKup1eZZmvfqhdXhwE3VOhoF9K69w+bB1AV0ndy1tXqxKuVqeBarBEJVhbeKOsfY4acrdbuL2KbomblmWSVu1mrgvv0TOzkbh4oLfhPG4dO1aZOcoLTaejWX2ij9p6/k9c92tfWZ9Qp7mw9ZTxPptQqkkApKNiYAklGRJ0ZHsXvQrN04dB8DeRUfLfi8T2q4jiof8UIy4kMTuZWGkJ1oX0K3UwJuWfSrjqMv/rNayWSbzQAzpW28iGyyglHBuE4hLu2AkddHNZ2QIDyd6zPvknjkDgK5HD3w++Rilk1ORnaM0OHAtkS8WraeH82Sme6qRJYmnfZsyqcMM1MqHz6clCCWJCEg2JgKSUBpcP3mUXYvmkhITBYBXuQq0GziUoBq1HnicUW/m6PobnNoeiWyR0TqoaP58Jao3L9jCtaaUXFL/ukbupWQAVB52uD5XCbtKRdfELRuNJM6cSeIvs8BiQR0YiP9X03Co9/AerLLkXHQao+dtprfmM372AZMk0dytBt91mS/WbxNKFRGQbEwEJKG0MJtMnNq8gYMrl6HPtj72qtKkBa0HvIbO2+eBxyZEZLBzySUSIjIA8K/sStuXquJWgDmPZFkm93wSKWuvYbndxO1Qzxtdt/JF2sSdffw4Me+PxRgdDUolnsOH4zliOJIq/31UpV1EUjYj5m7nefNEZvnmkKNQUNspmBnPLEOn1RV3eYJQJERAsjERkITSJjs9jQO/L+HMts3IsgWlWk3DZ56ncc8X0Njdfw4ki9nC2V3RHFp7HZPejEIl0bBLOep3DkGpyv/jMkuuibTNN8k6FAsyKBxU6P5p4i6ihmFzRgZxn39O+tp1ANjXrYv/V9PQBAUVyfilQUKGnmHz99IlfSIL/JNIVyqppPVkVvff8HYQM5ULJZ8ISDYmApJQWiWE32DXojlEnLP27Ti5udOq/yCqt2z7wPXO0pNy2L3sMhHnrXMeufk50u6lqvhVci3Q+Q2Rt5u4Y283cZd3we25yqi9i+4xT9q69cRNnIglMxOFoyM+n3yMrkcP8ebWbRm5Rt5YfIQmsZ+zKiCcBJWKAJUTs59ZQbAupLjLE4RHIgKSjYmAJJRmsixz9dghdi+eS9qtOAB8K1Wh3cDX8a9S7cHHHY9n72+XyckwAlCzdQDNnquI1j7/j7Jks4XM/TGkbw1HNt5u4m4bhEvboCJr4jZGRxM9diw5x6yN6s5dnsZvwgSUOvEoCUBvMvO/304RfGUKewLPEqFW46HQMqvLYqp6Vi/u8gSh0ERAsjERkISywGQ0cmLjXxxa9RvG3BwAqrdsS6v+g3D2uP/r/blZRg6uusqF/bEAOOg0tO5XhQp1vQp0l8aUnEvqX1fJvT1RpcrT3trEXdG18Bf1L7LZTNKcX0n4+WcwmVD5+uI/dSqOTRoXyfglncUi89n6CxiPfU9Y4B7CtBqcUfJzp9nU9xP/joSSSQQkGxMBSShLslJT2LdiEed2bQNZRqXV0rjHCzR89nnUmvu/3h8dlsKuZWGk3soGoHwdT1r3q4KTm12+zy3LMjlnE0lddw3L7btSDvW90XWrgNKxaF5Bzzl7lpjRYzCEh4Mk4TFkMF4jRyJpinam75JIlmVm7LrGhe2/kB64llP2WuyQ+KbNN7Qu17G4yxOEAhMBycZEQBLKolvXr7JjwWxiwi4A4OzpReuXXqVqs1b3vTNkMpo5/nc4JzaHYzHLqO2UNO1RkdA2ASgKMCWAJddE2qabZB3+VxN3two41Pcukt4hS1YWt6ZMIfWPlQDY1aiB/9dfo61Q/pHHLg1WHIlg49r5OPgvYb+jHSoZPm/yMc9U71vcpQlCgYiAZGMiIAlllSzLhB3Yw56lC8hISgAgoFoN2g18HZ8Kle57XFJMJruWhBF3PQ0An/IutBtQDY+Agk3aqA9PJ3X1FYxx1rtS2go6XJ+rhNqraJq407dsIe6TTzGnpSHZ2eHzwQe49u0jGriBrRduMWfZMoJ8Z7LF2XrncFztEfSv90YxVyYI+ScCko2JgCSUdUZ9LsfWrebIXysxGfQgSYS27UDLfq/g6HrviR5li8z5vdEcXH0NQ64ZhUKiXqdgGnYth0qT/2UtZLOFjL3RZGyPyGvidmkXhHPbIKQCTC1w32u7dYvYcePIOnAQAKennsLvi89Rubs/8tgl3ZEbyUxa+Ce13L9mjc76CPKNyn0Y3uxjESKFEkEEJBsTAUkQrNITE9i7bAGX9u8GQGNvT5Pn+lK/aw9U6nv3CGWm6Nn7+2Wun7TegdJ52dP2paoEVitYADEl5ZDy1zX0l283cXvZ4/ZcZbQVHv1NNNliIXnhIhK+/RbZaETp5Yn/pMk4tWr5yGOXdGFxGYyeu45mDl+w3N0abF8MbM8HT32LQiq6pWIEwRZEQLIxEZAE4U7RYRfZuWA2t65fAcDVx4/WL79GpYZN73tn4fqpBPasuExWqh6Aas39aPF8Jeyc8t98LcsyOWcSSF13HUvm7Sbuhj64di2PwuHRm7hzL14kevQYDNeuAeD2yst4v/ceCm3+154rjaJSsnnr1220kD5hsacZWZLo6lmfL7r8iloh1m8TnlwiINmYCEiCcDfZYuHC3p3sXb6QrBTr+mrBoXVoN3AonsHl7nmMIcfEoTXXOLsnGmSwd1bTsndlKjcq2AzalmyjdSbuw9Z5mxSOanTPVMChgFML3HPs3Fziv/qalKVLAdBWroz/119jV7XKI41b0iVnGRgxfw+Nsz5iiU8WJkmilUslvnl2Gfaq+8++LgjFSQQkGxMBSRDuz5Cbw5E1f3Bs/WrMRiOSpKB2xy40790fB5d7P/6Ku57GziWXSI6xzqAdXMOdNv2r4uJZsB+0+ptppKy+iun21ALaSq649qyEuoDj3Evm7t3EfPgR5qQkJI0G79Hv4TZgwANnGC/tsg0m3lp8mOrxH/G7bwK5CgX17f34qedKXDTi70bhySMCko2JgCQID5cWH8fuJfO4cvgAAFpHR5q/0J86nbqhvMcisWaThZNbIji28SZmkwWVRkHjZytQ56lAFMr8hxDZZG3iTt8eASYLqCRcngrGuXXgIzdxmxITifnoI7J27wHAsWVL/CZ9idq77K5TZjRbGPvHKdyvfspG/xtkKBVUUeuY1XM1ng5exV2eINxBBCQbEwFJEPIv8vwZdi6YTULETQDc/QNpO3Ao5es2uOf+qbey2bX0EtGXUwHwDHKi3YBqeIcU7M+aKSmHlDVX0V+xjqPytsft+cpoyz1aE7csy6QsX0781GnIej1KNzf8vvgc5/btH2ncksxikZm88QKZx7/kUOApElVKghR2zO6+kkCxfpvwBMnvz+8SdV94woQJSJJ0x5evr2/e57IsM2HCBPz9/bG3t6dt27acP3/+jjH0ej0jR47E09MTR0dHunfvTlRU1OO+FEEoU4Jq1mbA1B/oOPQt7J1dSI6JYtXk8ayaMoHkmLv//Ln6ONDj3Xo89Uo1tA4qEiMzWTnlGPtWXsGoN+f7vCoPezxfC8W9X1UUjmpM8Tkk/HKGlFVXsGQbC309kiTh3r8/5f9cibZaNcwpKUS9+Rax4ydgyc4u9LglmUIh8dEzNSnf7nNCI9sQaDQRacnllTU9uZxwtrjLE4QCK1F3kCZMmMDKlSvZtm1b3jalUomXl/UW7tSpU/nyyy9ZsGABVapU4YsvvmDPnj2EhYXh7OwMwIgRI1i3bh0LFizAw8OD9957j+TkZI4fP45Smf95WMQdJEEonNysTA79uYKTm9ZhMZtRKJXUe/oZmvZ6ETvHuyeNzE43sO+PK1w5egsAZ3c72vSvSkioR4HOa8k2kvb3TbKO3m7idlLj+kwF7Os8WhO3xWAg4fsfSJ43DwBN+fL4f/UV9qE1Cz1mSbfqRBQb1vxMcuAarmrVOMsSMzrMpG5gi+IuTRBK5yO2CRMmsGbNGk6dOnXXZ7Is4+/vz6hRoxg7dixgvVvk4+PD1KlTGTZsGGlpaXh5ebF48WL69rVOjx8TE0NQUBAbN26kc+fO+a5FBCRBeDTJMdHsXvwr108cBcDe2YUWfQdQq31nFIq7f1kJP5fE7mVhZCTnAlC5kQ8te1fGwaVg66Xpb6SRsvoKpnjr4rvayq649ayEyuPRmrizDhwg5oNxmOLjQaXC65238XjtNaQC/OJVmuwMi2fOsrngv5CzdmrsZPi+5SRaVHq2uEsTyrhS+YgN4MqVK/j7+1O+fHn69evH9evXAbhx4wZxcXF06tQpb1+tVkubNm04cMDaIHr8+HGMRuMd+/j7+xMaGpq3z/3o9XrS09Pv+BIEofDc/QN4bux4eo2biHtAEDkZ6Wz7dQYrPn2ftPhbd+0fEurBi+ObULdDEJIEV47eYvlnh4m9mlqg82rL6/B5uz4uHUNAJaG/ksqt70+Qcy7xka7HsXlzyv+1BueOHcFkIuGbb4l6+x0sBsMjjVtStavqzejBwzHeeovG2UZyJXhr34ccurnt4QcLwhOgRAWkJk2asGjRIjZv3sycOXOIi4ujefPmJCUlERdnvW3u4+NzxzE+Pj55n8XFxaHRaHBzc7vvPvczefJkdDpd3ldQUFARXpkglF3l6jbglWk/0W7QMLQOjsReCWPx2LcJO7jvrn3VWiUtXqjMCx80xCPAidxMI2u+P0nY4Qf/+f0vSaXApX0wPqMaoK2gQzZaSFpykfSdETzKTXWVmxsBP/6A35dfIGk0ZG7fTtTIkVj0+kKPWZLVD3Zj8vBBJCWNo2WmCZMEo3e/R2TqzeIuTRAeqkQFpC5dutCrVy9q1apFhw4d2LBhAwALFy7M2+e/vQSyLD+0vyA/+4wbN460tLS8r8jIyEJehSAI/6VUqajf5VlenvojflWqoc/OYv33U9g652eMhrvDhXeIC73eb0CFel5YTDLb5l/g8NrryJaChRu1pz2eg2vh1NwfgPTN4aT8fhnZZCn0tUiShGuvXgT9MhPJzo6s3XuIGjECS05OoccsySp5OzFxYA8i496kRq6RNCy8vf5FsoxZxV2aIDxQiQpI/+Xo6EitWrW4cuVK3tts/70TFB8fn3dXydfXF4PBQEpKyn33uR+tVouLi8sdX4IgFC2dtw99x0+hcc/eIEmc2baJpePeJTEy/K591VolTw8NpX7nYACObbzJlrnnMRny/5YbgKSUcO1eEdeeFUEB2SfjSZhzFnPmoz0ac2zenKDZs5AcHMg6cJDIYcOxZJXNUFAnyJXXX3geh6jueJlMXDVnMm79ACxy4YOoINhaiQ5Ier2eixcv4ufnR/ny5fH19WXr1q15nxsMBnbv3k3z5s0BaNCgAWq1+o59YmNjOXfuXN4+giAUL6VKRasXB/LCh5/j6OpGUlQES8e9y+mtf9/1+EtSSDR7rhJPvVINhVLi6vF41nx3kuz0gocbp6b+eL4aimSnxBCeTvz0UxjjHi3QODZuTPCvc1A4OpJ95AgRQ1/HnJn5SGOWVN3r+BPaajBNYmqjscjsTL/K9N0fFndZgnBfJSogjR49mt27d3Pjxg0OHz7MCy+8QHp6OgMHDkSSJEaNGsWkSZNYvXo1586dY9CgQTg4ONC/f38AdDodgwcP5r333mP79u2cPHmSAQMG5D2yEwThyRFSuy6vTPuJcnUbYDIa2PbrdNZ/N4XcrLsDRvXm/nR/py5aRxW3bqTzx5SjJEUXPIjYVXbD+426KD3sMKfoiZ95mpxLyY90HQ716xM8fx4KFxdyTpwg4rXBmNPSHmnMkurdDlVIDhlNjwRXAGaHb2DT+aXFW5Qg3EeJes2/X79+7Nmzh8TERLy8vGjatCmff/45NWrUAKy9RBMnTmTWrFmkpKTQpEkTpk+fTmhoaN4Yubm5jBkzhmXLlpGTk0P79u2ZMWNGgZuuxWv+gvB4yBYLxzasYd/yhVjMZly8vOn29hj8q1S/a9/UW9lsmHGG1FvZqLVKOg2pSblangU+pznLSPLSi+ivp4EEum4VcGrh/0jzJeWcP0/k7XCkrVGd4LlzUf3nhZGyIEtv4qWZO6km/Y8NrmAnw6KnF1Ldt35xlyaUEaVyHqQniQhIgvB4xV4NY8OPX5F2Kw5JoaBF35dp3L3XXQvF5mYZ2TT7LNFhqUgStOhdmdrtAgscbmSThZQ1V8k+Zp1ywLGxL649KiIVYE24/8oNu0zEq69iTk5GW6UKwfPnofIo2ISXpUFUSjav/7wKP88vOOKgxhc1y1/YjKejWLdNsD0RkGxMBCRBePz02dlsnfMzYQesC8UG16pL17few9H1zjsxZpOF3cvDuLg/FoDQNgG06lO5QAvegvWudObeaNL+vgEyaCvq8HipOgoHdeGv4do1Iga9iikhAU3FigTPn1cmF7o9djOZyfPmoA+aT7hGTT2tF3N7b0atLPy/W0HIj1I7UaQgCGWX1sGBbm+PodPwt1FptUScPcWi90dy89TxO/ZTqhS0G1CN5s9XAgnO7Y5mw/Qz6HNMBTqfJEk4tw7E4+UaSBol+mtpxM84jTGx8K/saytWJGTxIlS+vhiuXSPi5VcwPmQettKoYTl3+nXvT1B0O5wsFk7qE/hy0+uPNA+VIBQlEZAEQShRJEmiVrtODJj0PV7B5chOS+XPyePZvWQeZpPxjv3qdQqmy7BaqDQKIi4k8+e046QXItzY1/DAa0QdlK5aTIk5xE8/RW4BZ/D+N025coQsWYza3x9DeDjhL7+CMTq60OOVVL0bBhHYaCTtY8shyTJ/Jh5jxZFvirssQQDEI7ZCE4/YBKH4mQwGdi+Zy6nN1kljfStWpts7Y3H18b1jv4SIDDZMP01WmgF7ZzVdhtfGr6KuwOczZxhIWnwBQ0QGKCRce1TEqYlfoes3xsQQPuhVjBERqPz9CFmwAE1wcKHHK4nMFpmhCw4RkPI2azxzUcoys1p/Q5MK+V8bUxAKQvQg2ZgISILw5Lhy5ABbfvmR3KxMNPYOdBz6JtVatLljn8wUPRtnniEhIgOlSsFTr1SjSmPf+4x4f7LRQvLKy+ScTgDAqWUAuq7lkRSFe8PNeOsWEYNexXDjBipvb4IXLEBboXyhxiqp0nONDJi+mWDtWHY7K9DJEst7rCbIrWJxlyaUQiIg2ZgISILwZElPjGfDj18TE3YBgNB2nXhq0Ouo7ezy9jHqzWydd54bp60L0zbsVo7Gz5Qv+BtuskzGjkjSt1pn+Lar5o57v6oo7FSFqt2UkED4q69iuHoNpacnIfPnoa1cuVBjlVQ3E7MYOWMp9j7fctFOTUWFA0v7bsdR41TcpQmljGjSFgShTHHx9Kbv+Mk07dUPJIlzO7ewZNwoEsJv5O2j1irpMqwW9TrdXp5kw022zj2PyVjA5UkkCZf2wbj3rwYqBbmXkomfeRpTcm6hald5eRGyaBHaatUwJyYS/spAci9dKtRYJVU5T0fGvfQ86pjeeJnMXLNkM25df7EciVBsREASBKHUUCiVtOgzgN4ff4mTmzvJMVEs/eh/nNq8Ie/tKEkh0fz5SrR7uRoKhcSVY/Gs+bZwy5M41PbCe1htFM5qTLeyiZ9+Cn14eqFqV7m7E7JgPnY1a2JOSSF84CByzp0v1FglVfOKnnTpMoTaMQ2sy5Fk3mDGjjHFXZZQRomAJAhCqRMcWpuXp/1E+XoNMRuNbJ83k7XfTCInMyNvnxotbi9P4mBdnmTllGOFWp5EE+SM91v1UPs5YskykjD7DFkn4wtVt9LVleD587CvUwdLWhoRr75KzqlThRqrpBrQNASXWu/TJd46aeSsqC1sPruwmKsSyiLRg1RIogdJEJ58sixzYuNf7Fm6AIvZhLOHF13fHk1gtZp5+6Teymb99NOkxeegtlPSeUgoIaEFn93aYjCTvCKM3AtJADi3C8KlY0ihmrfNmVlEDhtGzvHjKBwcCJozG4cGDQo8TkllNFsYMm8fXtlvs9nVjJ0MizvNo5p/o+IuTSgFRJO2jYmAJAglx63rV1n/w1RS42KRJAXNe/en8XO9USiUgHV5kr9/OUvMFevyJC37VKZ2u4KtzwggW2TSt9wkY1cUAPa1PHHrXQWFRlngsSzZ2USOeIPsw4eR7O0JmjkTx6ZNCjxOSZWabeDVn/5C5/Ipxx1U+KFi+Qtb8BDLkQiPSAQkGxMBSRBKFkNONtvmzuTi3p0ABNWsTde33sPJ3Xq3yGyysHtZGBcPWJcnqdUmgJaFWJ4EIOv4LVJWXQGzjDrACc9XaqDUaQs8jiUnh6i3RpK1fz+SVkvg9Ok4tWxR4HFKqqvxmbz/y6/k+s0iUqOintqduX23ieVIhEci3mITBEH4F429A13feo+n33gXtdaOyPNnWPT+SK6fOArcXp7k5Wo0e64iSHB2dzQbZhR8eRIAxwY+eA2phcJBhTE6k1vTT2GIynj4gf+hsLcncMZ0nNq0QdbriRoxgoxduwo8TklVyduJt/v2xye6s3U5EmMyX258TSxHIjwWIiAJglCm1GzTngFTvserXAVyMtJZPXUiuxbNwWQ0IkkS9TuH0OX1WqjUCiLOJ7Pqq8ItT6Itr8P7zbqovB2wpBtImHWGnHOJBR5HodUS+NOPOHfsgGw0EjXybdK3bi3wOCVV26retOzwDi1iq1iXI0k+xYpDU4u7LKEMEI/YCkk8YhOEks1kNLJn6TxO/r0OAJ8Klej2zvu4+foDEB+ezsYZZ/KWJ+k6oja+FQq+PIkl10TSskvoL6cA4NI5BOe2QQWfnNJoJGbsWNI3/g1KJQFff4VLly4FrqckkmWZcStPI0eMYKNnJkpZZnbLqTSu1K24SxNKINGDZGMiIAlC6XD12GE2z/ye3MwM1Hb2dBjyBjVatQOsy5NsmHGaxMhM6/IkA6tRpVEhlicxy6RtuE7mgRgAHOp549arMpKqYDfxZZOJ2I8+Iu2vtaBQ4D9lMrru3QtcT0lkMFl4bfZOnC2j2OcMrrLEsu5/EuRetmYcFx6dCEg2JgKSIJQeGUmJbPzpa6IungOsj+Geem04Gjt7DLkmts2/kLc8SaNnytOoW7kC3wECyDwUQ+raa2ABTYgLHi9XR+mkKdAYstlM7KefkvbnKpAk/L74HNdevQpcS0mUlKlnyI+/o/SYRJidikqSHUv67RTLkQgFIpq0BUEQ8snZw5Pen35Jsxf6I0kKzu/ezpIPRhF