-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmobilenet_v3.py
237 lines (194 loc) · 9.91 KB
/
mobilenet_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
# Modifications copyright (c) 2020 Computing Systems Group.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import numpy as np
import copy
import functools
import os
import sys
import cv2
import tensorflow as tf
from tensorflow.contrib import slim
import conv_blocks
from tensorpack import *
from tensorpack.dataflow import imgaug
from tensorpack.tfutils import argscope
from tensorpack.utils.gpu import get_num_gpu
sys.path.append('../..')
from mpusim_conv2d.mpusim_conv2d_gradient import *
from mpusim_conv2d.mpusim_conv2d import *
from mpusim_separable_conv2d.mpusim_separable_convolution2d import *
from mpusim_fc.mpusim_mat_mul_gradient import *
from mpusim_fc.mpusim_fully_connected import *
from models.imagenet_utils import ImageNetModel, get_imagenet_dataflow
# Disable parallel op execution to ensure that
# the MPU log outputs have the same order as
# the operations of the model
session_conf = tf.ConfigProto(
intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
sess = tf.Session(config=session_conf)
def hard_swish(x):
with tf.compat.v1.name_scope('hard_swish'):
return x*tf.nn.relu6(x + np.float32(3))*np.float32(1./6.)
def reduce_to_1x1(input_tensor, default_size=7, **kwargs):
h, w = input_tensor.shape.as_list()[1:3]
if h is not None and w == h:
k = [h, h]
else:
k = [default_size, default_size]
return slim.avg_pool2d(input_tensor, kernel_size=k, **kwargs)
def mbv3_op(input_tensor, ef, n, k, s=1, act=tf.nn.relu, se=None, **kwargs):
return conv_blocks.expanded_conv(input_tensor,
expansion_size=conv_blocks.expand_input_by_factor(ef),
kernel_size=(k, k),
stride=s,
num_outputs=n,
inner_activation_fn=act,
expansion_transform=se,
**kwargs)
# Squeeze Excite with all parameters filled-in, we use hard-sigmoid
# for gating function and relu for inner activation function.
squeeze_excite = functools.partial(
conv_blocks.squeeze_excite, squeeze_factor=4,
inner_activation_fn=tf.nn.relu,
gating_fn=lambda x: tf.nn.relu6(x+3)*0.16667)
# Wrap squeeze excite op as expansion_transform that takes
# both expansion and input tensor.
_se4 = lambda expansion_tensor, input_tensor: squeeze_excite(expansion_tensor)
mbv3_op_se = functools.partial(mbv3_op, se=_se4)
class Model(ImageNetModel):
def __init__(self,
data_format='NHWC',
wd=5e-4,
learning_rate=0.1,
activations_datatype_size_byte=1,
weights_datatype_size_byte=1,
results_datatype_size_byte=4,
systolic_array_height=256,
systolic_array_width=256,
accumulator_array_height=4096,
mpusim_logdir=''):
super(Model, self).__init__(data_format, wd)
self.activations_datatype_size_byte=activations_datatype_size_byte
self.weights_datatype_size_byte=weights_datatype_size_byte
self.results_datatype_size_byte=results_datatype_size_byte
self.systolic_array_height=systolic_array_height
self.systolic_array_width=systolic_array_width
self.accumulator_array_height=accumulator_array_height
self.mpusim_logdir=mpusim_logdir
def get_logits(self, image):
constant_init = tf.constant_initializer(1)
with argscope([mpusim_conv2d,
mpusim_separable_convolution2d],
data_format=self.data_format,
activations_datatype_size_byte=self.activations_datatype_size_byte,
weights_datatype_size_byte=self.weights_datatype_size_byte,
results_datatype_size_byte=self.results_datatype_size_byte,
systolic_array_height=self.systolic_array_height,
systolic_array_width=self.systolic_array_width,
activation_fifo_depth=8,
accumulator_array_height=self.accumulator_array_height,
log_file_output_dir=self.mpusim_logdir,
model_name='mobilenet_v3_sys_arr_h_{}_sys_arr_w_{}'.format(self.systolic_array_height,
self.systolic_array_width)), \
argscope([mpusim_conv2d],
activation=tf.nn.relu,
kernel_initializer=constant_init):
l = mpusim_conv2d('Conv', image, 16,
3, strides=(2, 2), activation=hard_swish)
l = mbv3_op_se(l, ef=1, n=16, k=3, s=2)
l = mbv3_op(l, ef=72./16, n=24, k=3, s=2)
l = mbv3_op(l, ef=(88./24), n=24, k=3, s=1)
l = mbv3_op_se(l, ef=4, n=40, k=5, s=2, act=hard_swish)
l = mbv3_op_se(l, ef=6, n=40, k=5, s=1, act=hard_swish)
l = mbv3_op_se(l, ef=6, n=40, k=5, s=1, act=hard_swish)
l = mbv3_op_se(l, ef=3, n=48, k=5, s=1, act=hard_swish)
l = mbv3_op_se(l, ef=3, n=48, k=5, s=1, act=hard_swish)
l = mbv3_op_se(l, ef=6, n=96, k=5, s=2, act=hard_swish)
l = mbv3_op_se(l, ef=6, n=96, k=5, s=1, act=hard_swish)
l = mbv3_op_se(l, ef=6, n=96, k=5, s=1, act=hard_swish)
l = mpusim_conv2d('Conv_1', l, 576, 1,
activation=hard_swish)
l = reduce_to_1x1(l, default_size=7, stride=1, padding='VALID')
l = mpusim_conv2d('Conv_2', l, 1024, 1,
activation=hard_swish)
l = mpusim_conv2d('Conv2d_1c_1x1', l, 1000, 1, activation=None,
bias_initializer=tf.compat.v1.zeros_initializer())
return tf.squeeze(l, [1, 2])
def get_config(activations_datatype_size_byte,
weights_datatype_size_byte,
results_datatype_size_byte,
systolic_array_height,
systolic_array_width,
accumulator_array_height,
mpusim_logdir):
nr_tower = max(get_num_gpu(), 1)
BASE_LR = 0.01 * (1. / 128.)
logger.info("Running on {} towers. Batch size per tower: {}".format(nr_tower, 1))
data = QueueInput(FakeData(
[[1, 224, 224, 3], [1]], 1, random=False, dtype='uint8'))
callbacks = []
return TrainConfig(
model=Model(
activations_datatype_size_byte=activations_datatype_size_byte,
weights_datatype_size_byte=weights_datatype_size_byte,
results_datatype_size_byte=results_datatype_size_byte,
systolic_array_height=systolic_array_height,
systolic_array_width=systolic_array_width,
accumulator_array_height=accumulator_array_height,
mpusim_logdir=mpusim_logdir),
data=data,
callbacks=callbacks,
steps_per_epoch=1,
max_epoch=1)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--activations-datatype-size-byte',
help='activations datatype size in byte',
type=int, default=1)
parser.add_argument('--weights-datatype-size-byte',
help='weights datatype size in byte',
type=int, default=1)
parser.add_argument('--results-datatype-size-byte',
help='results datatype size in byte',
type=int, default=4)
parser.add_argument('--systolic-array-height',
help='systolic array height',
type=int, default=256)
parser.add_argument('--systolic-array-width',
help='systolic array width',
type=int, default=256)
parser.add_argument('--accumulator-array-height',
help='accumulator array height',
type=int, default=4096)
parser.add_argument('--tensorpack-logdir-id', help='TensorPack training log directory id',
type=str, default='')
parser.add_argument('--mpusim-logdir', help='MPU simulator log directory',
type=str, default='.')
args = parser.parse_args()
logger.set_logger_dir(os.path.join('train_log', 'mobilenet_v3' + args.tensorpack_logdir_id))
config = get_config(args.activations_datatype_size_byte,
args.weights_datatype_size_byte,
args.results_datatype_size_byte,
args.systolic_array_height,
args.systolic_array_width,
args.accumulator_array_height,
args.mpusim_logdir)
launch_train_with_config(config, SimpleTrainer())