/8zoaO5V1eZKO1uVJjq6/wdZ5Fwq8PAmAU1N/PF8NRbJTYghPJ376KYxxWQUaQ1Iq8fv8c1xf7AeyTOxHH5OyYkWBaymJPJy0TH6tB6q4/niazFyVc/nwrz5iORLBJkRAEgRBABQKJc1796fPp5NwcvcgJTaaZR/9jxN/rwMJmveqRLsBt5cnOXqLv74r3PIkdpXd8H6jLkoPO8wpeuJnnibnUnKBxpAUCnw//RS3V14GIG7CRJIXLS5wLSVRNV8XBvd+naoxzVDLMjuyI5m57d3iLksohcQjtkISj9gEofTKyUhn8y8/cO3YYQAqNmxC5+HvYO/sQtSlZDbNPoc+24Szhx3d3qiNR0DBH/GYs4wkL72I/noaSKDrVgGnFv4FenQnyzIJ33xD0q9zAfAeMxqPwYMLXEtJNGPXVa4ffoPNvtZ5q76u8w6d6w4p5qqEkkD0INmYCEiCULrJsszJTevZs2QuZpMJJ3cPuo4cTVCNWtblSX4+TVrC7eVJhoYSUrPgy5PIJgspa66SfewWAI6NfXHtURGpAJNTyrJM4k8/kThjJgBe77yN54gRBa6lpJFlmfdWHMMSP4ztrkbsZJnFHX+lWkDT4i5NeMKJgGRjIiAJQtkQf/M667+fSkpsNJKkoGmvvjTt1Q9DtoW/Z/3/8iSt+lahVtvAAo8vyzKZe6NJ+/sGyKCtqMPjpeooHAo2W3TizJkk/PAjAJ5vjMBz5MhCNZKXJLlGM6/9sgmV6n1OOijwlZWseGETHk4Ff9NQKDtEQLIxEZAEoeww5OawY94szu/eBkBg9VC6jhyNg86dXUsvcelgHAC12gXS8oVKhVqeJOdCEskrwpANZlSe9ngMrIHay6FAYyTNnUv8V18D4DFkMF7vvVfqQ1J8ei5v/ryALK8fiNSoqK/S8WvfHahVBXs7UCg7xFtsgiAIRURjZ8/Tb4yi61vvobazJ+riORa9P5Ibp47y1CvVadqzAgBnd0axYcZZDIVYnsS+hgdeI+qgdNViSswhfsZpcq+mFmgMj8GD8flwHABJv87l1uTJpX5ZDm8XOz595UU8Yp/F0WLhhCmNSRsGlvrrFmxP3EEqJHEHSRDKppTYaDb8+BW3rl8FoN7Tz9L6pVcJP5/KtnkXMBktuPs70u2N2rh42hd4fHOGgaTFFzBEZIBCwrVHRZya+BWsxhUriJswEQDXF/vh+8knSIrS/fvw+jMxbFo/ij3+F5AliY8q9qZfy0+LuyzhCSQesdmYCEiCUHaZTUb2LlvI8Q1rAPAqV4Fn3nkfk9GFDTPOkP2Iy5PIRgvJKy+TczoBAKcW/ui6VUBS5P9xWeqffxL78Scgy+he6IXfxIlISmWBaylJvt0SRuTZIWzzTEUly8xu/iWNqvQo7rKEJ4wISDYmApIgCNdPHmXT9O/IyUhHrbWj/eARBNdqzsaZZ/OWJ2k/sDqVG/kUeGxZlsnYEUn61nAA7Kq5496vKgo7Vb7HSFu7lpgPxoHFgq5Hd/y+/BJJlf/jSxqLRebtxQcxZAznoLOMqwWWP/sHgZ7Virs04QkiApKNiYAkCAJAZnISG3/+hsjzZwCo3qodrV96nd3Lb3DzjHV5ksbPlqdh18ItT5J9JoHk3y+DyYLKxwHPgTVRudvl+/j0jRuJHvM+mM24dO2C/9SpSOqCvSFXkmQbTAyevgaDw6dctlNSGS1L+u3EQetc3KUJTwgRkGxMBCRBEP5hsZg5smYlB/5Yimyx4OrrR9eR73P9FJzaFglAlcY+tHu5Gip1wR9zGSIzSFx0HkuGEYWjGo9XaqANyf/fO+lbtxL9v/fAaMS5YwcCvvkGSVN63/KKTs3hvRnTifWZR7JKSXutP9/2/RuFVLr7sIT8EW+xCYIgPCYKhZKmz/el7/gpOHt4kRoXy4pPx2Bnf542/augUEhcPnKLv747VajlSTRBzni/VQ+1nyOWLCMJs8+QdTI+38e7dOxI4I8/IKnVZGzdRtTb72DR6wtcR0kR4GrPmJcGUzG2DWpZZrs+hpmb3yrusoQSRgQkQRCEIhJQrQYvT/uRSo2aYTGb2LXoVy4f+JUOg8ujdVARdz2NlVOPkRxTsAVqAVQ6LV4j6mBXwwPMMim/hZG2+SayJX8PAZzbtSNw5kwkrZbMXbuIeuNNLLm5Ba6jpGgQ4ka3Lh/R4pZ1keFfbu1l64lfirkqoSQRj9gKSTxiEwThfmRZ5vTWv9m1aA5moxFHN3dav/Qmx7dYSE/IQWOnpPProQTXKMTyJBaZ9C03ydgVBYB9LU/celdBocnfo7usQ4eIHPEGck4ODk2aEDRzBgqHgk1IWZJM3nieqCuD2OOai50ss6T9TKoGtSrusoRiJHqQbEwEJEEQHiYh/Abrf5hGcnQkSBINuvUiKa4GcdcykRQSrftWJrRNwZcnAcg6fouUVVfALKMOcMLzlRooddp8HZt97BiRrw/Dkp2NfcMGBP0yC6WTY6HqeNKZLTIjF+wkTf82Zxwk/CwKVrzwN+7O/sVdmlBMRA+SIAhCMfMKKc+ASd8R2q4TyDLH16/EkP4HFepokS0yu5dfZu9vl7Hk8zHZvzk28MFrSC0UDiqM0Zncmn4KQ1RGvo51aNiQ4HlzUTg7k3PsOJGDB2NOTy9wDSWBUiExtX8r5JzRBBjNxCos/G/NCxhNBe8FE8oWEZAEQRBsSG1nR+fhb9Pt7TFo7O2JuXyRa0d/pGI9a5g5szOKjTPOFGp5Em15Hd5v1kXl7YAl3UDCrDNkn03M17H2desSPH8+Cp2OnNOniXj1NcypqQWuoSRwtlMzZWAfPONfwNFi4bglg8lrXyrusoQnnAhIgiAIj0G1Fm14eepP+Faqgj4ri/M75uBX7iRKlZnwc0n8+dVx0pNyCjyuysMe7zfqoK3iZp2Be+lF0ndG5GstMvvQmoQsXIDSzY3c8+cJH/QqpuTkwlzeEy/Yw4G3+r1Drbh6SLLMHxmX+G23WIpEuD8RkARBEB4TVx9f+k2cSsNnnwfgxsmdqJWr0NqnkxyTxcqpx4m7kVbgcRV2KjwH1sSpubWvJn1zOCm/X0Y2WR56rF21aoQsWojS0xP9pUtEDByIKSGhwDWUBE0rePBU+0m0TvIEYMqNVRy9uLKYqxKeVCUuIEVHRzNgwAA8PDxwcHCgbt26HD9+PO9zWZaZMGEC/v7+2Nvb07ZtW86fP3/HGHq9npEjR+Lp6YmjoyPdu3cnKirqcV+KIAhlkFKlps2A1+g1biIOOldS4yLJSlyMncMVstP0rPn2JFeO3SrwuJJSwrV7RVx7VgQFZJ+MJ2HOWcyZD++10VauTMiiRai8vdFfuUr4KwMx3ip4DSXBi42D8ar4PY0zVJgkiXcPTSQq4fzDDxTKnBIVkFJSUmjRogVqtZq///6bCxcu8M033+Dq6pq3z7Rp0/j222/5+eefOXr0KL6+vnTs2JGMjP9vXhw1ahSrV69mxYoV7Nu3j8zMTJ555hnMZnMxXJUgCGVRuboNeGXaTwTXqovJoCc1eh0a9XZMhhy2/Hqeoxtu5Osx2X85NfXH89VQJDslhvB04qefwhj38HmXtBXKE7J4ESo/Pww3bhD+8isYY2IKc2lPvI+erY1S8wWVci2kKWDkhpfJzi34nTuhdCtRr/l/8MEH7N+/n717997zc1mW8ff3Z9SoUYwdOxaw3i3y8fFh6tSpDBs2jLS0NLy8vFi8eDF9+/YFICYmhqCgIDZu3Ejnzp3zVYt4zV8QhKIgWywcWfsn+39bjGyxoHV0R1Z0RqHyo0oTH54aUB2luuC/yxrjs0lceB5zUi6SVon7i9Wwr+b+0OMMUdFEDBqEMSoKdUAAwQsXoAks3FQET7K0bCNvTp9FpPsMklVKntJ4812/rWI5kjKgVL7mv3btWho2bEjv3r3x9vamXr16zJkzJ+/zGzduEBcXR6dOnfK2abVa2rRpw4EDBwA4fvw4RqPxjn38/f0JDQ3N2+de9Ho96enpd3wJgiA8KkmhoEnP3vSbOBUXL2/0WckYs37DbLzE5cO3WD/9NCZjwe9uq70d8H6jLpryOmS9maSF58k+/fDlSTSBAYQsXoQmJARjdDQRrwwslY3bOgc1EwcNIiS+M2pZZochngVb3y3usoQnSIkKSNevX2fmzJlUrlyZzZs3M3z4cN5++20WLVoEQFxcHAA+Pj53HOfj45P3WVxcHBqNBjc3t/vucy+TJ09Gp9PlfQUFBRXlpQmCUMb5V6nOy1N/pHLj5sgWC8bMjcimk0RdSmHznPOYzQ9vuP4vpaMar8GhODTwARmSf7tMTtjDw47az4/gxYtQhwRjjIkhetS7yKaCT0PwpKvo5cRrz4+jUXx5AKbHbOd6zJFirkp4UjxSQDIajURGRhIWFkbyY/gNw2KxUL9+fSZNmkS9evUYNmwYQ4cOZebMmXfsJ0nSHf8sy/Jd2/7rYfuMGzeOtLS0vK/IyMjCX4ggCMI92Dk68ey7H1C/aw8A9Bk7Mev3cuN0AtsXXCzUhJKSSoFbr8rY1/ECi0zykovobz6830bt7U3Q9OkoHBzIPnKE+K++KvC5S4K2Vb3xrjSR2tlgkCQ+2foWZnPpC4NCwRU4IGVmZjJr1izatm2LTqejXLly1KhRAy8vL0JCQhg6dChHjx61Ra34+flRo0aNO7ZVr16diIgIAHx9fQHuuhMUHx+fd1fJ19cXg8FASkrKffe5F61Wi4uLyx1fgiAIRU1SKGj7yhBa9R8EgDH7KKacLVw+EsPu5WGFatyWFBLufapgV9U6V1LigvMYYjIfepy2UiX8pk4BIHnhItLWri3wuUuCsd1qY0ofiqPFwhlyWLbrg+IuSXgCFCggfffdd5QrV445c+bw1FNPsWrVKk6dOkVYWBgHDx5k/PjxmEwmOnbsyNNPP82VK1eKtNgWLVoQFhZ2x7bLly8TEhICQPny5fH19WXr1q15nxsMBnbv3k3z5s0BaNCgAWq1+o59YmNjOXfuXN4+giAIxUmSJBr3eIHOw99BUigw689jzFrL+T3hHFh1rXAhSanA/aXqaEJckHPNJM47hynx4RNTunTsiMeI4QDEfvIpuRcuFPjcTzonrYq3e/WnTkIFAH6M2ERk3KniLUoodgV6i6137958+umn1KpV64H76fV65s6di0ajYciQIY9c5D+OHj1K8+bNmThxIn369OHIkSMMHTqU2bNn89JL1mnjp06dyuTJk5k/fz6VK1dm0qRJ7Nq1i7CwMJydnQEYMWIE69evZ8GCBbi7uzN69GiSkpI4fvw4SmX+VsQWb7EJgvA4XDt+hPXfT8Vk0CMp/dA49aRpzxo07Fq+UONZckwkzD6DMTYLpZsW7xF1ULo8eJFb2Wwm8o03yNq9B7W/P+X+XInqP32cpcFHf57gevxAzjlAQ8mJuS/vF2+1lUL5/fldol7zB1i/fj3jxo3jypUrlC9fnv/9738MHTo073NZlpk4cSKzZs0iJSWFJk2aMH36dEJDQ/P2yc3NZcyYMSxbtoycnBzat2/PjBkzCtR4LQKSIAiPS3TYRdZMnUhuViaSwh2Ncy9a9a1PnfaFe1nEnGEg/pfTmJNyUfk44D2sNgoH9YOPSU/nRu/eGMMjcGjalOBf5yCpVIU6/5MqI9fIsB9+4Ir3fHIVCj4OeZa+bScVd1lCESu1AelJIQKSIAiPU2JkOH9OHk9mUiJITmice9Hh1RZUv728SEGZknOJ/+U0lnQDmiBnPIfUQqF98B10/ZUr3OjbDzk7G/dXX8Vn7PuFOveTbM/lBJb+9QoHvKNwsMis7vYb/t41i7ssoQg9toB04cIFIiIiMBjunM6+e/fujzLsE08EJEEQHrf0xAT+nPQpydGRIGnROD1HlxGdqNTAu1DjGW9lkTDrDJZsE9rKrngOrImkevAjpfTNW4h+5x0A/L/+Gt0z3Qp17ifZh78f4Urya1yyl2im0DFrwN6HvgktlBw2D0jXr1/nueee4+zZs0iSlNc0+M83UWlftkMEJEEQikNORjqrp04k9koYoELr8izPvtOTkFCPQo2nj0gn8dezyAYL9rU8cX+xGpLiwWEg/tvvSJo9G8nOjnLLl2FXvXqhzv2kSs81MvyHb7jsvRi9QsFnFXrzXKtPi7ssoYjYfCbtd955h/Lly3Pr1i0cHBw4f/48e/bsoWHDhuzatauwwwqCIAgPYO/sQu+Pv6R83YaACX36GtZ+v5yYKykPPfZetMEueLxcA5QSOWcTSV1z9aFvyXm98zaOrVoh5+YS9dZITCmFO/eTysVOzes9X6NBUgAA067+zq2ky8VclfC4FTogHTx4kM8++wwvLy8UCgUKhYKWLVsyefJk3n777aKsURAEQfgXtZ0dPcZ8TPVW7QAZQ8Ym/pw6h1v5mADyXuwqu+HerypIkHUkjvRNNx+4v6RUEvD1V6iDgjBGRxPz3nulbqbttlW9cQ/6jMq5FjIVEp/9PaRQ0ysIJVehA5LZbMbJyQkAT09PYm6v+hwSEnLXXEWCIAhC0VKqVHR583806PY8AIaMPfz++XckRhVunUiHWl64PVcZgIzdUWTsjnrw+XU6An/+GcnBgawDB4n/7rtCnfdJ9kH3Bjik9EUty+wxp7Dh4LTiLkl4jAodkEJDQzlz5gwATZo0Ydq0aezfv5/PPvuMChUqFFmBgiAIwr1JkkTbV16j5YuvAmDIPMbyT78gObZwIcmxsS+6LuUASPv7BllH7r8+JYBd1Sr4T/oSgOS580jfuLFQ531S6ezVDO45nEZJ1ib4KWGLSUy9WbxFCY9NoQPSxx9/jMViXTzxiy++IDw8nFatWrFx40Z+/PHHIitQEARBeLAmPXvRYeg7gAJD1gWWfPgxKbGF6wtybhOEc5tAAFJWXyH7bOID93d5+mk8hlonBI756GNyS9kThHbVvHEL+IwKegtpCokvN75W3CUJj0mRzoOUnJyMm5tbmXgdUrzFJgjCk+bi/kNs/GkqyEbUdv4MmPwl7v5eBR5HlmVSV1+13kFSSngOqold5fvPnC2bzUS+Poys/ftRBwZSfuUfKF1dH+FKnixp2Ube+ukzzvmsxiRJfFNtMJ2ajCrusoRCstlbbNnZ2bz55psEBATg7e1N//79SUy0/obh7u5eJsKRIAjCk6h6i6b0GD0RSWGPMTeGxWNHkxARXeBxJEnCtWcl7Gt5glkmafEF9BH3f2wnKZUEfPM16sBAjFFRRL83GrkUTfWic1AzqPtbNEr2BODLC7+Skv7gHi2h5CtwQBo/fjwLFiygW7du9OvXj61btzJixAhb1CYIgiAUUKWGtXn+g0kolC6YDEks/XA0sVeuFXgcSSHh3rcq2squyAYLSQvOY7yVdd/9la6uBE7/Gcnenqz9+0n4/odHuYwnTvvqPrj6TCTEYCFZITFlg3jUVtoVOCCtWrWKuXPnMnv2bH788Uc2bNjAmjVrSv3EkIIgCCVFuTqVef6jyShUnpiNGawYP5aIs2cLPI6kUuAxoAaaYGcs2SYS5p7DlJx73/3tqlbF74vPAUiaM4f0TZsKfQ1Pog+fa4Z7cncUssxGQyy7js8s7pIEGypwQIqMjKRVq1Z5/9y4cWNUKlXea/6CIAhC8QupGcLzH05CoQ7AYs5l5aRPuHzoQIHHUWiVeA6qicrHAUu6gcS5ZzFnGO67v65bN9wHW++uxIz7kNyw0jPBoquDhpefHUXjFGs/1sQzM0jPvFXMVQm2UuCAZDab0Wg0d2xTqVSYStkkYYIgCCVdSE1/eo6diFJTEdliYt13kzmzreB3dRQOarwGh6J002JKyiVx3jksOff/O9/73XdxbN4MOSeHqJEjMacVbgLLJ1HHGj64ek0g0GAhUQHTNrxa3CUJNlLgt9gUCgVdunRBq9XmbVu3bh1PPfUUjo6OedtWrVpVdFU+gcRbbIIglBRXT8Sx/vvvMevPAdC8zwCaPt+3wC/VmBJziP/lNJZMI5oQFzwHh6LQKO+9b0oKN1/ojTE6GsdWrQj6ZSaS8t77ljQpWQZG/TyOkz6bkSWJX+r8jxZ1RVAqKWz2FtvAgQPx9vZGp9PlfQ0YMAB/f/87tgmCIAhPhkr1fXn6jXdQ2jUB4MDvS9gx/xcsloL1jqo87fEcXAvJTokhPJ3kpReRzZZ77+vmRuDPPyHZ2ZG1dy8JP/70yNfxpHBz1ND/mTE0TrP+cB1/4lsysx88X5RQ8hTpPEhlibiDJAhCSXNuTzTb563AlLMTgCrNWtHlzf+hUqsLNI7+ZhqJc88hGy3Y1/HCvW9VJMW970alrVtPzJgxAAT88AMunTs92kU8QUYv3sIZ/bvEqhX0dijPp73XFndJQj7Y7A6SIAiCUDKFtg6gVf8XUDt2AxRcPriX1VPGo8/OLtA42nI63AdUB4VEzukEUtdeu+9Crrpnn8F90CAAYsaNQ3/lyiNexZPjw+fb4p/cHoA/sm9w5OzSYq5IKEqPdAdp+/btbN++nfj4+LxlR/4xb968Ry7uSSbuIAmCUFIdXnudw3/txpi5FjDiXb4iz38wAUfX+8+WfS/Zp+NJXhEGMjg/FYSuU7l77iebTEQMGUr2oUNoQkIo98fvKEvJ35t/n43lj509OarLJsAssar/XhzsRJvJk8zmd5AmTpxIp06d2L59O4mJiaSkpNzxJQiCIDyZGj9bnrqdWqBx7gOSPfE3rrHi0/dJjYst0DgOdbxx7VERgIwdkWTsu/es3ZJKRcB336L298cQHk70mDHIlnv3LpU0XWr5oXMdj7fJQrRS5kcxgWSpUeg7SH5+fkybNo2XX365qGsqEcQdJEEQSjLZIrNj8UUu7LuIMXMVsiUNB50rz4+biE/5igUaK31HBOlbwgFw610FxwY+99wv5/x5wvu/hKzX4/nGCLzefvuRr+NJkJSpZ8yMURz12YckyyxsPJ56NXoXd1nCfdj8DpLBYKB58+aFPVwQBEEoRpJCot2AalRuWAWNcz8UKi+y01L5feIHRJw7U6CxnNsF4dQyAICUPy+TcyHpnvvZ16yJ3+efAZA4YybpW7c+2kU8ITyctPTq/AkN0+2QJYmPD31Brj6juMsSHlGhA9KQIUNYtmxZUdYiCIIgPEYKpYKOr9UkpFYQaqc+KDVBGHJyWDX5Uy4f2pfvcSRJQte1PA71vcECScsuknst9Z776rp3x33gKwDEjv0A/bWCrxP3JOpWxx83l4/xMFmIUFqYvnFocZckPKICPWL73//+l/f/LRYLCxcupHbt2tSuXRv1f14T/fbbb4uuyieQeMQmCEJpYTSYWffjKWKuJGHRb8KYcxkkifavjaBup675Hkc2yyQtvUjuhSQkrRKvobXQBDrfvZ/RSMTgIWQfOYKmXDlr07bz3fuVNImZet6f8SZHfQ6jkGWWNp9MaJVni7ss4T/y+/O7QAGpXbt2+dpPkiR27NiR32FLJBGQBEEoTfQ5Jv767iTx4Wlg3o0+4yQATXu9SPPe/fM967ZstJA4/xz662koHFV4DauD2tvhrv1Mycnc6PUCpthYnNq2JXDGdCRFyZ95Zt2paFbu684JZwMVzAr+GHAQjebu6xeKj00CkvD/REASBKG0yck0sPqbkyTHZKJSHiMraS8Atds/TfshI1Ao8rdUiCXXRMKcsxijM1HqtHiNqI3K1e7u8507T3j//sgGA55vvonXyLeK9HqKgyzLvLdgFUflT0lVKnjdtR4jeywq7rKEf7FJk3ZERESBioiOvvcrn4IgCMKTx95JQ4936qLzssdsaYTOryuSpODM9k2s+3YKJoMhX+Mo7FR4vloTlZc95jQ9iXPPYc68+1j70Jr4fjYRgMTp08koBU8eJEli3AvPUCWpIQDzUk5w6dqWYq5KKIwCBaRGjRoxdOhQjhw5ct990tLSmDNnDqGhoaV+wVpBEITSxtFVS49R9XDUadDnVsMj5AUUKhVXjx7kz0mfkpuVma9xlE4aPAfXQqnTYkrIIXH+eSy5prv2c+3ZE7fb08XEjHkf/fXrRXo9xcHLWcuz7b+gTqYakyTx8Z6xGE25xV2WUEAFesSWnJzMpEmTmDdvHmq1moYNG+Lv74+dnR0pKSlcuHCB8+fP07BhQz7++GO6dOliy9qLlXjEJghCaZYck8Xqb0+Qm2nEzSeFpPDfMORk4xVcjuc//AwnN/d8jWNMyCbhlzNYsoxoK+jwfDUUSX3n7+ay0UjEq6+RfewYmvLlrU3bTk62uKzHRpZl3p3/G0f5nHSlgrc8GjPsmbnFXZaAjXuQcnNz2bhxI3v37uXmzZvk5OTg6elJvXr16Ny5M6GhoY9UfEkgApIgCKVdQkQGa749gSHXjE+IgYSbS8lOTcHFy4cXPvoMN7+AfI1jiM4kYfYZZL0Zu+rueAyogaS8s+nblJRkbdqOi8OpfXsCf/qxxDdtx6fn8uGswRz2PoNalvm93c9UCmlb3GWVeaJJ28ZEQBIEoSyIuZrKuh9OYTJaCKquJOH6ElLjYrF30fH8BxPwrVg5X+Por6eSMO88mCw41PfG7YUqSIo7Q1LO2bOEvzTA2rQ98i283nzTFpf0WK06HsHKw90562impkXN0pcPo1SpH36gYDM2n0lbEARBKP38K7nSZXgtFEqJyItmAkNfx6d8JXLS0/h94jhunjmZr3G0FVzx6F8NFJB9Ip60Ddf57+/n9rVq4TthAgCJP/1Mxs6dRX05j91z9YPw1ryHo8XCeYWRRVtKx/IqZYEISIIgCMIDBdf0oNOQmkgSXD2eQWCt1wiuVRejPpfVUyZycf/ufI1jX8MDtxeqAJC5P4aMHZF37eP6/HO49e8P3G7avnGj6C6kGEiSxLg+vQlNqgnA9Ft7uRl1sJirEvJDBCRBEAThoSrW8+apV6oDcH5vIoGhr1C1eWssZhMbf/yKExv/ytc4jvV90D1bAYD0reFkHoq5ax+fcR9g37ABlsxMot4aiTkzq+gupBj4uNjxdJuvqJGtQK+Q+HjrSCwWc3GXJTyECEiCIAhCvlRr5kervtY7QCc2ReFfvQ/1nrYupbFz4Rz2Ll9412Oze3FuEYBz+2AAUv+6Rvap+Ds+l9RqAr//HpWPD4Zr14gd9wGyxVLEV/N49WoYjI9qFA4WC6cVepZv/d/DDxKK1SMHpOjoaDEhpCAIQhlRu10gTXpY7wAdXHUd74rdaNnPuvjskTV/sGXWj1jMD7874tIhGMdmfiBD8u+XybmUfMfnKk9PAn/8AUmtJmPrNpJmzy76i3mMJEniwz4vEppsDZg/xGwnKuZ4MVclPEihA9L+/fspX748wcHBBAcH4+Pjw9ixY0lPTy/K+gRBEIQnTIOnQ6jf2XoHaPfyy7gHtqHTsLeRJAXndm7lr6+/wKh/8MSIkiTh+mxF7Ot6gUUmeelF9DfT7tjHvk4dfCeMByDhhx/J3J2/Xqcnla/Ojs6tvqFajkSOQuKTLSNK/J2x0qzQAWnYsGHUrFmTo0ePcubMGb766iu2b99OgwYNSExMLMoaBUEQhCeIJEk07VmR0NYBIMO2+Rdw9qxP99EfoVJruH7iKCu//JSczIwHj6OQcO9dBbtq7tZFbhecxxBz50zdrr164fpiP5BlokePwXDzpg2vzPZ6NyqPn+JNtBYLx6QcVu74oLhLEu6j0AHp2rVrfPfdd9SvX5+aNWvyyiuvcPToUerWrcvbb9vuNcZy5cohSdJdX2/eni9DlmUmTJiAv78/9vb2tG3blvPnz98xhl6vZ+TIkXh6euLo6Ej37t2JioqyWc2CIAiljSRJtO5XhSpNfLBYZDbNPoedcxV6ffw5WkdHYsIu8Nv4sWQkPfgXZkmpwL1/NTTlXJBzzSTOO4cpMeeOfXzHjcO+fn0sGRlEvvVWiW7aliSJD/q8Qt0U62PKbyI3EnfrTDFXJdxLoQNS9erViYuLu2ObJEl89tlnrFu37pELu5+jR48SGxub97V161YAevfuDcC0adP49ttv+fnnnzl69Ci+vr507NiRjIz//01m1KhRrF69mhUrVrBv3z4yMzN55plnMOfjubkgCIJgJSkk2r9SnfJ1PDGbLGyYcQaVNpB+E6bi5OZOUlQEyz8ZQ1LU3a/z/5tCo8RzYE3Ufo5YMo0kzD2LOU3//+fRaAj84XtU3t4Yrl4j9sMP89UM/qTyd7WnQ/NvqZwLWQqJTzcNE4/ankCFDkiDBg3i9ddfJyIi4o7taWlp6HS6Ry7sfry8vPD19c37Wr9+PRUrVqRNmzbIssz333/PRx99xPPPP09oaCgLFy4kOzubZcuW5dU3d+5cvvnmGzp06EC9evVYsmQJZ8+eZdu2bTarWxAEoTRSKBV0HhJKYDU3THoz6386DQpPXvz8a9z8A8lISmDF+PeJuXzpwePYq/B8LRSVhx3mFD0Jc89hzjLmfa7y8iLwxx9ArSZjyxaSZs+x9aXZVN8mlQiQh6GxyBwkk7W7xxd3ScJ/FDogjRo1irCwMKpUqUL//v2ZNm0akydPZvDgwXz11VdFWeN9GQwGlixZwmuvvYYkSdy4cYO4uDg6deqUt49Wq6VNmzYcOHAAgOPHj2M0Gu/Yx9/fn9DQ0Lx97kWv15Oenn7HlyAIggBKtYKuI2rjW0GHPtvE2h9PIeNEv4lT8a1UhdzMDP744iNir4Q9eBxnDZ6Da6F00WCKzyZp8QVk8//fKbKvWxffTz4GIOH778k+etSm12VLkiTxQb/B1EuxNrtPvbma1NTwYq5K+LdCB6S4uDj+/vtvPvvsMwAWLFjAp59+ypUrV5gyZQoDBgxg2rRpbNq0qciK/a81a9aQmprKoEGD8moC8PHxuWM/Hx+fvM/i4uLQaDS4ubndd597mTx5MjqdLu8rKCioCK9EEAShZFNrlTzzVm08g5zISTew9odTyLIdfT6ZREjtepj0elZPnUhK3N0TQ/6byt0Oz8GhSFolhpvppO+48ymFW58+6Ho9D7JM7PgJWAwGW16WTQW42tOm8beE6GUyFBJztom5kZ4khQ5I3t7edO7cmffff59ly5Zx4cIFMjIy2L9/P2+99Raurq6sXbuWfv36FWW9d5g7dy5dunTB39//ju2SdOcCiLIs37Xtvx62z7hx40hLS8v7iox88DN1QRCEskbroObZkXVx8bInPTGXdT+exmJR0v29D/GpUImcjHRWTRpPdnraA8dR+zji9lwlADJ2RNz1+r/P2LEoPT0xXL9O0q+/2ux6Hod+zargl/UUAL9lhBF361wxVyT8o0hn0razs6NRo0YMHTqUn3/+mX379pGamlqUp8gTHh7Otm3bGDJkSN42X19fgLvuBMXHx+fdVfL19cVgMJCSknLffe5Fq9Xi4uJyx5cgCIJwJwcXDd3frouDi4ak6Ew2zDiDQqHhubHj0Xn7kHorltVTJz50niSHut441Pe2TiS5IgxLjinvM6WLCz7jrK/HJ/0yq0S/+q9WKujRbixVciT0Conp20cXd0nCbSV2qZH58+fj7e1Nt27d8raVL18eX1/fvDfbwNqntHv3bpo3bw5AgwYNUKvVd+wTGxvLuXPn8vYRBEEQCk/nZc+zb9dFY68i9moam389j72zjufHTcTOyZm4q5fZ8ONXD12PzLVHRZQedphT9aSsvnLHm2suXbvi2LIlssFA7MSJJfqttm51/PEy9ABgnSGKGxF7i7kiAUpoQLJYLMyfP5+BAweiUqnytkuSxKhRo5g0aRKrV6/m3LlzDBo0CAcHB/rfXh1ap9MxePBg3nvvPbZv387JkycZMGAAtWrVokOHDsV1SYIgCKWKZ6AT3d6ojVKt4OaZRHYuuYSbXwA9x3yCUq3m2rHD7Jg364HBRqFV4dGvGigkcs4kkn38Vt5nkiThO/5TJK2W7IOHSLfh9DK2JkkSL3d9h9AsFWZJ4ofdHxV3SQIlNCBt27aNiIgIXnvttbs+e//99xk1ahRvvPEGDRs2JDo6mi1btuDs7Jy3z3fffUfPnj3p06cPLVq0wMHBgXXr1qFUKh/nZQiCIJRq/pVd6Tw0FEkhcelgHAdXXSOgWg26jhwNksTprRs5uvbPB46hCXLGpVMIAKlrr2FMyP7XZ0F4vvEGALemTMVso5aOx6FFJU+8pFeQZJntlhTOh/1V3CWVeZJcku9LFqP09HR0Oh1paWmiH0kQBOEBLh6IZceiiwA0e74i9TuFcOLvtexcYF2Atutb71G9Vbv7Hi9bZBJ/PYv+ehrqACe8R9RBUll/v5cNBm706oX+ylVce7+A3+ef2/6CbORsVBrTVnfklEsOjWUH5g46XNwllUr5/fldIu8gCYIgCCVH9eZ+NH/e+lbawVXXuHgglvpdutOgW08ANs38gYhzp+97vKSQcO9bFYWDCmN0Jmlb/n++IEmjwXfiRABS/1hJ9rFjtrsQG6sVqMPH+Q1UsswRKZvDp+YXd0llmghIgiAIgs3V6xRMvY7WSRF3LrnEjdMJtBnwGlWatcJiNvHX11+SEHHzvscrdVrcelUGIHNPFLlX/v9NZIf69XG9vdxU7PgJyCV4bqQ3n+lNnTRXAL498aNYgqQYiYAklCrlypXj+++/z/tnSZJYs2ZNvo+fMGECdevWLfK6BEGwPl6r1twP2SKz+dfzxF5Lo8sb7xJQrSaGnGxWTZnwwMVt7Wt64tjEOp1L8u9hmDP/Pwh5v/c/lB4eGK5dI2leyb3zUt7TkRDfMdhbLFxQmthx+NviLqnMEgFJuMuBAwdQKpU8/fTTd3128+ZNJElCpVIRHR19x2exsbGoVCokSeLmv+Yl+fPPP2nSpAk6nQ5nZ2dq1qzJe++9l69aXn/9dZRKJStWrCjUtcTGxtKlS5dCHfsoChrMBKEskCSJdi9VpVxtT8xGCxtmnCU1Xk+PMR/jHhBEZlIiq6ZMQJ+ddd8xdN0qoPJ2wJJhJGXl/7/6r3R1xeeDsQAkzpyJIbzkLtvxZpfO1Er1A+D7i4swm4wPOUKwBRGQhLvMmzePkSNHsm/fvrsWI/6Hv78/ixYtumPbwoULCQgIuGPbtm3b6NevHy+88AJHjhzh+PHjfPnllxjycQs8Ozub3377jTFjxjB37txCXYuvry9arbZQxwqCUPSsi9vWxK+SDkOOiXU/nsaQo6LXuIk4urqRGHGTtd9Mum8oUGiUuL9YDVQSuZeSyToYm/eZyzPP4Ni8GbJeT9zEz0rs3EjeLnbUqPgRLmYLN5Uyf+35tLhLKpNEQBLukJWVxe+//86IESN45plnWLBgwT33GzhwIPPn33kbe8GCBQwcOPCObevXr6dly5aMGTOGqlWrUqVKFXr27MlPP/300Fr++OMPatSowbhx49i/f/8dd6XAOvv5s88+i729PeXLl2fp0qV3jfHfOzljx46lSpUqODg4UKFCBT755BOMxrv/Ip41axZBQUE4ODjQu3fvO2aEP3r0KB07dsTT0xOdTkebNm04ceJE3uflypUD4LnnnkOSpLx/FgTBSqVR0u2N2ngEOpGdbmDtj6dQanQ898EE1Hb2RJw7zeZffrxvwNH4OeLapTwAqRuvY4yz3nGyzo00HkmjIevAAdI3bHxs11TUhnZqSfW0CgDMvLkOgz6zmCsqe0RAegxkWSbbYCqWr4L+BvXbb79RtWpVqlatyoABA5g/f/49x+jevTspKSns27cPgH379pGcnMyzzz57x36+vr6cP3+ec+cKvr7Q3LlzGTBgADqdjq5du94VyAYNGsTNmzfZsWMHK1euZMaMGcTHxz9wTGdnZxYsWMCFCxf44YcfmDNnDt99990d+1y9epXff/+ddevWsWnTJk6dOsWbb76Z93lGRgYDBw5k7969HDp0iMqVK9O1a1cyMjIAa4AC62zvsbGxef8sCML/s67bVgcXTzvSE3JY99NpXH1D6P7uB0gKBRf37mT/b4vve7xjc3/sqrqBSSZp+SVko3VWbk1ICJ4jhgNwa/JkzGkPXvftSeVip6Zx7c/wNFmIU0os3/5+cZdU5oh5kAqpIPMgZRtM1Ph082Oq7E4XPuuMg0b18B1va9GiBX369OGdd97BZDLh5+fH8uXL82YZv3nzJuXLl+fkyZMsXLiQtLQ05s2bx2uvvYarqyuvvPIK9erV48aNG5QrV46srCz69OnDxo0bCQkJoWnTpnTq1ImXXnrpgY++rly5Qs2aNYmJicHT05M1a9bw9ttvc/PmTRQKBZcvX6Zq1aocOnSIJk2aAHDp0iWqV6/Od999x6hRowDrb5SrV6+mZ8+e9zzPV199xW+//cax268GT5gwgS+++IKbN28SGBgIwKZNm+jWrRvR0dF56/39m9lsxs3NjWXLlvHMM8/k67yCIFilJWTz51cnyEk34F/ZlWffrsOlfTvY/MsPAHQY8gZ1Ona957HmTAO3vj+BJdOIY1M/3HpapxKwGAzceO55DNeu4dqnD36fTXxs11OUco1m3v75JQ66n8fVLLOp7w4cHb2Lu6wST8yDJBRYWFgYR44coV+/fgCoVCr69u3LvHnz7rn/4MGD+eOPP4iLi+OPP/6458zmjo6ObNiwgatXr/Lxxx/j5OTEe++9R+PGjcnOzr7HqFZz586lc+fOeHp6AtC1a1eysrLYtm0bABcvXkSlUtGwYcO8Y6pVq4arq+sDr3HlypW0bNkSX19fnJyc+OSTT+7qswoODs4LRwDNmjXDYrEQFhYGWB/tDR8+nCpVqqDT6dDpdGRmZt63X0sQhPvTeTnw7Mg6aOyUxFxJZcuv56nRuj3NXrAuD7V97i9cO37vCROVThrc+1QFIOtQLDkXkgBQaDT4TRgPQOrvv5N94uRjuJKiZ6dW0r755wQYLKQqJeZtebe4SypT8n9rQSg0e7WSC591LrZz59fcuXMxmUx3NFrLsoxarSYlJQU3N7c79g8NDaVatWq8+OKLVK9endDQUE6dOnXPsStWrEjFihUZMmQIH330EVWqVOG3337j1VdfvWtfs9nMokWLiIuLu2OtPbPZzNy5c+nUqVPeYz9JkvJ9fYcOHaJfv35MnDiRzp07o9PpWLFiBd98880Dj/vnHP/876BBg0hISOD7778nJCQErVZLs2bN8tV4LgjC3byCnOn6Rm3W/XiaG6cT2bU0jLYD+pGRlMC5nVtZ/8M0+nw6Cb9KVe861q6KG06tAsjcG03Kysto3qmPUqfFoVEjdC/0Im3ln8SNH0/5VX8iqdXFcHWPplfDiuw42JxozSH+j737Dovi+B84/r6DoxdFBQQBCwIqithbxI4au8ZeiC32XmIsYGKP2GPv3RhL7Iq9YFfsFbGDWJAq9eb3B1/v5wkIVoTM63n2SW53dvYze4c3Nztl9etLtAu7h0XOgpkd1n+CbEH6BhQKBUZ6upmyZbQCkZiYyMqVK/H19SUgIECzXbp0CQcHh1Q7QAN07tyZw4cPp9p6lJb8+fNjZGREdHTqQ3l37dpFZGQkFy9e1Ipl48aNbN26lZcvX1KkSBESExM1j8YguQXs9QfWYjpx4gQODg6MHDmSMmXKULhwYR6kMhT44cOHPH36VPP65MmTKJVKnJycADh27Bj9+vWjfv36FCtWDH19fV680J67RaVSkZT04ZXKJUn6f7ZOOanTtRgKRfLSJKf/vUetrr3JX7I0iXFxbJn8O69DglM919wzPyobY9Qxibz6+xZCnfwDynLwYHRy5iTuzh1eLlv+DUvz5ejqKGlS05uCsRCjVDBv34DMDuk/Q1aQJCB5tFlYWBhdunTB1dVVa2vRokWaw+y7devG8+fP6dq1a6rHfXx8GDZsGIcPHyYoKIiLFy/SuXNnEhISqF27dqrnLFmyhB9//BE3NzetOJo3b06ePHlYvXo1zs7O1K1bl27dunH69GnOnz9P165dMTQ0TLOMjo6OPHz4kPXr1xMYGMisWbPYsmVLinQGBgZ06tSJS5cuaSpDLVu21PQ/cnR0ZNWqVdy4cYPTp0/Trl27FNfNnz8/Bw4cICQkhLCwsBTXkCQppYIl81CtvQsAF/Y+5PKhpzQcMBzL/IV4ExHOpoljiIlI2elaoavEoo0LCpWSuMBwoo49BkA3Z87/nxvpr7+If/To2xXmC6rraotdfPK8dJve3CM4OGs+MsxqZAVJApIrJbVq1cLc3DzFsebNmxMQEKA1lP0tXV1dcufOrfUo7F0eHh7cu3ePjh074uLiQr169QgJCWHfvn04O6dsLn/27Bk7d+6kefPmKY4pFAqaNWumqawtW7YMOzs7PDw8aNasGd27d8fSMu0OjI0bN2bgwIH06dOHkiVL4u/vz+jRo1Okc3R0pFmzZtSvX586derg6urK3LlzNceXLl1KWFgY7u7udOjQgX79+qW4rq+vL35+ftjZ2eHu7p5mTJIkaSta2YaKTQsB4L/pLvcuhdP0V2/M8ljyOiSYrVN+JyEuNsV5qjxG5GiUfF743gfEP0oeVWrWqBFGFSpk6bmRFAoF7esNwyVGSYJCwcwDQzM7pP8EOYrtE33MKDZJkiQp44QQ+G+6S8D+RyiUCur3KI6pxRvWjxlKbHQUjmUr0HDQCJRKnRTnvVp7kzdXXqCbywDLfu4o9XWJCwoiqFFjREICttN8Mauf+qi4792gBePxM1iPUgg2e8ymUIHqmR1SliRHsUmSJElZkkKhoFIzR1wqWCPUgj2LrhIXa0rjYaPRUam4e/YUh5YvTNEapFAoyNnUER1zfRJfxvL630AA9AsUIFePXwAImTCRpIiIb16mL6Fbo74Uj9JDrVAw7eiozA4n25MVJEmSJOm7o1AqqNbBhfzFcyWv2/bXZQxMHKjXezAoFATs3cm57ZtTnKc0UmHR2hkUEHMhlJiA5Mljc3Xrhl6BAiS9eEHoe5PDZhVF8pqR36QrSiE4SgRXbvyT2SFla7KCJEmSJH2XdHSU1Onm+s66bQHkLVyaah26AHB0zTJunDiS4jz9AuaY1rAHIGzLXRJfxaLU08PaxweA1+s3EHMxa3Z07tmwE26RJgD8eXJSluxTlVXICpIkSZL03VK9XbfN1piYiHj+nRlAkR/qU6p+YwD2zp3Oo2uXU5xnVsMePXtTRFwSr9bfRCQJjMuXw7xpUxCCEG8fRCrrMH7v7CyMcLIchEoILurE4X9+QWaHlG3JCpIkSZL0XdM3UtGwX0lMc71dty2Aii064VS+MkmJifw7dTwvHmnPaabQUWDR2gWFvg7xDyOJOJg8073lsKHo5MhB3O3bvFq5MjOK89l6/NgYt4hcAEy/NB+1Ws659jXICpIkSZL03TM216dR/5IYmqp48SiK3fOvUvuXAdg4FyUuJprNE32IfKU9YauuhQE5myWvzxZ58CFxQeHo5syJ5bDkhV+fz55D/OMn37wsnyu3iT5uBUZipFZzSzeJvScmZXZI2ZKsIEmSJElZQg5LIxr2LYnqf+u2HVx5h0aDfiOnTT4iXz5ny0Qf4t5b49HIzRKjUpYg4NX6W6hjEjBv2gSjsmURsbGE/JE150bqWqcGxcOT14ycfXs9iYlxmRxR9iMrSJIkSVKWkcfelB97lkBHV0nQpRec3h5Ms1+9MTLPwfOH99k2bQJJidp9i3I0LoRuLgOSwuMI23IXAOuxPihUKqKPHCVy797MKMpnMdHXpWKJ3zFPUvNIFzYdGpnZIWU7soIkSZIkZSm2zjmp0+V/67adCObGyRia/eqDSt+Ah1cC2LdgtlarkFJfF4vWLqBU8ObKC2LOPUO/YEFydesGwLPxE0iKjMys4nyy9lXLUDQieUWCBY/2EPvmdeYGlM3ICpL0Xbt//z4KhYKAgIBvep3Dhw+jUCg+uPjt+6pVq8aAAQO+SnySJGkr6J6Hau3+t27bngcE39Oj4cBfUSiVXD96EP+/V2ul17MzxayOAwCvtwWS8DyGXL90R8/BgcTnz3k+fca3LsJn09fVoU6lcVgmqHmuo2Cl35DMDilbkRUkSYuXlxcKhQKFQoFKpaJgwYIMGTKE6OjozA7tm6pUqRLBwcGprk33NX1KxUyS/quKVrGhQpOCAJz45y7xcbbU6tobgFObN3B5/x6t9KZV86FfyByRoObVupsodFRYj/UBIGzdOt5cTjldwPeuWZkiOMeUBmDFi5NERjzN5IiyD1lBklKoW7cuwcHB3Lt3j3HjxjF37lyGDPlv/TLR09PD2toahUKR2aFIkvQBpTwdcKtpB8CBlTcxsyxNheZtANi/ZC73LpzVpFUoFVi0dEZppEvC02jC997HuEIFzBs3AiEIHuONSEzMlHJ8KqVSQYua47GLF0ToKFm4d0Bmh5RtyAqSlIK+vj7W1tbY2dnRtm1b2rVrx9atW7l06RLVq1fH1NQUMzMzSpcuzblz5zTn+fv7U7VqVQwNDbGzs6Nfv35aLU8KhYKtW7dqXStHjhwsX75c8/rMmTO4u7tjYGBAmTJluJjKbLdHjhyhXLly6OvrkzdvXn799VcS3/lHbc+ePVSpUoUcOXKQK1cuGjRoQGBgoFYe6V3n/Zacly9f0qZNG/Lly4eRkRHFixdn3bp1KWJLTEykT58+mmuPGjVKqy/E6tWrKVOmDKamplhbW9O2bVtCQ5OXQrh//z7VqycvPpkzZ04UCgVeXl6pvEOSJL2lUCio3NwR5/LJ67btXXiVAu71KeZRC6FWs33GJEIC72jS65jrk7O5EwBRx54QezsMy+HD0TE3J+7mTV6tXJVZRflk1YvmwzG+GgDro67z4sWtzA0om5AVpG9BCIiPzpztCwxfNTQ0JCEhgXbt2pEvXz7Onj3L+fPn+fXXX1GpVABcuXIFT09PmjVrxuXLl9mwYQPHjx+nT58+Gb5OdHQ0DRo0wNnZmfPnz+Pj45Oi5erJkyfUr1+fsmXLcunSJebNm8eSJUsYN26cVj6DBg3i7NmzHDhwAKVSSdOmTVGr1Rm+zvtiY2MpXbo0O3bs4OrVq3Tv3p0OHTpw+vRprXQrVqxAV1eX06dPM2vWLKZPn87ixYs1x+Pj4/njjz+4dOkSW7duJSgoSFMJsrOzY9OmTQDcunWL4OBgZs6cmeH7J0n/VQqlguodXXAonovEBDW75l2hdAMvHEq4kxgXx5bJY3n9LEST3rBYLowr5AXg1d+3UOiZYDlsKADPZ88m4UnWmhtJoVDQ6cexFIqFWKWC2fsGZnZI2YJuZgfwn5AQAxNsMufavz0FPeNPPv3MmTOsXbuWmjVrsnv3boYOHYqLS3LHyMKFC2vS/fnnn7Rt21bTSblw4cLMmjULDw8P5s2bh4GBQbrXWrNmDUlJSSxduhQjIyOKFSvG48eP6dmzpybN3LlzsbOzY86cOSgUClxcXHj69CnDhw9nzJgxKJVKmjdvrpXvkiVLsLS05Pr167i6umboOu+ztbXVqkT17duXPXv2sHHjRsqXL6/Zb2dnx/Tp01EoFDg7O3PlyhWmT59Ot/+NluncubMmbcGCBZk1axblypUjKioKExMTLCwsALC0tCRHjhzp3jNJkpLp6Cjx7ObK9pkBBAeGs+OvqzTsM4Bdc8by/P49Nk/0ps0ff2JoagZAjh8LEHcvnMTQGMI23saiU1Neb9nCm3PnCfljHPnmzc1Sj9hL58+Fk6IJgWxlW/xDuj05Qz7bcpkdVpYmW5CkFHbs2IGJiQkGBgZUrFiRqlWrMnv2bAYNGkTXrl2pVasWkyZN0npsdf78eZYvX46JiYlm8/T0RK1WExQUlKHr3rhxAzc3N4yMjDT7KlasmCJNxYoVtf7hqly5MlFRUTx+/BiAwMBA2rZtS8GCBTEzM6NAgQIAPHz4MMPXeV9SUhLjx4+nRIkS5MqVCxMTE/bt26fJ860KFSpoxVaxYkXu3LlDUlLyUgAXL16kcePGODg4YGpqSrVq1bRikyTp06n0dKjfqwQWNsbEhMezZ+Ft6vX+DdPceQgLfsLWKX+QEJ88oaJCpUOuti6gqyD2VhgxJ4PJ6+MDKhVRhw8T6eeXuYX5BN0aD6NojA6JCgXTDgzL7HCyPNmC9C2ojJJbcjLr2h+pevXqzJs3D5VKhY2NjeYxmo+PD23btmXnzp3s3r0bb29v1q9fr3l89csvv9CvX78U+dnbJ6+qrVAoUsxYm/DOYpEZmc1WCJHiV93b897ub9iwIXZ2dixatAgbGxvUajWurq7Ex8dn+Drv8/X1Zfr06cyYMYPixYtjbGzMgAEDNHlmRHR0NHXq1KFOnTqsXr2aPHny8PDhQzw9PT8qH0mS0mZgrKJRv5Js+vM84c/fcGj1IxoNHMM/E37l6e0b7Jo1lYaDfkWp1EFlbUyO+gV5vS2Q17uDsOztTq6uXXg5bz7Pxo3HuFIldExMMrtIGVbYyhQno05cZyn71S+4dXcPzo51MzusLEu2IH0LCkXyY67M2D6hidjY2BhHR0ccHBw0laO3nJycGDhwIPv27aNZs2YsW7YMgFKlSnHt2jUcHR1TbHp6egDkyZOH4OBgTV537twh5p1lAYoWLcqlS5d48+aNZt+pU6e0rl+0aFH8/f21Kjn+/v6Ymppia2vLy5cvuXHjBqNGjaJmzZoUKVKEsLCwFHmkd533HTt2jMaNG9O+fXvc3NwoWLAgd+7cSZHu/XxOnTpF4cKF0dHR4ebNm7x48YJJkybxww8/4OLioumg/dbbe/W2xUmSpI9nnEOfRv2S1217/jCSU9vDaDhwJDq6utw9e5LDKxdr/g0xrpgXAxcLSBS8WncTi5+7onKwJzE0lOczsl4fwJ6Ne1AiygChUOB7zCezw8nSZAVJypA3b97Qp08fDh8+zIMHDzhx4gRnz56lSJEiAAwfPpyTJ0/Su3dvAgICuHPnDtu2baNv376aPGrUqMGcOXO4cOEC586do0ePHloVsLZt26JUKunSpQvXr19n165dTJ06VSuOXr168ejRI/r27cvNmzf5999/8fb2ZtCgQSiVSnLmzEmuXLlYuHAhd+/e5eDBgwwaNEgrj4xc532Ojo74+fnh7+/PjRs3+OWXXwgJCUmR7tGjRwwaNIhbt26xbt06Zs+eTf/+/YHkljQ9PT1mz57NvXv32LZtG3/88YfW+Q4ODigUCnbs2MHz58+JiorKwLsjSdL7clj9/7ptT2695rq/As9eyf8WXNy9nfM7twLJLc85WxRGaaoiMTSGyIPB5PX2BiBszRreXLmSWUX4JDY5DHHN0wcdITipjOb85TWZHVKWJStIUobo6Ojw8uVLOnbsiJOTEy1btqRevXqMHTsWgBIlSnDkyBHu3LnDDz/8gLu7O6NHjyZv3ryaPHx9fbGzs6Nq1aq0bduWIUOGaPUDMjExYfv27Vy/fh13d3dGjhzJ5MmTteKwtbVl165dnDlzBjc3N3r06EGXLl0YNWoUAEqlkvXr13P+/HlcXV0ZOHAgf/75p1YeGbnO+0aPHk2pUqXw9PSkWrVqWFtb06RJkxTpOnbsyJs3byhXrhy9e/emb9++dO/eHUhuQVu+fDkbN26kaNGiTJo0KUXFzNbWlrFjx/Lrr79iZWX1UaMAJUnSlsfelPo9S6DUVXDv4nNCgiyp2j55oMSRVUu46X8UAB0TPSxaJi/ZEX0qGKW5E2YNGybPjeSd9eZG6vFjG0pGJndGn3bWF/G/EbzSx1GIrLiM8XcgIiICc3NzwsPDMTMzy+xwJEmSpDQEXgxl78KrCAGl6trz5vUBLu7ejo6uLi1GjiNfUVcAXu+6R9TRJyiNdMnVsQD3WzVBHR6O5a/DyZXF5iSbs2Mby5//RpxSwWznblSrkLJ/6H9VRr+/ZQuSJEmSlK0VcrfEo21yC9GFPQ+xsK2LY9mKJCUmsnXqH7x8nDyK1LxOflS2JqhjEonYF0qe/z2efz5rNgnv9J/MCjrXqY9bpCUAM64tQZ2UtVrBvgeygiRJkiRle8V+sKV84/+t27YpkMIVOpDXyYW46Gg2TfQm6tVLFLpKLFo7o1ApibsXjq5lBQxLlULExBAybnwml+DjGOnpUrX4WIzVagJ11Ww/+kf6J0laslQFKTExkVGjRlGgQAEMDQ0pWLAgv//+u2aGZEgewu3j44ONjQ2GhoZUq1aNa9euaeUTFxdH3759yZ07N8bGxjRq1Egzh44kSZKUPZWu64BbjeR1246sDaRMwz7kzGtL5IvnbJ48lvg3MajyGJGjUSEAIvwekrvPb6CrS9SBA0Tu35+Z4X+0tlUr4xaZPA/cvHubSUiISecM6V1ZqoI0efJk5s+fz5w5c7hx4wZTpkzhzz//ZPbs2Zo0U6ZMYdq0acyZM4ezZ89ibW1N7dq1iYyM1KQZMGAAW7ZsYf369Rw/fpyoqCgaNGggh1ZLkiRlYwqFgsotHHEqb4VaLTi06j4/tB+CkXkOnt+/x7ZpE0lKTMSojBWGJXKDWhB5IgYLr64AhIwbT1JUdDpX+X6odJTUqziBnIlqnujCOr9fMzukLCVLVZBOnjxJ48aN+fHHH8mfPz8tWrSgTp06mgVThRDMmDGDkSNH0qxZM1xdXVmxYgUxMTGsXbsWgPDwcJYsWYKvry+1atXC3d2d1atXc+XKFfZnsV8HkiRJ0sdRKBXU6FgE+2LJ67YdWRtMjc5D0dXX58Hli/gtnANAziaO6OTQJ+llLLq2tVHZ2ZEYEsKL2bMyuQQfp1Hp4pSISe6EvjTkIG9iXmVyRFlHlqogValShQMHDnD79m0ALl26xPHjx6lfvz4AQUFBhISEUKdOHc05+vr6eHh44O/vDyQviZGQkKCVxsbGBldXV02a1MTFxREREaG1SZIkSVmPjo6Sut1dsS5oRlxMIie3RFKz80AUCiXXjuzn5D9rURqpsGjtDAp4c+klFl1GA/Bq1WreXL2WzhW+H0qlghY1J2GdoOaljoIlewZkdkhZRpaqIA0fPpw2bdrg4uKCSqXC3d2dAQMG0KZNGwDNxH1WVlZa51lZWWmOhYSEoKenR86cOdNMk5qJEydibm6u2ezs7L5k0SRJkqRvSKWvw4+93bCwMSY6PJ5Lh3Sp2j55zrKT/6zjysF96Oc3x7RG8lJJb27oYFq/BajVhHh7I7JQl4xqRQtQLD55vcm1r88THv4okyPKGrJUBWnDhg2sXr2atWvXcuHCBVasWMHUqVNZsWKFVrrU1upKb1Xm9NKMGDGC8PBwzfbokfyASZIkZWUGxioa9i2JqYUBr5/FcO+yFWUb/QSA36I5BF08h1kNe/QczBBxSagcGqE0Myf22jXC1qzN5Og/jtePE7CPE0TqKJm7W86JlBFZqoI0dOhQfv31V1q3bk3x4sXp0KEDAwcOZOLEiQBYW1sDpGgJCg0N1bQqWVtbEx8fn2J9rnfTpEZfXx8zMzOtTZIkScraTHLq06h/SQxMktdte/msOEWqVEeo1WyfPonQB4HJQ/8NdEgIjiVHmzEAPJ8xg4QPPHX43pR0sKS4Innh2k1v7hAaejWTI/r+ZakKUkxMDEqldsg6OjqaYf4FChTA2toaPz8/zfH4+HiOHDlCpUqVAChdujQqlUorTXBwMFevXtWkkbIeHx8fSpYsqXnt5eWV6lIg76pWrRoDBgz4qnFJkvT9S163zQ2Vvg5Pb78GVQ3sXUuSEBfL5kk+RCeEk7OpIwAJoaYYlq+POiaGZ+Oz1txI3RqNwfGNgjilgul7B6V/wn9clqogNWzYkPHjx7Nz507u37/Pli1bmDZtGk2bNgWSH60NGDCACRMmsGXLFq5evYqXlxdGRka0bdsWAHNzc7p06cLgwYM5cOAAFy9epH379hQvXpxatWplZvG+C15eXigUChQKBbq6utjb29OzZ88ULW7fmyFDhnDgwIHMDkOSpCzK0sGM+j2Lo9RVEBQQhoVdC3Lb5ycm/DWbJnqjKGSIUWkrEKBXqBkYmhLpt5/IgwczO/QMK2RlRgmj1gDsSXrKg4cnMjmi71uWqiDNnj2bFi1a0KtXL4oUKcKQIUP45ZdftFZEHzZsGAMGDKBXr16UKVOGJ0+esG/fPkxNTTVppk+fTpMmTWjZsiWVK1fGyMiI7du3o6OjkxnF+u7UrVuX4OBg7t+/z+LFi9m+fTu9evXKtHiSkpK0JgNNjYmJCbly5fpGEUmSlB3lc7Gg9s/FQAE3T72iQOnOmObKQ9jTx2yd8gcmde3QzW2IOkaNWcORAIT8MQ51dNaZG6lXk0EUi1GRqFDge0DOi/QhWaqCZGpqyowZM3jw4AFv3rwhMDCQcePGoaenp0mjUCjw8fEhODiY2NhYjhw5gqurq1Y+BgYGzJ49m5cvXxITE8P27dvlqLR36OvrY21tTb58+ahTpw6tWrVi3759muPLli2jSJEiGBgY4OLiwty5czXHKlasyK+/av/RPX/+HJVKxaFDh4Dkx57Dhg3D1tYWY2Njypcvz+HDhzXply9fTo4cOdixYwdFixZFX1+fBw8ecPjwYcqVK4exsTE5cuSgcuXKPHjwAEj5iO2tsWPHYmlpiZmZGb/88gvx8fFplju9uCRJyv4cS1vi0SZ53bYrh19TrEYP9I2MeXrrOnsXzSBny8KgVCDiLTBwa0BicDDPZ8/J5KgzzsrMgFK5kkfrHVK+5tqtbZkc0fcrS1WQsiohBDEJMZmyCSE+K/Z79+6xZ88eVCoVAIsWLWLkyJGMHz+eGzduMGHCBEaPHq0ZSdiuXTvWrVundd0NGzZgZWWFh4cHAD///DMnTpxg/fr1XL58mZ9++om6dety584dzTkxMTFMnDiRxYsXc+3aNSwsLGjSpAkeHh5cvnyZkydP0r179w+OPDxw4AA3btzg0KFDrFu3ji1btjB27Ng002ckLkmSsj/XqraUb5S8REfA/mhKNeiJjq4ut0+f4OThvzH3dABA5dgQpYk1r1atIvb69cwM+aP80rALJaOMAPA9LtdoS4tuZgfwX/Am8Q3l15bPlGufbnsaI5XRR52zY8cOTExMSEpKIjY2FoBp06YB8Mcff+Dr60uzZs2A5I7x169fZ8GCBXTq1IlWrVoxcOBAjh8/zg8//ADA2rVradu2LUqlksDAQNatW8fjx4+xsbEBkvsP7dmzh2XLljFhwgQAEhISmDt3Lm5ubgC8evWK8PBwGjRoQKFCyeskFSlS5IPl0NPTY+nSpRgZGVGsWDF+//13hg4dyh9//JGis39G45Ik6b+hdL38vIlM4PKhx1w6ICjdqCtnNs/n/M5/Me2QB3vHQsTdfY1xjUFE7viNYG8f8q9fhyILdNUwN1RRyWEwV1/8zlndWPwvLKVSqc6ZHdZ3R7YgSSlUr16dgIAATp8+Td++ffH09KRv3748f/6cR48e0aVLF0xMTDTbuHHjCAwMBCBPnjzUrl2bNWvWAMmzm588eZJ27doBcOHCBYQQODk5aeVx5MgRTR6QXLkpUaKE5rWFhQVeXl54enrSsGFDZs6cSXBw8AfL4ebmhpHR/1cOK1asSFRUVKpzWGU0LkmS/hsUCgVVfipM4bLJ67ZdP2GCe73kSYkPr15CWMHXKI10QZkDA7eWxF65Qti69Zkcdcb97Nkc96jkCZNnXpiNSKef53+RbEH6Bgx1DTnd9nSmXftjGRsb4+iYPKR11qxZVK9enbFjx9KnTx8g+TFb+fLaLWLvdnBv164d/fv3Z/bs2axdu5ZixYppWoLUajU6OjqcP38+Rad4ExOT/4/b0DDF47Nly5bRr18/9uzZw4YNGxg1ahR+fn5UqFDho8qX2mO5jMYlSdJ/h0KpoGanIsTFJPDw2isCL+XDpUodbh7fx66l02jRaQwciELlUI2EJ5d4Pn06prVrofrAnHrfCwOVDjWKeXP5/gCuqxLZ5++LZ5WhmR3Wd0W2IH0DCoUCI5VRpmzpzSCeEd7e3kydOpWkpCRsbW25d+8ejo6OWluBAgU06Zs0aUJsbCx79uxh7dq1tG/fXnPM3d2dpKQkQkNDU+TxdqLPD3F3d2fEiBH4+/vj6uqqWYQ4NZcuXeLNmzea16dOncLExIR8+fKlmu/nxCVJUvako6ukbvfiWBUwI/5NEqGP3XEoUZakhAT+XTcZneLJI6QNy3dDJCp5NmFiJkecca2r1qBUdHKXgr9uriQpMe1BLP9FsoIkpatatWoUK1aMCRMm4OPjw8SJE5k5cya3b9/mypUrLFu2TNNHCZJboBo3bszo0aO5ceOGZg4qACcnJ9q1a0fHjh3ZvHkzQUFBnD17lsmTJ7Nr1640YwgKCmLEiBGcPHmSBw8esG/fPm7fvv3Bfkjx8fF06dKF69evs3v3bry9venTp0+K/kefE5ckSdmfSl+HBn3cyJnXmJjwBGJja2BV0InY6Ch2nfwLZR59FDpGGJT6mci9e4n834jd752ujpIG5SdikqQmSAX/HBiT2SF9V2QFScqQQYMGsWjRIjw9PVm8eDHLly+nePHieHh4sHz5cq0WJEh+zHbp0iV++OEH7O3ttY4tW7aMjh07MnjwYJydnWnUqBGnT5/+4FQLRkZG3Lx5k+bNm+Pk5ET37t3p06cPv/zyS5rn1KxZk8KFC1O1alVatmxJw4YN8fHxSTP9p8QlSdJ/g4Gxikb93DCx0Cf8eQK6Ro0wt8rL6+fBnHq+HXQU6Fq5oipYg5A//kAdE5PZIWdIwzKlKP2mMACLH+8gIS7rzOn0tSnE544D/4+KiIjA3Nyc8PBwuS6bJEnSf0RYSDSbp14gNioBq/yC0MClvIkIp3yRxuSPdUGoE4k5PIEcP9XBamjW6NNz7MZdRvs35qWukn45KtGt8YLMDumryuj3t2xBkiRJkqQMymltTIM+bujq6/DsvgJrp/bo6ulx+sa/RBiGo1DqYlC2G69WrSX25s3MDjdDfijiSKkEdwBWvTxOTFRoJkf0fZAVJEmSJEn6CFb5zajfozhKHQXBgfo4uLdHoVBy4OYKklRJ6JjmRb9Ic4K9vRFJSZkdboZ41fclb4KaMB0l83b1z+xwvguygiRJkiRJH8muiAW1Oyev2/bkdg4Klm1BvPoNxx5uBECvgAeJoUpe//13JkeaMSXsrShNNQA2Rl8mLOxe5gb0HZAVJEmSJEn6BI6lLfFo7QTAkzv5yO9el2exD7gZfgYAA/eOPJ+zhITQrPHIqkeTieSPg2ilkpk7+2V2OJlOVpAkSZIk6RO5euSjXMPkUbzB94tgW7QCV14dISz+GQo9E/RcWvNsYtaYG8khtxllDZoAsD3hPsEhFzM3oEwmK0iSJEmS9BnK1M9P8Wr5UKDgVUgFchdwwf/ZvySKBHTzOBMXqCDq6NHMDjNDejT+Dec3SuKVCnz3DM7scDKVrCBJkiRJ0mdQKBT80LIwhctYIoSS6Kia6OY24cILPwD0XBrxbOoS1O/M7P+9sjQ3pLxFJwD8COV24MFMjijzyAqSJEmSJH0mhVJBTa+i2BW1IClRRRINeKbzhIdRN1AoddB1aMzzOfMzO8wM6dGoL8Wj9VArFEw7Miqzw8k0soIkSZIkSV9A8rptrlgVMCMhzhBd4yZcijpCdEI4OsZ5iLmuT+TBI5kdZrpMDVT8YN8fhRCc0Ink0vUtmR1SppAVJOmzKBQKtm7d+sE0Xl5eNGnSJMN53r9/H4VCQUBAAACHDx9GoVDw+vXrT47zS/he4vieZeTzkNXlz5+fGTNmaF5/bJl9fHwoWbLkF49L+j7oGejSoLcbFjbGxL/JgTDw5PSrXSSqE1BZFefF2ltE7DuQ2WGmq3PddpSMMQZg0SnfTI4mc8gKkqTxsRUZgODgYOrVqwekrNi8NXPmTJYvX/5lgvxEoaGh/PLLL9jb26Ovr4+1tTWenp6cPHkyU+N636e8B58rMyo1/v7+6OjoULdu3RTH3n6OdHV1efLkidax4OBgdHV1USgU3L9/X7N/06ZNlC9fHnNzc0xNTSlWrBiDB2esg2n37t3R0dFh/fr1n1SWd/8GvqX/QmU0qzIwUdFsSClsnXMgyEe4bgVOvNxGgjoeVe4ivPznIeE79mR2mB+kr6tDOdsuABxXvubJk3OZHNG3JytI0mextrZGX1//g2nMzc3JkSPHtwkoDc2bN+fSpUusWLGC27dvs23bNqpVq8arV68yNa6vJSkpCbVandlhpGnp0qX07duX48eP8/Dhw1TT2NjYsHLlSq19K1aswNbWVmvf/v37ad26NS1atODMmTOcP3+e8ePHEx8fn24cMTExbNiwgaFDh7JkyZJPKktG/gak/x59IxUN+5bEubw1Sp18vFKU5/jLbcSr41BZOPJqx3Neb9qe2WF+UCfPn3F5o0OSQsGCg96ZHc43JytIUpqqVatGv379GDZsGBYWFlhbW+Pj46OV5t1fsQUKJM8F4u7ujkKhoFq1akDKVpE9e/ZQpUoVcuTIQa5cuWjQoAGBgYEZiik6OhozMzP++ecfrf3bt2/H2NiYyMjIFOe8fv2a48ePM3nyZKpXr46DgwPlypVjxIgR/Pjjj0DqrV+vX79GoVBw+PBhrfxOnDiBm5sbBgYGlC9fnitXrmiOPXjwgIYNG5IzZ06MjY0pVqwYu3btApIrLV26dKFAgQIYGhri7OzMzJkzNef6+PiwYsUK/v33XxQKhebaqT3aCwgI0GpFWb58OTly5GDHjh0ULVoUfX19Hjx4wNmzZ6lduza5c+fG3NwcDw8PLly4oMknf/78ADRt2hSFQqF5/faeli5dGgMDAwoWLMjYsWNJTEzUHL9z5w5Vq1bFwMCAokWL4ufnl/Yb947o6Gj+/vtvevbsSYMGDdJsXezUqRPLli3T2rd8+XI6deqktW/Hjh1UqVKFoUOH4uzsjJOTE02aNGH27NnpxrJx40aKFi3KiBEjOHHihFarFCS3PDZs2BBDQ0MKFCjAmjVrUuTxfkvO8OHDcXJywsjIiIIFCzJ69GgSEhJSnLdgwQLs7OwwMjLip59+0np/P+d9k74fOrpKanoVoUz9/Ch1rXit/IHjL7cTlxSDKkd+wg5E8Wr95swOM02mBipKmjQAYG/ifSIjnqRzRvYiK0jfgBACdUxMpmxCiM+KfcWKFRgbG3P69GmmTJnC77//nuYX4ZkzybPH7t+/n+DgYDZvTv0PPzo6mkGDBnH27FkOHDiAUqmkadOmGWrxMDY2pnXr1im+OJctW0aLFi0wNTVNcY6JiQkmJiZs3bqVuLi4dK+RnqFDhzJ16lTOnj2LpaUljRo10nwB9u7dm7i4OI4ePcqVK1eYPHkyJiYmAKjVavLly8fff//N9evXGTNmDL/99ht//28pgiFDhtCyZUvq1q1LcHAwwcHBVKpUKcNxxcTEMHHiRBYvXsy1a9ewtLQkMjKSTp06cezYMU6dOkXhwoWpX7++piJ59uxZIPn+BQcHa17v3buX9u3b069fP65fv86CBQtYvnw548eP15SlWbNm6OjocOrUKebPn8/w4cMzFOeGDRtwdnbG2dmZ9u3bs2zZslQ/p40aNSIsLIzjx48DcPz4cV69ekXDhg210llbW3Pt2jWuXr2a4Xv11pIlS2jfvj3m5ubUr18/xefKy8uL+/fvc/DgQf755x/mzp1LaDqzIpuamrJ8+XKuX7/OzJkzWbRoEdOnT9dKc/fuXf7++2+2b9/Onj17CAgIoHfv3prjn/q+Sd8fhUJB+UYFqd7BBV1VLiKU1Tn2cjdvEqNQmeUj/HgSL1duyOww09Sp/nDyxQtilEqW7RuZ2eF8W0L6JOHh4QIQ4eHh6aZNio4W151dMmVLio7OcJk6deokGjdurHnt4eEhqlSpopWmbNmyYvjw4ZrXgNiyZYsQQoigoCABiIsXL34w3/eFhoYKQFy5ciXVfA4dOiQAERYWJoQQ4vTp00JHR0c8efJECCHE8+fPhUqlEocPH07zGv/884/ImTOnMDAwEJUqVRIjRowQly5d0hxPLfawsDABiEOHDmnFsX79ek2aly9fCkNDQ7FhwwYhhBDFixcXPj4+acbxvl69eonmzZtrXqd2r94vvxBCXLx4UQAiKChICCHEsmXLBCACAgI+eL3ExERhamoqtm/frtn37nv41g8//CAmTJigtW/VqlUib968Qggh9u7dK3R0dMSjR480x3fv3p1qXu+rVKmSmDFjhhBCiISEBJE7d27h5+enOf7uezFgwADx888/CyGE+Pnnn8XAgQNTlD0qKkrUr19fAMLBwUG0atVKLFmyRMTGxn4wjtu3bwuVSiWeP38uhBBiy5Ytws7OTiQlJQkhhLh165YAxKlTpzTn3LhxQwBi+vTpH7x/75oyZYooXbq05rW3t3eq906pVIrg4OBU88jo+yZ93x5ceyEW9D8sZnfbJhZ79Rc3B+8Qj4YfFUF9N4vnC1dndnhpGr7oZ+G63FXUWFxMxMdn/Dvle5XR72/ZgiR9UIkSJbRe582bN91f0OkJDAykbdu2FCxYEDMzM82jubT6oryvXLlyFCtWTNM/ZdWqVdjb21O1atU0z2nevDlPnz5l27ZteHp6cvjwYUqVKvVJnccrVqyo+X8LCwucnZ25ceMGAP369WPcuHFUrlwZb29vLl++rHXu/PnzKVOmDHny5MHExIRFixZluNzp0dPTS/F+hYaG0qNHD5ycnDA3N8fc3JyoqKh0r3n+/Hl+//13TeubiYkJ3bp1Izg4mJiYGG7cuIG9vT358uXTnPPufUnLrVu3OHPmDK1btwZAV1eXVq1asXTp0lTTd+nShY0bNxISEsLGjRvp3LlzijTGxsbs3LmTu3fvMmrUKExMTBg8eDDlypUjJiYmzViWLFmCp6cnuXPnBqB+/fpER0ezf/9+AG7cuIGuri5lypTRnOPi4pJuf7p//vmHKlWqYG1tjYmJCaNHj05xv1O7d2q1mlu3bgGf/r5J3zf7orloNqQ0JhYWvFHV4cjLg0QlhKFrlJuoa6aE/rU8s0NMVZuav5MzUU2oroItB8dndjjfjG5mB/BfoDA0xPnC+Uy79udQqVTa+SkUn935t2HDhtjZ2bFo0SJsbGxQq9W4urpmqFPtW127dmXOnDn8+uuvLFu2jJ9//hmFQvHBcwwMDKhduza1a9dmzJgxdO3aFW9vb7y8vFAqk38riHce9aTWbyQtb6/dtWtXPD092blzJ/v27WPixIn4+vrSt29f/v77bwYOHIivry8VK1bE1NSUP//8k9OnT38w74zGZmhomOIeeHl58fz5c2bMmIGDgwP6+vpUrFgx3XutVqsZO3YszZo1S3HMwMAg1Udi6d1/SK6UJCYmanW0FkKgUqkICwsjZ86cWuldXV1xcXGhTZs2FClSBFdX1xSjJN8qVKgQhQoVomvXrowcORInJyc2bNjAzz//nCJtUlISK1euJCQkBF1dXa39S5YsoU6dOpoyZqRcb506dYrWrVszduxYPD09MTc3Z/369fj6fniY9NtrvP3vp75v0vcvdz4TWgwvzY45l3nxuA6HX/jxQ67KmBvkJuauDs+mL8FyQOeP+tx9bW4F8uEWX5DDuvdZ92g7P6n/QKHM/u0r2b+E3wGFQoHSyChTtm/5R6anpwckf8mk5eXLl9y4cYNRo0ZRs2ZNihQpQlhY2Edfq3379jx8+JBZs2Zx7dq1FB13M6Jo0aJER0cDkCdPHiB5yPZbaX0Rnzp1SvP/YWFh3L59GxcXF80+Ozs7evTowebNmxk8eDCLFi0C4NixY1SqVIlevXrh7u6Oo6Njis7penp6Ke7fx8T2vmPHjtGvXz/q169PsWLF0NfX58WLF1ppVCpVimuWKlWKW7du4ejomGJTKpUULVqUhw8f8vTpU8056U2ZkJiYyMqVK/H19SUgIECzXbp0CQcHh1Q7QAN07tyZw4cPp9p6lJb8+fNjZGSkeX/ft2vXLiIjI7l48aJWLBs3bmTr1q28fPmSIkWKkJiYyLlz/z+8+datWx+cB+vEiRM4ODgwcuRIypQpQ+HChXnw4EGKdKndO6VSiZNT8srwn/q+SVmDSU4Dmg0phX0xKxINPDny8jRhcc/Q1TfjzWNbnv256LP7j35pDcuPQV8tuKsSHDu3OLPD+SZkBUn6YiwtLTE0NGTPnj08e/aM8PDwFGly5sxJrly5WLhwIXfv3uXgwYMMGjToo6+VM2dOmjVrxtChQ6lTp47W44r3vXz5kho1arB69WouX75MUFAQGzduZMqUKTRu3BhIbn2pUKECkyZN4vr16xw9epRRo1KfYv/333/nwIEDXL16FS8vL3Lnzq0ZpTdgwAD27t1LUFAQFy5c4ODBgxQpUgQAR0dHzp07x969e7l9+zajR49O0bk2f/78XL58mVu3bvHixQsSEhJwdHTEzs4OHx8fbt++zc6dO9NtkXjL0dGRVatWcePGDU6fPk27du0wfK9VMX/+/Bw4cICQkBBNZXXMmDGsXLkSHx8frl27xo0bN9iwYYPmntSqVQtnZ2c6duzIpUuXOHbsGCNHfrgD544dOwgLC6NLly64urpqbS1atEhzmH23bt14/vw5Xbt2TfW4j48Pw4YN4/DhwwQFBXHx4kU6d+5MQkICtWvXTvWcJUuW8OOPP+Lm5qYVR/PmzcmTJw+rV6/G2dmZunXr0q1bN06fPs358+fp2rVrivv3/v1++PAh69evJzAwkFmzZrFlS8pZiA0MDOjUqZPm3vXr14+WLVtibW2tyedT3jcp69Az1OXH3iUoWjkfaoNaHH15iZexT9FVGRMXmp+Q8fO+q0pSbfcylIyxAGD5ZVlBkqSPoqury6xZs1iwYAE2Njaayse7lEol69ev5/z587i6ujJw4ED+/PPPT7pely5diI+PT7dlwcTEhPLlyzN9+nSqVq2Kq6sro0ePplu3bsyZM0eTbunSpSQkJFCmTBn69+/PuHHjUs1v0qRJ9O/fn9KlSxMcHMy2bdu0Ws969+5NkSJFqFu3Ls7OzsydOxeAHj160KxZM1q1akX58uV5+fIlvXr10sq7W7duODs7a/opnThxApVKxbp167h58yZubm5Mnjw5zdjet3TpUsLCwnB3d6dDhw7069cPS0tLrTS+vr74+flhZ2eHu7s7AJ6enuzYsQM/Pz/Kli1LhQoVmDZtGg4ODkDy+7hlyxbi4uIoV64cXbt21YxwS8uSJUuoVasW5ubmKY41b96cgIAAraHsb+nq6pI7d26tR2Hv8vDw4N69e3Ts2BEXFxfq1atHSEgI+/btw9nZOUX6Z8+esXPnTpo3b57imEKhoFmzZprK2rJly7Czs8PDw4NmzZrRvXv3FPfvXY0bN2bgwIH06dOHkiVL4u/vz+jRo1Okc3R0pFmzZtSvX586derg6uqq+ZzAp79vUtaio6OkegcXKjQuhDCsxrGwO4S+eYiOriHx4c4Ee89BfCfzmSkUCqq5DEAhBGdVb7h1d39mh/TVKcT3VEXNQiIiIjA3Nyc8PBwzM7PMDuc/ac2aNfTv35+nT59qKiiSJElZ0a3TIRxceYOk6LOUN7Mmr1EB1OoElLqXsR3X77vo8xOfqObnheW4bBxHbXUepv18MLND+iQZ/f7O/DsuSR8pJiaGa9euMXHiRH755RdZOZIkKctzLm9Nw34l0c9ZgVORYTyOvo1SqUKdVJInv85EvDNJa2bR01VSzqotAEcI5fnzW5kc0dclK0hSljNlyhRKliyJlZUVI0aMyOxwJEmSvoh8zjlpPrQ05nnLcjY6ngdRN1AqdBCKUjwaNgvxESNrvxaver0pFKsgXqlgYTafOFJWkKQsx8fHh4SEBA4cOKCZpVqSJCk7sLAxpvnw0lg5luH8Gx3uRV5BoVCiUJXhwdDZiEye6sHcSJ9ShjUB2BN3g9g32XeAgKwgSZIkSdJ3xNhcnyaD3ClYqgyX4ky5E5G89qKuQVmCBs9B/QWWTPocP9cfg1WCmtc6SlbuTX20b3YgK0iSJEmS9J3RM9Clfo/ilKhRjqvxebgRnjwfl55xWYIGzSPpA7PEf212uXNSSiTP2r/lxRHUSZnfP+prkBUkSZIkSfoOKXWUVG3jROWfKnIz0Z4rr5Nn3dc3LU3QkMUkRUVlWmytq/+OSZKaxyoF24582lQt3ztZQZIkSZKk75RCoaCUpwN1f6lCkMKJgFfJM9YbmLkTOGw5iRERmRJXKcfClIpLnqB3Q+DfmRLD1yYrSJIkSZL0nStcxoomg6vy1KgE51/5A2Bk5sa9X9eQGPY6U2L6scxv6ArBVb1EzgSsz5QYvqYsV0GKjIxkwIABODg4YGhoSKVKlbSWaxBC4OPjg42NDYaGhlSrVo1r165p5REXF0ffvn3JnTs3xsbGNGrUiMePH3/rokiSJElShtk45uCnX3/gda5ynH55ArVQY2TmSuDIv0l48eqbx1OvTFVKxpgCsPTcrG9+/a8ty1WQunbtip+fH6tWreLKlSvUqVOHWrVq8eTJEyB5jpxp06YxZ84czp49i7W1NbVr1yYyMlKTx4ABA9iyZQvr16/n+PHjREVF0aBBA7nwYwYoFAq2bt36RfP08fGhZMmSXzTPz/E1yvhfdvDgQVxcXFB/J0smvCsuLg57e3vOnz+f2aFIUobktDbmpxGVSSrowelXp1CLJIzNihDovYWEkNBvGotCoaBawR4AnNKN4P7DM9/0+l+dyEJiYmKEjo6O2LFjh9Z+Nzc3MXLkSKFWq4W1tbWYNGmS5lhsbKwwNzcX8+fPF0II8fr1a6FSqcT69es1aZ48eSKUSqXYs2dPhmMJDw8XgAgPD//MUn0/nj17Jrp37y7s7OyEnp6esLKyEnXq1BH+/v6aNMHBwSI2NvaLXtfb21u4ubl90Tw/ByC2bNnywTQPHz4UnTt3Fnnz5hUqlUrY29uLfv36iRcvXmil8/DwEMuWLdPad+HCBdGyZUthbW0t9PT0hL29vfjxxx/Ftm3bhFqt/sKlyXylS5cWK1eu1LzetGmTqFWrlsidO7cwNTUVFSpUSPVv759//hFFihQRenp6okiRImLz5s1ax48cOSIaNGgg8ubNm+Z75u3tLZydnYWRkZHIkSOHqFmzpjh16pRWmpkzZ4qaNWt+mcJK0jcSH5codv51UazrOkXcH3pQPBp+VNzovUzEPQr+pnHEJSSJlvNKCtflruLX5XW/6bU/VUa/v7NUC1JiYiJJSUkYGBho7Tc0NOT48eMEBQUREhJCnTp1NMf09fXx8PDA3z/5me358+dJSEjQSmNjY4Orq6smTWri4uKIiIjQ2rKb5s2bc+nSJVasWMHt27fZtm0b1apV49Wr/2+6tba2Rl9fPxOjzHz37t2jTJky3L59m3Xr1nH37l3mz5/PgQMHqFixotb9et+///5LhQoViIqKYsWKFVy/fp2NGzfSpEkTRo0aRXh4+CfHFZ/JE8ilxt/fnzt37vDTTz9p9h09epTatWuza9cuzp8/T/Xq1WnYsCEXL17UpDl58iStWrWiQ4cOXLp0iQ4dOtCyZUtOnz6tSRMdHY2bm5vWgsPvc3JyYs6cOVy5coXjx4+TP39+6tSpw/PnzzVp2rVrx7Fjx7hx48YXLr0kfT0qPR3q9nDDplZDTry6SKI6HhOTQtybvJ/YoEffLA49XSUVLJoAcFD9kPDwh9/s2l/dN6qwfTEVK1YUHh4e4smTJyIxMVGsWrVKKBQK4eTkJE6cOCEA8eTJE61zunXrJurUqSOEEGLNmjVCT08vRb61a9cW3bt3T/O63t7eAkixZaQFSa1Wi/jYxEzZMtoiERYWJgBx+PDhD6bjnV/qQUFBAhCbNm0S1apVE4aGhqJEiRJaLU5CCLFw4UKRL18+YWhoKJo0aSJ8fX2Fubm51r11c3MTK1euFA4ODsLMzEy0atVKREREpBnHixcvROvWrYWtra0wNDQUrq6uYu3atVppPDw8RN++fcXQoUNFzpw5hZWVlfD29tZKc/v2bfHDDz8IfX19UaRIEbFv3750W5Dq1q0r8uXLJ2JiYrT2BwcHCyMjI9GjRw+tGN62IEVFRYlcuXKJpk2bppn3u+/X4cOHRdmyZYWenp6wtrYWw4cPFwkJCVp59+7dWwwcOFDkypVLVK1aVRw6dEgAYs+ePaJkyZLCwMBAVK9eXTx79kzs2rVLuLi4CFNTU9G6dWsRHR2tyWv37t2icuXKwtzcXFhYWIgff/xR3L17V3M8o+/1+/r27StatGjxwTRCCFG0aFExduxYzeuWLVuKunW1f416enqK1q1bp3p+eu/ZW29/Oe7fv19rf7Vq1cTo0aPTPV+SvkcX/R6IlV1mintD/ZJbkvquEzF3gr7Z9V9Hx4r6C4sJ1+WuYsr6dt/sup8qoy1IuplQJ/ssq1atonPnztja2qKjo0OpUqVo27YtFy5c0KRRKBRa5wghUux7X3ppRowYwaBBgzSvIyIisLOzy1DMifFqFvY/kqG0X1r3mR6o9HXSTWdiYoKJiQlbt26lQoUKH9VKNHLkSKZOnUrhwoUZOXIkbdq04e7du+jq6nLixAl69OjB5MmTadSoEfv372f06NEp8ggMDGTr1q3s2LGDsLAwWrZsyaRJkxg/fnyq14yNjaV06dIMHz4cMzMzdu7cSYcOHShYsCDly5fXpFuxYgWDBg3i9OnTnDx5Ei8vLypXrkzt2rVRq9U0a9aM3Llzc+rUKSIiIhgwYMAHy/rq1Sv27t3L+PHjMTQ01DpmbW1Nu3bt2LBhA3Pnzk3xedq3bx8vX75k2LBhaeb/9pwnT55Qv359vLy8WLlyJTdv3qRbt24YGBjg4+OjVb6ePXty4sQJhBCEhIQAyf265syZg5GRES1btqRly5bo6+uzdu1aoqKiaNq0KbNnz2b48OFAcmvMoEGDKF68ONHR0YwZM4amTZsSEBCA8p1VxD/0Xqfm6NGjtGnT5oP3VK1WExkZiYWFhWbfyZMnGThwoFY6T09PZsyY8cG8PiQ+Pp6FCxdibm6Om5ub1rFy5cpx7NixT85bkjJTyVr2mOVqw/F5G6lk7oiJkS0P5pzDvlsCRsUKf/XrmxvpU1ZViYecZFfURQbERaPSN/7q1/3astQjNoBChQpx5MgRoqKiePToEWfOnCEhIYECBQpgbW0NoPmSeCs0NBQrKysg+UssPj6esLCwNNOkRl9fHzMzM60tO9HV1WX58uWsWLGCHDlyULlyZX777TcuX76c7rlDhgzhxx9/xMnJibFjx/LgwQPu3r0LwOzZs6lXrx5DhgzBycmJXr16Ua9evRR5qNVqli9fjqurKz/88AMdOnTgwIEDaV7T1taWIUOGULJkSQoWLEjfvn3x9PRk48aNWulKlCiBt7c3hQsXpmPHjpQpU0aT7/79+7lx4warVq2iZMmSVK1alQkTJnywrHfu3EEIQZEiRVI9XqRIEcLCwjSPcA4fPoyXlxcAt2/fBsDZ2VmT/uzZs5rKqYmJCTt27ABg7ty52NnZMWfOHFxcXGjSpAljx47F19dXq7Ozo6MjU6ZMwdnZGRcXF83+cePGUblyZdzd3enSpQtHjhxh3rx5uLu788MPP9CiRQsOHTqkSd+8eXOaNWtG4cKFKVmyJEuWLOHKlStcv35dq3wfeq9Tc//+fWxsbD54T319fYmOjqZly5aafSEhISn+Hq2srFL8bWfEjh07MDExwcDAgOnTp+Pn50fu3Lm10tja2nL//v2PzluSvhcF3fNQe0Q7/KMfEpsUjYmBFQ8XXyXqwrX0T/4CvOqNwyJRzQtdJWv9fL7JNb+2LNeC9JaxsTHGxsaEhYWxd+9epkyZoqkk+fn54e7uDiT/ajxy5AiTJ08GoHTp0qhUKvz8/DT/IAcHB3P16lWmTJnyVWLV1VPSfabHV8k7I9fOqObNm/Pjjz9y7NgxTp48yZ49e5gyZQqLFy/WfMmnpkSJEpr/z5s3L5Bc4XRxceHWrVs0bdpUK325cuU0FYG38ufPj6mpqVY+oaFpj8hISkpi0qRJbNiwgSdPnhAXF0dcXBzGxtq/Wt6N7f18b9y4gb29Pfny5dMcr1ixYprXzAghBJCyFTMtJUqUICAgAIDChQuTmJioia1ixYpa+VSuXJmoqCgeP36Mvb09AGXKlEkz37esrKwwMjKiYMGCWvvOnPn/ESeBgYGMHj2aU6dO8eLFC00l7OHDh7i6uqaa7/vvdWrevHmTos/gu9atW4ePjw///vsvlpaWWsc+pSU4NdWrVycgIIAXL16waNEiTV+md69naGhITCYu3SBJX4J1AXMajW3LrvEbKS3yYKKfm6erA7GKS8C8Ysmveu38VpaUSXJin+5dNofspaN6MgpllmuD0ZLlot+7dy979uwhKCgIPz8/qlevjrOzMz///DMKhYIBAwYwYcIEtmzZwtWrV/Hy8sLIyIi2bdsCYG5uTpcuXRg8eDAHDhzg4sWLtG/fnuLFi1OrVq2vErNCoUClr5Mp28d+oRgYGFC7dm3GjBmDv78/Xl5eeHt7f/AclUqlVVZA8wWb2pfa20pEWnm8zedDw8J9fX2ZPn06w4YN4+DBgwQEBODp6Zmio/KH8k0tjvTul6OjIwqFIkXLyls3b94kZ86cKVooILkCBHDr1i3NPn19fRwdHXF0dNRK+6H79u7+9yuEb73/nqR3fxs2bMjLly9ZtGgRp0+f1nSG/tD9fP+9Tk3u3LlTtNa+tWHDBrp06cLff/+d4m/P2tr6gy3BH8PY2BhHR0cqVKjAkiVL0NXVZcmSJVppXr16RZ48eT46b0n63pjnMaLpuLZc1o0kKuE1Rno5Cf3nCS8Pn07/5M/UuuofGKgF91SCfSfnffXrfW1ZroIUHh5O7969cXFxoWPHjlSpUoV9+/Zp/uEeNmwYAwYMoFevXpQpU4YnT56wb98+rdaJ6dOn06RJE1q2bEnlypUxMjJi+/bt6Oik31fnv6Zo0aJER0d/8vkuLi5aLRUA586d+9ywOHbsGI0bN6Z9+/a4ublRsGBB7ty581F5FC1alIcPH/L06VPNvpMnT37wnFy5clG7dm3mzp3LmzdvtI6FhISwZs0aWrVqlWpFq06dOlhYWGhaM9OLzd/fX6sS5+/vj6mpKba2tume/zFevnzJjRs3GDVqFDVr1tQ8JvwS3N3dU61Mrlu3Di8vL9auXcuPP/6Y4njFihXx8/PT2rdv3z4qVar02TEJIYh7bzX0q1evalqdJSmrMzBR0eSPFtyxEEQkvMJQZcarHa8I3f11+9mVdXGldGzyj8O115d91Wt9C1mugtSyZUsCAwOJi4sjODiYOXPmYG5urjmuUCjw8fEhODiY2NhYjhw5ovWIAJJbSWbPns3Lly+JiYlh+/btGe5wnV29fPmSGjVqsHr1ai5fvkxQUBAbN25kypQpNG7c+JPz7du3L7t27WLatGncuXOHBQsWsHv37k96VPIuR0dH/Pz88Pf358aNG/zyyy8f3T+lVq1aODs707FjRy5dusSxY8cYOXJkuufNmTOHuLg4PD09OXr0KI8ePWLPnj3Url0bW1vbNDuWm5iYsHjxYnbu3MmPP/7I3r17uXfvHpcvX9Y83n1bSe/VqxePHj2ib9++3Lx5k3///Rdvb28GDRqk1Wn6S8iZMye5cuVi4cKF3L17l4MHD2oNSPgcnp6eHD9+XGvfunXr6NixI76+vlSoUIGQkBBCQkK0pjjo378/+/btY/Lkydy8eZPJkyezf/9+rU70UVFRBAQEaB5RBgUFERAQwMOHycOMo6Oj+e233zh16hQPHjzgwoULdO3alcePH2tNOwDJFe53p/6QpKxOV6VDgxENCS5kwuv4FxjqmhB5MIanm/d/1ev+6DYMhRBc0Ivj8s09X/VaX1uWqyBJX4eJiQnly5dn+vTpVK1aFVdXV0aPHk23bt0+OM9MeipXrsz8+fOZNm0abm5u7Nmzh4EDB36wX0pGjB49mlKlSuHp6Um1atWwtramSZMmH5WHUqlky5YtxMXFUa5cObp27Zpm5eZdhQsX5ty5cxQqVIhWrVpRqFAhunfvTvXq1Tl58qTWaKz3NW3aFH9/f4yMjOjYsSPOzs7UqFGDgwcPsn79eho0aAAkdxretWsXZ86cwc3NjR49etClSxdGjRr1UWXMCKVSyfr16zl//jyurq4MHDiQP//8Mqtzt2/fnuvXr2s9VlywYAGJiYn07t2bvHnzarb+/ftr0lSqVIn169ezbNkySpQowfLly9mwYYPWCMVz587h7u6uafkZNGgQ7u7ujBkzBkiubN68eZPmzZvj5OREgwYNeP78OceOHaNYsWKafE6ePEl4eDgtWrT4ImWWpO+FQqmgZq+aRJfLy8u4Z+jrGBF7EoJW7fxq12xQsR5ub5JH+C45MemrXedbUIjUOmJI6YqIiMDc3Jzw8PBsN6Lta+vWrRs3b96Uw6r/I4YNG0Z4eDgLFizI7FBS9dNPP+Hu7s5vv/2W2aFI0ldzze8q8TtvkMfAmgR1PPGFInH+pclXudaSnXOY8WIBKiHYUXcDNtbF0j/pG8ro97dsQZK+uqlTp3Lp0iXu3r3L7NmzWbFiBZ06dcrssKRvZOTIkTg4OHyXax3GxcXh5uaWYs4lScpuitV2JVfHMjx78wSVUg/9QDMuT/v7q1yrg2cvCscqSVAoWLAv/W4L3yvZgvSJZAtSxrVs2ZLDhw8TGRmpmbOoR48emR2WJEnSf87zu8Hcn32IvIZ2JIkknps+pcyotl/8On+uG8bK+N2YJ6nZ1/ooRka5vvg1PlVGv79lBekTyQqSJEmSlBVFhoZzfdx2bI0cUAs1j3XvU2n8l23VfxUVTav15QlRKehmXIl+Lb6fR+zyEZskSZIkSSmYWppTcnxzHscEoVQosU8qyPEhS7/oNSxMjCmnTJ5Y1u+1P+ID86V9r2QFSZIkSZL+Y/RNDSkzpTUP3yQvFZRftzAnBizVzOb/JbSu7o2BWnBfBQfOfNkK2LcgK0iSJEmS9B+ka6BHOd8O3I9LXifSwaAwZwatJuFNXDpnZkzxAs64x+UE4J+rWW/iSFlBkiRJkqT/KF1dXapM78IDdfJC3PZGhbgwfCOxYeHpn5wB1R07A3BGN5yQ0FvppP6+yAqSJEmSJP3HVZ7SmccG90kSSdgaOXDNZxeRj559dr4/Ve9EoTgFCQoFS/18Pj/Qb0hWkCRJkiRJouLYjjzP9YxEdQJWhvm453uMF1cDPytPXR0lZQ2T11A8FHsFddKX6+P0tckKkpStjR49mu7du2d2GKm6cuUK+fLl+6zFgD+Hl5eX1vIsQgi6d++OhYUFCoVCs8bZf0n+/PmZMWPGF8uvWrVqWuvHZUWpfS6yQ7mk1JUZ1orwglHEJcWSy8CKZ0uv8Pj4lc/Ks4PnGEyS1IToKth6aPoXivTrkxUkScPLywuFQoFCoUBXVxd7e3t69uz5xVZ2/9aePXvGzJkztZaQmDhxImXLlsXU1BRLS0uaNGmitU4YJH8h+Pj4YGNjg6GhIdWqVePatWtaaRYuXEi1atUwMzNDoVDw+vXrNOOIi4ujZMmSKSodxYsXp1y5ckyfnjn/YMycOZPly5drXu/Zs4fly5ezY8cOgoODUyzynJ0sX76cHDlypNh/9uzZ77ZCnVn+S58LKZlbj0YklNLhTWIU5nq5iNrygMAd/p+cn72lDaUT8gKwLejrzN79NcgKkqSlbt26BAcHc//+fRYvXsz27dvp1atXZof1SZYsWULFihXJnz+/Zt+RI0fo3bs3p06dws/Pj8TEROrUqaPVijNlyhSmTZvGnDlzOHv2LNbW1tSuXZvIyEhNmpiYGOrWrZuh9buGDRuGjY1Nqsd+/vln5s2blynLcJibm2tVEgIDA8mbNy+VKlXC2toaXV3dj85TCPFFhwl/DQkJCWkey5MnD0ZGRt8wmu/fl/hcSFmPS5sa6NayIDLhNSYqc9RHIri+2u+T8/uxRD8ALqrecOf+mS8V5tclpE8SHh4uABEeHp5uWrVaLeLfvMmUTa1WZ7hMnTp1Eo0bN9baN2jQIGFhYaF5nZSUJMaOHStsbW2Fnp6ecHNzE7t379YcDwoKEoDYsGGDqFKlijAwMBBlypQRt27dEmfOnBGlS5cWxsbGwtPTU4SGhqa4to+Pj8iTJ48wNTUV3bt3F3FxcZo0GzduFK6ursLAwEBYWFiImjVriqioqDTLU7x4cTFnzpwPljk0NFQA4siRI0KI5PfK2tpaTJo0SZMmNjZWmJubi/nz56c4/9ChQwIQYWFhqea/a9cu4eLiIq5duyYAcfHiRa3jcXFxQl9fXxw4cOCDcaZ3zYsXLwpABAUFCSGEWLZsmTA3Nxd79uwRLi4umnv+9OlTzTnvvt+dOnUSgGZzcHDQlL1v374iT548Ql9fX1SuXFmcOXMmRSx79uwRpUuXFiqVShw8eFB4eHiIPn36iP79+4scOXIIS0tLsWDBAhEVFSW8vLyEiYmJKFiwoNi1a1ea5fz1119F+fLlU+wvXry4GDNmjOb10qVLhYuLi9DX1xfOzs7ir7/+0hx79/Po4eEh9PX1xdKlS7XKCghvb28hhBAODg5i+vTpmvPDwsJEt27dhKWlpdDX1xfFihUT27dvF0II8eLFC9G6dWtha2srDA0Nhaurq1i7dq1WrB4eHqJ///5pltHb21u4ubmJJUuWCDs7O2FsbCx69OghEhMTxeTJk4WVlZXIkyePGDdunNZ5vr6+wtXVVRgZGYl8+fKJnj17isjISM3x+/fviwYNGogcOXIIIyMjUbRoUbFz504hhBCvXr0Sbdu2Fblz5xYGBgbC0dFRLF26NNX40vpcvF8uQGzZskXrXHNzc7Fs2TIhhBArVqwQxsbG4vbt25rjffr0EYULF/7g37CU+Z6evCquDNwsHg0/KgKH7BMX52z+pHzUarVoOb+kcF3uKkYub/SFo/w4Gf3+lj8FvoHEuDhmdWqRKdfut+IfVAYGn3TuvXv32LNnDyqVSrNv5syZ+Pr6smDBAtzd3Vm6dCmNGjXi2rVrFC5cWJPO29ubGTNmYG9vT+fOnWnTpg1mZmbMnDkTIyMjWrZsyZgxY5g3b57mnAMHDmBgYMChQ4e4f/8+P//8M7lz52b8+PEEBwfTpk0bpkyZQtOmTYmMjOTYsWOINFbKCQsL4+rVq5QpU+aDZQwPTx7KamFhAUBQUBAhISHUqVNHk0ZfXx8PDw/8/f355ZdfMnz/nj17Rrdu3di6dWuarRJ6enq4ublx7NgxatSokeG8MyImJoapU6eyatUqlEol7du3Z8iQIaxZsyZF2pkzZ1KoUCEWLlzI2bNn0dHRAZJbvzZt2sSKFStwcHBgypQpeHp6cvfuXc09e5tu6tSpFCxYUNMqtWLFCoYNG8aZM2fYsGEDPXv2ZOvWrTRt2pTffvuN6dOn06FDBx4+fJjq/WnXrh2TJk0iMDCQQoUKAXDt2jWuXLnCP//8A8CiRYvw9vZmzpw5uLu7c/HiRbp164axsbHWgsjDhw/H19eXZcuWoaOjw4wZMxgzZozm8aqJiUmK66vVaurVq0dkZCSrV6+mUKFCXL9+XXNvYmNjKV26NMOHD8fMzIydO3fSoUMHChYsSPny5TP8PgUGBrJ792727NlDYGAgLVq0ICgoCCcnJ44cOYK/vz+dO3emZs2aVKhQAQClUsmsWbPInz8/QUFB9OrVi2HDhjF37lwAevfuTXx8PEePHsXY2Jjr169ryjh69GiuX7/O7t27yZ07N3fv3uXNmzepxpbW5+JjdezYkR07dtCuXTv8/f3Zv38/CxYs4MSJExgbG39SntK3kbdCMfRzGPNw/llyG1iT44EOZyetp+yvrT8qH4VCQYWctbn+ZjfHku4SHxeFnn7Kv7vviawgSVp27NiBiYkJSUlJxMbGAjBt2jTN8alTpzJ8+HBat07+45g8eTKHDh1ixowZ/PXXX5p0Q4YMwdPTE4D+/fvTpk0bDhw4QOXKlQHo0qWLVv8XSK4sLF26FCMjI4oVK8bvv//O0KFD+eOPPwgODiYxMZFmzZrh4OAAJPfhScuDBw8QQqT5aAuSHwcNGjSIKlWqaPpVhISEAGBlZaWV1srKigcPHqR941LJ28vLix49elCmTBnu37+fZlpbW9sPHv9UCQkJzJ8/X1O56NOnD7///nuqac3NzTE1NUVHRwdra2sAoqOjmTdvHsuXL6devXpAcoXEz8+PJUuWMHToUM35v//+O7Vr19bK083NjVGjRgEwYsQIJk2aRO7cuenWrRuApoJ8+fJlzRf/u1xdXSlRogRr165l9OjRAKxZs4ayZcvi5OQEwB9//IGvry/NmjUDoECBAly/fp0FCxZoVZAGDBigSfO2vAqFQlPW1Ozfv58zZ85w48YNzfUKFiyoOW5ra8uQIUM0r/v27cuePXvYuHHjR1WQ1Go1S5cuxdTUlKJFi1K9enVu3brFrl27UCqVODs7M3nyZA4fPqy5T+92kC5QoAB//PEHPXv21FSQHj58SPPmzTV/I+/G/fDhQ9zd3TU/Ht59BP2+1D4Xn2rBggWUKFGCfv36sXnzZry9vSlbtuxn5Sl9GxYu+VENNebWlP1YG+bDKsyak6NXUvGPjh+Vj1e9Ufz7905e6ipZs28CPzec8JUi/jJkBekb0NXXp9+KfzLt2h+jevXqzJs3j5iYGBYvXszt27fp27cvkLzA39OnTzWVnLcqV67MpUuXtPaVKFFC8/9vKxvvVmisrKwIDQ3VOsfNzU2rJaFixYpERUXx6NEj3NzcqFmzJsWLF8fT05M6derQokULcubMmWo53v4iNvhA61mfPn24fPkyx48fT3FMoVBovRZCpNj3IbNnzyYiIoIRI0akm9bQ0JCYmJgM551RRkZGmsoRQN68eVPc8w8JDAwkISFB6/1WqVSUK1eOGzduaKVNraXu3c+Ajo4OuXLlSvEZAD4YU7t27Vi6dCmjR49GCMG6des0lYPnz5/z6NEjunTpoql0ASQmJmJubp5ufOkJCAggX758msrR+5KSkpg0aRIbNmzgyZMnxMXFERcX99EtIvnz58fU1FTz2srKCh0dHZRKpda+d+/ToUOHmDBhAtevXyciIoLExERiY2OJjo7G2NiYfv360bNnT/bt20etWrVo3ry55v3o2bMnzZs358KFC9SpU4cmTZpQqVKlj4r5U+TMmZMlS5bg6elJpUqV+PXXX7/6NaUvx9Q2D66/NyRg9BbyGeXHLqEAJ4Yuo/KfP2c4j5ymZpQRBdnLffYG7+Znvu8Kkuyk/Q0oFApUBgaZsn3MlzqAsbExjo6OlChRglmzZhEXF8fYsWNTlOddqVUe3n0s9/bY+/vUGVy8UKFQoKOjg5+fH7t376Zo0aLMnj0bZ2dngoKCUj0nd+7cAGmOwOvbty/btm3j0KFD5MuXT7P/7a/kty1Jb4WGhqZoVfqQgwcPcurUKfT19dHV1cXR0RFI/qJ+t2UD4NWrV+TJkyfDeb/94nz38WJqHY/fvd+QfB/TeiSZmrdpM/J+p1YpSO36qX0uPvQ5aNu2Lbdv3+bChQv4+/vz6NEjTevl2/MWLVpEQECAZrt69SqnTp1KN770GBoafvC4r68v06dPZ9iwYRw8eJCAgAA8PT2Jj4//qOukd5/e7ntb3gcPHlC/fn1cXV3ZtGkT58+f17Tevv0cdO3alXv37tGhQweuXLlCmTJlmD17NgD16tXjwYMHDBgwgKdPn1KzZk2tlrBPkdpnK7XP5NGjR9HR0eHp06eZNr2F9OkMzE0oM6UVD2OS129z0HHk+Eeu39as/HCUQnBNP5EL13Z/rVC/CFlBkj7I29ubqVOn8vTpU8zMzLCxsUnR4uLv70+RIkU++1qXLl3S6gtx6tQpTExMNBUYhUJB5cqVGTt2LBcvXkRPT48tW7akmlehQoUwMzPj+vXrWvuFEPTp04fNmzdz8OBBChQooHW8QIECWFtb4+f3/6M14uPjOXLkyEf9yp41axaXLl3SfGnv2rULgA0bNjB+/HittFevXsXd3T3Deb+tTAUHB2v2fY05ixwdHdHT09N6vxMSEjh37twXeb8zIl++fFStWpU1a9awZs0aatWqpamoWllZYWtry71793B0dNTa3n9f36enp5fuyMESJUrw+PFjbt++nerxY8eO0bhxY9q3b4+bmxsFCxbkzp07n1bQj3Du3DkSExPx9fWlQoUKODk58fTp0xTp7Ozs6NGjB5s3b2bw4MEsWrRIcyxPnjx4eXmxevVqZsyYwcKFCz8rpjx58mh9Hu/cuZOiVdTf358pU6awfft2zMzMNC3TUtaia6BHuWkduB+b/FnP/7/12xJjM/bDoFLxKpSITf7xsebU9z0nknzEJn1QtWrVKFasGBMmTGDOnDkMHToUb29vChUqRMmSJVm2bBkBAQGpdvz9WPHx8XTp0oVRo0bx4MEDvL296dOnD0qlktOnT3PgwAHq1KmDpaUlp0+f5vnz52l+USuVSmrVqsXx48e1JkPs3bs3a9eu5d9//8XU1FTTUmRubo6hoSEKhYIBAwYwYcIEChcuTOHChZkwYQJGRka0bdtWk09ISAghISHcvZv8S+rKlSuYmppib2+PhYUF9vb2WvG87SBbqFAhrRar+/fv8+TJE2rVqpXh++To6IidnR0+Pj6MGzeOO3fu4Ovrm+HzM8rY2JiePXsydOhQTZmmTJlCTEwMXbp0+eLXS0u7du3w8fEhPj4+xZxRPj4+9OvXDzMzM+rVq0dcXBznzp0jLCyMQYMGpZln/vz5iYqK4sCBA5pHu+93FPfw8KBq1ao0b96cadOm4ejoyM2bN1EoFNStWxdHR0c2bdqEv78/OXPmZNq0aYSEhHz1ymOhQoVITExk9uzZNGzYkBMnTjB//nytNAMGDKBevXo4OTkRFhbGwYMHNXGNGTOG0qVLU6xYMeLi4tixY8dnx1yjRg3mzJlDhQoVUKvVDB8+XKsVLDIykg4dOtC3b1/q1auHvb09ZcqUoUGDBvz000+fdW3p29PV1aXKjM6cGLoUe6Uj9kaFOD9sA25/NMXAPP2O11VtmhIQtg5/xRMiI0MxNbX8BlF/PNmCJKVr0KBBLFq0iEePHtGvXz8GDx7M4MGDKV68OHv27GHbtm1aI9g+Vc2aNSlcuDBVq1alZcuWNGzYEB8fHwDMzMw4evQo9evXx8nJiVGjRuHr66vpPJya7t27s379eq1HOPPmzSM8PJxq1aqRN29ezbZhwwZNmmHDhjFgwAB69epFmTJlePLkCfv27dPqJzJ//nzc3d01fV+qVq2Ku7s727Zt+6gyr1u3jjp16mg6nkPyl/6HOs6qVCrWrVvHzZs3cXNzY/LkyYwbN+6jrptRkyZNonnz5nTo0IFSpUpx9+5d9u7dm2bfr6/hp59+4uXLl8TExGhVdiH5UdLixYtZvnw5xYsXx8PDg+XLl6fbglSpUiV69OhBq1atyJMnD1OmTEk13aZNmyhbtixt2rShaNGiDBs2TNPyNHr0aEqVKoWnpyfVqlXD2to6RXxfQ8mSJZk2bRqTJ0/G1dWVNWvWMHHiRK00SUlJ9O7dmyJFilC3bl2cnZ01Hbj19PQYMWIEJUqUoGrVqujo6LB+/frPisnX1xc7OzuqVq1K27ZtGTJkiFaFs3///hgbGzNhQnKfk2LFijF58mR69OjBkydPPuvaUuap/GdnHuvdRy2SsDXKz7Ux24l88jzd89rXHUzeBEGUjpJle8emmz6zKMTHdEqQNCIiIjA3Nyc8PBwzM7PMDifL8/Ly4vXr12zduvWL5SmEoEKFCgwYMIA2bdp8sXy/lLi4OAoXLsy6deu0OkJ7eXkBpBjlJ0mS9D06O2k9eV5ZoqtU8SL2GfY9ymDhkv+D54xa1op/ldcpFK9ga7fL3ybQ/8no97dsQZKyLYVCwcKFC7/bmZ0fPHjAyJEjU4wKPHLkCH/88UcmRSVJkvRxyv7amvD8kcQnxZLbwIqnCwN46n/1g+e0qz4aPbUgUE9w4PTqbxTpx5EVJClbc3Nzo0OHDpkdRqqcnJxSnXgyKCgIOzu7TIhIkiTp07j1akxcSQVvEqPJoZeLiE33Cdp9Os30RfK74h6f3Hqz6fLnDRL4WmQFSfouLF++/Is+XpMkSZK+rSLtaqFTIwdRCeGYqMxJPBDGzbUH0kxfu1DyRJNndF8R8jz1KVsyk6wgSZIkSZL0RRSsXwGz5vl5Hf8SQ11j9C6quTQ39cErLap1I388xCkVLPPz/saRpk9WkCRJkiRJ+mJsKrli09WNl7HP0NMxwPy+Cecmb0iRTkdXhwqG5QA4GnMBdTpzk31rsoIkSZIkSdIXZVG0AAUH/8CzN0/QVaqwfGXFyTErU6Tz8hyLkVrNY5WCrYfnZEKkaZMVJEmSJEmSvjhTOyuK+dTjScx9lAod8sXl58SwZVppbPPko2xC8kSROwLXZkaYaZIVJEmSJEmSvgqDnOaUntKKhzGBKBQKHJQp129rVCJ52ZmLetHceXAxs0JNQVaQJEmSJEn6apLXb2uvtX7b6UGrNOu31S7fFOc4HRIVClYe+n7mgJMVJClbGz16NN27d8/sMFJ15coV8uXL90VWNb9//z4KheKrLFr7LS1fvpwcOXJkdhhfnI+PDyVLlvxi+WWX+7R161YcHR3R0dFhwIAB2aZcUkpv1297kJRcSXIwcuT8sA3EhkehUCj4IUcNAI4n3SI+/s2HsvpmZAVJ0vDy8kKhUKBQKNDV1cXe3p6ePXsSFhaW2aF9kmfPnjFz5kx+++03zb6JEydStmxZTE1NsbS0pEmTJty6dUvrPCEEPj4+2NjYYGhoSLVq1bh27ZpWmoULF1KtWjXMzMxQKBS8fv06zTji4uIoWbJkigpM8eLFKVeuXIoFWP/LWrVqxe3btzM7jM+iUChSzOk1ZMgQDhxIez6Y/6pffvmFFi1a8OjRIzl7/H9E5T8780j3HmqhxtYoP1fHbCc6+CVe9caQI0nNC10lq/dNyuwwAVlBkt5Tt25dgoODuX//PosXL2b79u306tUrs8P6JEuWLKFixYpaC78eOXKE3r17c+rUKfz8/EhMTKROnTparThTpkxh2rRpzJkzh7Nnz2JtbU3t2rWJjIzUpImJiaFu3bpala+0DBs2DBsbm1SP/fzzz8ybN0+zAOr3LCEh4atfw9DQEEvL73Nl7/TEx8eneczExIRcuXJ9w2i+f1FRUYSGhuLp6YmNjY3WYtBS9lZxXCdCzJ+SqE7A2jAfdyYfJOnJa8qrkxftPvB0eyZH+D9C+iTh4eECEOHh4emmVavVIikuMVM2tVqd4TJ16tRJNG7cWGvfoEGDhIWFheZ1UlKSGDt2rLC1tRV6enrCzc1N7N69W3M8KChIAGLDhg2iSpUqwsDAQJQpU0bcunVLnDlzRpQuXVoYGxsLT09PERoamuLaPj4+Ik+ePMLU1FR0795dxMXFadJs3LhRuLq6CgMDA2FhYSFq1qwpoqKi0ixP8eLFxZw5cz5Y5tDQUAGII0eOCCGS3ytra2sxadIkTZrY2Fhhbm4u5s+fn+L8Q4cOCUCEhYWlmv+uXbuEi4uLuHbtmgDExYsXtY7HxcUJfX19ceDAgQ/G+b7Tp0+LkiVLCn19fVG6dGmxefPmFPlfu3ZN1KtXTxgbGwtLS0vRvn178fz5c83xpKQkMWnSJFGoUCGhp6cn7OzsxLhx44QQ2u+jh4eH0NfXF0uXLhVCCLF06VLh4uIi9PX1hbOzs/jrr7+0Yhs2bJgoXLiwMDQ0FAUKFBCjRo0S8fHxmuMBAQGiWrVqwsTERJiamopSpUqJs2fPCiGEWLZsmTA3N9ek9fb2Fm5ubmLlypXCwcFBmJmZiVatWomIiAhNmoiICNG2bVthZGQkrK2txbRp04SHh4fo379/qvfu5s2bAhA3btzQ2u/r6yscHBw0fzPp3T8PDw/Ru3dvMXDgQJErVy5RtWpV4eDgIADN5uDgoFWOdy1ZskQULVpU6OnpCWtra9G7d2+tWFxdXYWRkZHIly+f6Nmzp4iMjNQcf/8+ve9T/w7PnDkjatWqJXLlyiXMzMxE1apVxfnz57Xy9vb2FnZ2dkJPT0/kzZtX9O3bV3Psr7/+Eo6OjkJfX19YWlqK5s2bpxrf27+bd7dDhw6lKFdq/yb1799feHh4CCGS/36trKzE+PHjNcdPnTolVCqV2Lt3b5r3R/o+XJy9WQQO9ROPhh8VVwZuFkc3/i2KLysmXJe7irNX93+162b0+1v3m9fI/oNEgpqnY/wz5do2v1dCoafzSefeu3ePPXv2oFKpNPtmzpyJr68vCxYswN3dnaVLl9KoUSOuXbtG4cKFNem8vb2ZMWMG9vb2dO7cmTZt2mBmZsbMmTMxMjKiZcuWjBkzhnnz5mnOOXDgAAYGBhw6dIj79+/z888/kzt3bsaPH09wcDBt2rRhypQpNG3alMjISI4dO4YQItXYw8LCuHr1KmXKlPlgGcPDwwGwsLAAktdBCwkJoU6dOpo0+vr6eHh44O/vn+raaWl59uwZ3bp1Y+vWrRgZGaWaRk9PDzc3N44dO0aNGjUylG90dDQNGjSgRo0arF69mqCgIPr376+VJjg4GA8PD7p168a0adN48+YNw4cPp2XLlhw8eBCAESNGsGjRIqZPn06VKlUIDg7m5s2bWvkMHz4cX19fli1bhr6+PosWLcLb25s5c+bg7u7OxYsX6datG8bGxnTq1AkAU1NTli9fjo2NDVeuXKFbt26YmpoybNgwANq1a4e7uzvz5s1DR0eHgIAArc/Y+wIDA9m6dSs7duwgLCyMli1bMmnSJMaPHw/AoEGDOHHiBNu2bcPKyooxY8Zw4cKFNPv8ODs7U7p0adasWaP1WGft2rW0bdsWhUKRofsHsGLFCnr27MmJEycQQpArVy4sLS1ZtmwZdevWRUcn9b+9efPmMWjQICZNmkS9evUIDw/nxIkTmuNKpZJZs2aRP39+goKC6NWrF8OGDWPu3Llp3qfUfOzfYWRkJJ06dWLWrFkA+Pr6Ur9+fe7cuYOpqSn//PMP06dPZ/369RQrVoyQkBAuXboEwLlz5+jXrx+rVq2iUqVKvHr1imPHjqUaV6VKlbh16xbOzs5s2rSJSpUqYWFhwf379z+qfHny5GHp0qU0adKEOnXq4OLiQvv27enVq5fW37D0fSrZpyk3Vu0j6XI0OfRyo3PyNc2Nnfmn0G3Wn/qTMsVqZm6AX62K9gmOHDkiGjRoIPLmzSsAsWXLFq3jarVaeHt7i7x58woDAwPh4eEhrl69qpUmNjZW9OnTR+TKlUsYGRmJhg0bikePHmmlefXqlWjfvr0wMzMTZmZmon379mm2AKTlY1qQkuISxaPhRzNlS4pLzHCZOnXqJHR0dISxsbEwMDDQ/LKbNm2aJo2NjY3WrzUhhChbtqzo1auXEOL/f7kuXrxYc3zdunUC0GolmThxonB2dta6toWFhYiOjtbsmzdvnjAxMRFJSUni/PnzAhD379/PUFkuXrwoAPHw4cM006jVatGwYUNRpUoVzb4TJ04IQDx58kQrbbdu3USdOnVS5JFWC5JarRZ169YVf/zxhxDi/+/L+y1IQgjRtGlT4eXllaFyCSHEggULUr1X7+Y/evToFPE+evRIAOLWrVsiIiJC6Ovri0WLFqV6jbfxzpgxQ2u/nZ2dWLt2rda+P/74Q1SsWDHNeKdMmSJKly6teW1qaiqWL1+eatrUWpCMjIy0WoyGDh0qypcvL4RIbj1SqVRi48aNmuOvX78WRkZGabYgCSHEtGnTRMGCBTWvb926JQBx7do1IUT690+I5BakkiVLpsg7tX+73m9BsrGxESNHjkwzvvf9/fffIleuXJrXGW1B+ti/w/clJiYKU1NTsX37diFEcsuWk5OTVovgW5s2bRJmZmZa79WHhIWFaVqO0ipXei1Ib/Xq1Us4OTmJdu3aCVdXV/HmzZsMxSB9H+5uPyFuDtohHg0/Km4N3iWGjGwrKi8pKsKjXn6V62XJFqTo6Gjc3Nz4+eefad68eYrjb/uGLF++HCcnJ8aNG0ft2rW5deuW5vn1gAED2L59O+vXrydXrlwMHjyYBg0acP78ec2vubZt2/L48WP27NkDQPfu3enQoQPbt3+d554KlRKb3yt9lbwzcu2PUb16debNm0dMTAyLFy/m9u3b9O2bPEdFREQET58+pXLlylrnVK5cWfMr8q0SJUpo/t/KygpI7pT87r7Q0FCtc9zc3LRaWipWrEhUVBSPHj3Czc2NmjVrUrx4cTw9PalTpw4tWrQgZ86cqZbjzZvkURAGBgZplrVPnz5cvnyZ48ePpzimUCi0XgshUuz7kNmzZxMREcGIESPSTWtoaEhMTEyG875x40aq9+pd58+f59ChQ5iYmKQ4PzAwkNevXxMXF0fNmh/+hfZuC9zz58959OgRXbp0oVu3bpr9iYmJmJuba17/888/zJgxg7t37xIVFUViYiJmZmaa44MGDaJr166sWrWKWrVq8dNPP1GoUKE0Y8ifP79W/5S8efNqPjv37t0jISGBcuXKaY6bm5vj7Oz8wXK1bt2aoUOHcurUKSpUqMCaNWsoWbIkRYsWBdK/f05OTinuT0aFhoby9OnTD977Q4cOMWHCBK5fv05ERASJiYnExsYSHR2NsbFxhq/1sX+HoaGhjBkzhoMHD/Ls2TOSkpKIiYnh4cOHAPz000/MmDGDggULUrduXerXr0/Dhg3R1dWldu3aODg4aI7VrVuXpk2bptl6+iVNnToVV1dX/v77b86dO/fBv3vp+1OoQSUe57hC+OZ7mOtZ0CPOC7ObG1m+63f6/TQj0+L6rjpp16tXj3HjxtGsWbMUx4QQzJgxg5EjR9KsWTNcXV1ZsWIFMTExrF2bPPtmeHg4S5YswdfXl1q1auHu7s7q1au5cuUK+/fvB5K/XPbs2cPixYupWLEiFStWZNGiRezYsSPFaKYvRaFQoNTTyZTtY77UAYyNjXF0dKREiRLMmjWLuLg4xo4dm6I870qt8vDuI5O3x97fp1arM3z/dHR08PPzY/fu3RQtWpTZs2fj7OxMUFDqK0Dnzp0bIM0ReH379mXbtm0cOnSIfPnyafZbW1sDEBISopU+NDRU8wWTEQcPHuTUqVPo6+ujq6uLo6MjkPyF+vZR1FuvXr0iT548Gc5bpPFY8V1qtZqGDRsSEBCgtd25c4eqVatiaGiYoWu9+2X89v1atGiRVp5Xr17l1KlTAJw6dYrWrVtTr149duzYwcWLFxk5cqRWB2YfHx+uXbvGjz/+yMGDBylatChbtmxJM4b3H7+9+9l5ey9S+0x+SN68ealevbrm345169bRvn17rbJ+6P6ldn8yKr17/+DBA+rXr4+rqyubNm3i/Pnz/PXXX8DHd5T/2L9DLy8vzp8/z4wZM/D39ycgIIBcuXJp3j87Oztu3brFX3/9haGhIb169aJq1aokJCRgamrKhQsXWLduHXnz5mXMmDG4ubl9cIRnepRKZYr3MrV7cO/ePZ4+fYparebBgweffD0p8+SrUhyrzq68jAtFX8eADrTGKOVv12/qu6ogfUh6fUMg+VdfQkKCVhobGxtcXV01aU6ePIm5uTnly5fXpKlQoQLm5uaaNKmJi4sjIiJCa/sv8Pb2ZurUqTx9+hQzMzNsbGxStLj4+/tTpEiRz77WpUuXNC0/kPxla2JioqnAKBQKKleuzNixY7l48SJ6enppfrEWKlQIMzMzrl+/rrVfCEGfPn3YvHkzBw8epECBAlrHCxQogLW1NX5+fpp98fHxHDlyhEqVMt4KOGvWLC5duqT5Yt21axcAGzZs0PSdeevq1au4u7tnOO+iRYumeq/eVapUKa5du0b+/PlxdHTU2oyNjSlcuDCGhoYfNfTcysoKW1tb7t27lyLPt/fxxIkTODg4MHLkSMqUKUPhwoVT/cJycnJi4MCB7Nu3j2bNmrFs2bIUaTKiUKFCqFQqzpw5o9kXERHBnTt30j23Xbt2bNiwgZMnTxIYGEjr1q01x9K7fx+iUqk+OCrR1NSU/Pnzp3nvz507R2JiIr6+vlSoUAEnJyeePn2abnm+hGPHjtGvXz/q169PsWLF0NfX58WLF1ppDA0NadSoEbNmzeLw4cOcPHmSK1euAMlz3dSqVYspU6Zw+fJl7t+/r9Vn62PlyZOH4OBgrX3vz/UVHx9Pu3btaNWqFePGjaNLly48e/bsk68pZZ7croUoOKiKZv222gZN2Dd8dqbFk2UqSG9/0b//K97KykpzLCQkBD09vRSPXd5Pk9owYktLyxStBu+aOHEi5ubmms3Ozu6zypNVVKtWjWLFijFhwgQAhg4dyuTJk9mwYQO3bt3i119/JSAgIEUn4U8RHx9Ply5duH79Ort378bb25s+ffqgVCo5ffo0EyZM4Ny5czx8+JDNmzfz/PnzNCtmSqWSWrVqpajM9e7dm9WrV7N27VpMTU0JCQkhJCREU9lQKBQMGDCACRMmsGXLFq5evYqXlxdGRka0bdtWk09ISAgBAQHcvXsXSJ70MSAggFevXgFgb2+Pq6urZnv7SKZQoUJaLVb379/nyZMn1KpVK8P3qW3btiiVSs292rVrF1OnTk1RzlevXtGmTRvOnDnDvXv32LdvH507dyYpKQkDAwOGDx/OsGHDWLlyJYGBgZw6dYolS5Z88No+Pj5MnDiRmTNncvv2ba5cucKyZcuYNm0aAI6Ojjx8+JD169cTGBjIrFmztCqxb968oU+fPhw+fJgHDx5w4sQJzp49+8kVbFNTUzp16sTQoUM5dOgQ165do3PnziiVynRbT5s1a0ZERAQ9e/akevXq2NraZvj+fcjbyk9ISEiaLZg+Pj74+voya9Ys7ty5w4ULF5g9O/mLoFChQiQmJjJ79mzu3bvHqlWrmD9//kfemU/j6OjIqlWruHHjBqdPn6Zdu3ZaLV7Lly9nyZIlXL16VROboaEhDg4O7Nixg1mzZhEQEMCDBw9YuXIlarU63cedH1KjRg3OnTvHypUruXPnDt7e3ly9elUrzciRIwkPD2fWrFkMGzaMIkWK0KVLl0++ppS53q7f9jg6iCR1Aq+NX2VeMF+lB9QXwHsdHd92nn369KlWuq5duwpPT08hhBBr1qwRenp6KfKqVauW+OWXX4QQQowfP144OTmlSOPo6CgmTpyYZjyxsbEiPDxcs73tsJmRTtpZRWodIoX4//v68OFDrWH+KpUqzWH+73ZGTq0jc1qdMceMGSNy5colTExMRNeuXUVsbKwQQojr168LT09PkSdPHqGvry+cnJzE7NmzP1iePXv2CFtbW5GUlKTZx3tDi99uy5Yt06R5OxjA2tpa6Ovri6pVq4orV65o5e3t7Z1uPu9Kq5P2hAkTNJ/fd/N+Ozw8LSdPnhRubm5CT09PlCxZUmzatClF/rdv3xZNmzYVOXLkEIaGhsLFxUUMGDBAM4w9KSlJjBs3Tjg4OAiVSiXs7e3FhAkTPhivEMmfh5IlSwo9PT2RM2dOUbVqVbF582bN8aFDh2rew1atWonp06dr3uu4uDjRunVrzTBxGxsb0adPH02n2rSG+b9r+vTpWvcntWH+5cqVE7/++usH76EQQvz0008C0Exh8K707l9aUwls27ZNODo6Cl1d3Q8O858/f75wdnYWKpUqxXD5adOmibx58wpDQ0Ph6ekpVq5cqfU3lNFO2h/7d3jhwgVRpkwZoa+vLwoXLiw2btwoHBwcxPTp04UQQmzZskWUL19emJmZCWNjY1GhQgWxf3/ycOxjx44JDw8PkTNnTmFoaChKlCghNmzYkGaMGemkLYQQY8aMEVZWVsLc3FwMHDhQ9OnTR9NJ+9ChQ0JXV1ccO3ZMk/7BgwfC3NxczJ07N81rS9+/6zfOiqt/+32VvDPaSTvLVJACAwMFIC5cuKCVrlGjRqJjx45CCCEOHDggAPHq1SutNCVKlBBjxowRQiTPPZLaPyzm5uap/iOZlo8ZxSalL63K2edQq9WiXLlyKUZdfS9iY2OFnZ2dOH78uNb+Tp06iU6dOmVOUNlAVFSUMDc31xrBJUmS9FZGv7+zzCO2jPQNKV26NCqVSitNcHAwV69e1aSpWLEi4eHhWn0WTp8+TXh4+Ef1MZG+fwqFgoULF2qtGv09efDgASNHjkwxKvDIkSNy2YWPcPHiRdatW0dgYCAXLlygXbt2ADRu3DiTI5MkKSv7rob5R0VFafp0QHLH7ICAACwsLLC3t9f0DSlcuDCFCxdmwoQJWn1DzM3N6dKlC4MHDyZXrlxYWFgwZMgQihcvrunjUaRIEerWrUu3bt1YsGABkDzMv0GDBp/1rFz6Prm5ueHm5pbZYaTKyclJ0zfpXWmNzJPSNnXqVG7duoWenh6lS5fm2LFjmpGMkiRJn0IhRAbGDH8jhw8fpnr16in2d+rUieXLlyOEYOzYsSxYsICwsDDKly/PX3/9haurqyZtbGwsQ4cOZe3atbx584aaNWsyd+5crU7Vr169ol+/fmzbtg2ARo0aMWfOnI9aRToiIgJzc3PCw8O15niRJEmSJOn7ldHv7++qgpSVyAqSJEmSJGU9Gf3+zjJ9kCRJkiRJkr4VWUGSJEmSJEl6j6wgSZIkSZIkvUdWkCRJkiRJkt4jK0iSJEmSJEnvkRUkSZIkSZKk98gKkiRJkiRJ0ntkBUmSJEmSJOk9soIkSZIkSZL0nu9qLbas5O0E5BEREZkciSRJkiRJGfX2ezu9hURkBekTRUZGAmit8SZJkiRJUtYQGRmJubl5msflWmyfSK1W8/TpU4QQ2Nvb8+jRo2y9JltERAR2dnbZvpwgy5pdybJmT7Ks2dPXLKsQgsjISGxsbFAq0+5pJFuQPpFSqSRfvnyapjozM7Ns/4GF/045QZY1u5JlzZ5kWbOnr1XWD7UcvSU7aUuSJEmSJL1HVpAkSZIkSZLeIytIn0lfXx9vb2/09fUzO5Sv6r9STpBlza5kWbMnWdbs6Xsoq+ykLUmSJEmS9B7ZgiRJkiRJkvQeWUGSJEmSJEl6j6wgSZIkSZIkvUdWkCRJkiRJkt4jK0jvmThxImXLlsXU1BRLS0uaNGnCrVu3NMcTEhIYPnw4xYsXx9jYGBsbGzp27MjTp0+18omLi6Nv377kzp0bY2NjGjVqxOPHj791cT4ovbIC+Pj44OLigrGxMTlz5qRWrVqcPn1aK012Keu7fvnlFxQKBTNmzNDan13K6uXlhUKh0NoqVKiglSa7lBXgxo0bNGrUCHNzc0xNTalQoQIPHz7UHM8uZX3/PX27/fnnn5o02aWsUVFR9OnTh3z58mFoaEiRIkWYN2+eVprsUtZnz57h5eWFjY0NRkZG1K1blzt37milyQplnTdvHiVKlNBM/lixYkV2796tOS6EwMfHBxsbGwwNDalWrRrXrl3TyuObllNIWjw9PcWyZcvE1atXRUBAgPjxxx+Fvb29iIqKEkII8fr1a1GrVi2xYcMGcfPmTXHy5ElRvnx5Ubp0aa18evToIWxtbYWfn5+4cOGCqF69unBzcxOJiYmZUaxUpVdWIYRYs2aN8PPzE4GBgeLq1auiS5cuwszMTISGhmrSZJeyvrVlyxbh5uYmbGxsxPTp07WOZZeydurUSdStW1cEBwdrtpcvX2rlk13KevfuXWFhYSGGDh0qLly4IAIDA8WOHTvEs2fPNGmyS1nffT+Dg4PF0qVLhUKhEIGBgZo02aWsXbt2FYUKFRKHDh0SQUFBYsGCBUJHR0ds3bpVkyY7lFWtVosKFSqIH374QZw5c0bcvHlTdO/ePcX9yApl3bZtm9i5c6e4deuWuHXrlvjtt9+ESqUSV69eFUIIMWnSJGFqaio2bdokrly5Ilq1aiXy5s0rIiIiNHl8y3LKClI6QkNDBSCOHDmSZpozZ84IQDx48EAIkVyJUqlUYv369Zo0T548EUqlUuzZs+erx/ypMlLW8PBwAYj9+/cLIbJfWR8/fixsbW3F1atXhYODg1YFKTuVtVOnTqJx48ZpnpOdytqqVSvRvn37NM/JTmV9X+PGjUWNGjU0r7NTWYsVKyZ+//13rXSlSpUSo0aNEkJkn7LeunVLAJpKhBBCJCYmCgsLC7Fo0SIhRNYtqxBC5MyZUyxevFio1WphbW0tJk2apDkWGxsrzM3Nxfz584UQ376c8hFbOsLDwwGwsLD4YBqFQkGOHDkAOH/+PAkJCdSpU0eTxsbGBldXV/z9/b9qvJ8jvbLGx8ezcOFCzM3NcXNzA7JXWdVqNR06dGDo0KEUK1YsxTnZqawAhw8fxtLSEicnJ7p160ZoaKjmWHYpq1qtZufOnTg5OeHp6YmlpSXly5dn69atmnOyS1nf9+zZM3bu3EmXLl00+7JTWatUqcK2bdt48uQJQggOHTrE7du38fT0BLJPWePi4gAwMDDQpNHR0UFPT4/jx48DWbOsSUlJrF+/nujoaCpWrEhQUBAhISFaZdDX18fDw0NThm9dTllB+gAhBIMGDaJKlSq4urqmmiY2NpZff/2Vtm3bahbUCwkJQU9Pj5w5c2qltbKyIiQk5KvH/Sk+VNYdO3ZgYmKCgYEB06dPx8/Pj9y5cwPZq6yTJ09GV1eXfv36pXpediprvXr1WLNmDQcPHsTX15ezZ89So0YNzT/G2aWsoaGhREVFMWnSJOrWrcu+ffto2rQpzZo148iRI0D2Kev7VqxYgampKc2aNdPsy05lnTVrFkWLFiVfvnzo6elRt25d5s6dS5UqVYDsU1YXFxccHBwYMWIEYWFhxMfHM2nSJEJCQggODgayVlmvXLmCiYkJ+vr69OjRgy1btlC0aFFNnFZWVlrp3y3Dty6n7hfPMRvp06cPly9f1tTS35eQkEDr1q1Rq9XMnTs33fyEECgUii8d5hfxobJWr16dgIAAXrx4waJFi2jZsiWnT5/G0tIyzfyyWlnPnz/PzJkzuXDhwkfHndXKCtCqVSvN/7u6ulKmTBkcHBzYuXOn1hfq+7JaWdVqNQCNGzdm4MCBAJQsWRJ/f3/mz5+Ph4dHmvlltbK+b+nSpbRr106r5SEtWbGss2bN4tSpU2zbtg0HBweOHj1Kr169yJs3L7Vq1Uozv6xWVpVKxaZNm+jSpQsWFhbo6OhQq1Yt6tWrl25+32NZnZ2dCQgI4PXr12zatIlOnTppfqwAKeLNSBm+VjllC1Ia+vbty7Zt2zh06BD58uVLcTwhIYGWLVsSFBSEn5+fpvUIwNramvj4eMLCwrTOCQ0NTVE7/h6kV1ZjY2McHR2pUKECS5YsQVdXlyVLlgDZp6zHjh0jNDQUe3t7dHV13BJUPAAABzJJREFU0dXV5cGDBwwePJj8+fMD2aesqcmbNy8ODg6akTHZpay5c+dGV1eXokWLaqUvUqSIZhRbdinru44dO8atW7fo2rWr1v7sUtY3b97w22+/MW3aNBo2bEiJEiXo06cPrVq1YurUqUD2KStA6dKlNZWK4OBg9uzZw8uXLylQoACQtcqqp6eHo6MjZcqUYeLEibi5uTFz5kysra0BUrQEvVuGb17OL96rKYtTq9Wid+/ewsbGRty+fTvVNPHx8aJJkyaiWLFiWqO53nrbkWzDhg2afU+fPv3uOsxlpKypKVSokPD29hZCZJ+yvnjxQly5ckVrs7GxEcOHDxc3b94UQmSfsqbmxYsXQl9fX6xYsUIIkb3KWrFixRSdtJs0aSLatGkjhMheZX2rU6dOKUbWCpF9yvp2sMiuXbu09nfv3l3Url1bCJF9ypqa27dvC6VSKfbu3SuEyDplTU2NGjVEp06dNJ20J0+erDkWFxeXaiftb1VOWUF6T8+ePYW5ubk4fPiw1nDZmJgYIYQQCQkJolGjRiJfvnwiICBAK01cXJwmnx49eoh8+fKJ/fv3iwsXLogaNWp8d0Mu0ytrVFSUGDFihDh58qS4f/++OH/+vOjSpYvQ19fXGlGRHcqamvdHsQmRPcoaGRkpBg8eLPz9/UVQUJA4dOiQqFixorC1tU0xnDarl1UIITZv3ixUKpVYuHChuHPnjpg9e7bQ0dERx44d06TJLmUVIrnyYGRkJObNm5dqPtmlrB4eHqJYsWLi0KFD4t69e2LZsmXCwMBAzJ07V5Mmu5T177//FocOHRKBgYFi69atwsHBQTRr1kwrn6xQ1hEjRoijR4+KoKAgcfnyZfHbb78JpVIp9u3bJ4RIHuZvbm4uNm/eLK5cuSLatGmT6jD/b1VOWUF6D5DqtmzZMiGEEEFBQWmmOXTokCafN2/eiD59+ggLCwthaGgoGjRoIB4+fJg5hUpDemV98+aNaNq0qbCxsRF6enoib968olGjRuLMmTNa+WSHsqYmtQpSdihrTEyMqFOnjsiTJ49QqVTC3t5edOrUKUU5skNZ31qyZIlwdHQUBgYGws3t/9q5f5C2ujiM448l2mQ2hpCkJpuTvrQGQRCFiqkIiqBblyC6OUopInaQIggKYjsI7VgLpVACYkQQjG6CydC0i0tAJCJE0xaqDu15h5eG5hr/9LVJ2vD9wF3u+Z3L7wyB5557b/7J+68cYyprrYuLi8bhcJhsNlvwOpWy1nQ6bcLhsPF4PMZut5uGhgYzOztrvn//nquplLXOz88bn8+X+71OTEzk3ZAb83esdWhoyPj9flNTU2Pq6upMZ2dnLhwZ899u2pMnT4zb7Ta3b9827e3t5v3793nXKOU6q4wx5jc+sQMAAPjr8ZI2AACABQEJAADAgoAEAABgQUACAACwICABAABYEJAAAAAsCEgAAAAWBCQAAAALAhIAAIAFAQkAAMCCgAQAP8lkMnK5XEqlUr80b3BwUHNzc8VpCkDJEZAAVKTV1VVVVVVdekSj0XPzpqen1dvbq0AgkDsXDofV39+fV/f27VvZ7XbNzMxIkiYnJ/X06VN9/vy5mMsCUCIEJAAVqaOjQ+l0OnfU1tZqfHw871xXV1fenJOTE718+VLDw8OXXvvFixd6+PChnj17pkePHkmSmpqaFAgE9OrVq6KtCUDpEJAAVCSHwyG32y23261v374pk8mora0td87tdstms+XNiUajstlsam1tvfC6MzMzGh0d1dLS0rkg1dfXp9evXxdlPQBKi4AEoOIlEglJUnNz86V1m5ubCgaDF44/fvxYU1NTWl5e1sDAwLnxlpYWbW9v6+zs7GYNAyg729UlAPB3i8fj8nq9crlcl9alUil5PJ6CY9FoVJFIROvr67p//37BGq/Xq7OzMx0cHMjv99+4bwDlww4SgIoXj8d17969K+tOTk5kt9sLjv14x2hyclJfvnwpWONwOCRJX79+/f/NAvgjEJAAVLx4PH7l4zVJcjqdOj4+Ljjm9XoVi8WUTqfV3d1dMCQdHR1Jkurq6m7WMICyIyABqGiZTEZ7e3vX2kG6e/euPn78eOF4fX29YrGYDg8PFQqFzn3Sn0wm5fP55HQ6b9w3gPIiIAGoaDs7O5J0rYD04MEDffjw4cJdJEny+Xza2NhQJpNRKBTSp0+fcmNbW1sKhUI3bxpA2RGQAFS0RCIhl8slr9d7ZW1jY6OCwaDevHlzad2Px23ZbFZdXV3KZrM6PT3Vu3fvNDIy8rtaB1BGVcYYU+4mAOBPsbKyorGxMSWTSd26df17yOfPnysSiWhtba2I3QEoFT7zB4Cf9PT0aHd3V/v7+7pz586151VXV2thYaGInQEoJXaQAAAALHgHCQAAwIKABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFgQkAAAACwISAACABQEJAADA4l8/ffP8JwBpXgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 162, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ax.plot(r14v,1e-2*pa,label='Romps (2014), decreasing vertical mass flux')\n", + "ax.legend(frameon=False)\n", + "fig" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "42564020-813e-4422-a0da-664f55136992", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:g]", + "language": "python", + "name": "conda-env-g-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}