From 31abd57bdaa4e5763df24ad4dbd7c300b82588e0 Mon Sep 17 00:00:00 2001 From: UmakantKulkarni Date: Fri, 3 Dec 2021 02:46:54 -0500 Subject: [PATCH] Update plotOverleaf.py --- plotOverleaf.py | 131 ++++++++++++++++++++++++++++++++++-------------- 1 file changed, 92 insertions(+), 39 deletions(-) diff --git a/plotOverleaf.py b/plotOverleaf.py index 49bd5a5..3f38c9e 100644 --- a/plotOverleaf.py +++ b/plotOverleaf.py @@ -19,25 +19,39 @@ my_file_name = os.path.basename(__file__) path = Path("{}/{}".format(dir_path, my_file_name)).parent.parent -CREATE_COMPARISON_CSVS = 1 -FIGURE3 = 1 -FIGURE4 = 1 -FIGURE5 = 1 -FIGURE6 = 1 -FIGURE7 = 1 - -dict_map = {"Fully-Stateful": {"amfTimeTaken": [], "plotname": "Stateful", "amfDbReadTime": [], "amfDbWriteTime": [], "amfDbTotalTime": [], "valied_1000_runs": [i for i in range(1, 11)], "amfQueueLength": 0}, - "Fully-Procedural-Stateless": {"amfTimeTaken": [], "plotname": "Procedural Stateless", "amfDbReadTime": [], "amfDbWriteTime": [], "amfDbTotalTime": [], "valied_1000_runs": [], "amfQueueLength": 0}, - "Fully-Transactional-Stateless": {"amfTimeTaken": [], "plotname": "Transactional Stateless", "amfDbReadTime": [], "amfDbWriteTime": [], "amfDbTotalTime": [], "valied_1000_runs": [1, 3, 4, 6, 8], "amfQueueLength": 0}, - "Nonblocking-Api-Enabled": {"amfTimeTaken": [], "plotname": "Non-Blocking", "amfDbReadTime": [], "amfDbWriteTime": [], "amfDbTotalTime": [], "valied_1000_runs": [1, 2, 3, 4, 7, 8, 9, 10], "amfQueueLength": 0}, - "N1n2-Amf-Update-Api-Disabled": {"amfTimeTaken": [], "plotname": "Delete-Create API", "amfDbReadTime": [], "amfDbWriteTime": [], "amfDbTotalTime": [], "valied_1000_runs": [], "amfQueueLength": 0}, - "Amf-Smf-Share-Udsf": {"amfTimeTaken": [], "plotname": "AMF-SMF Share Database", "amfDbReadTime": [], "amfDbWriteTime": [], "amfDbTotalTime": [], "valied_1000_runs": [1, 2, 4, 5, 7, 8, 9], "amfQueueLength": 0}, - "All-NFs-Share-Udsf": {"amfTimeTaken": [], "plotname": "All NFs Share Database", "amfDbReadTime": [], "amfDbWriteTime": [], "amfDbTotalTime": [], "valied_1000_runs": [], "amfQueueLength": 0} +CREATE_COMPARISON_CSVS = 0 +MIN_MAX_COMPARISON = 1 +FIGURE3 = 0 +FIGURE4 = 0 +FIGURE5 = 0 +FIGURE6 = 0 +FIGURE7 = 0 +FIGURE8 = 0 + +dict_map = {"Fully-Stateful": {"amfTimeTaken": [], "plotname": "Stateful", "amfDbReadTime": [], "amfDbWriteTime": [], "amfDbTotalTime": [], "valied_1000_runs": [i for i in range(1, 11)], "amfQueueLength": 0, "amfMinTime": [], "amfMaxTime": [], "dbMinTime": [], "dbMaxTime": []}, + "Fully-Procedural-Stateless": {"amfTimeTaken": [], "plotname": "Procedural Stateless", "amfDbReadTime": [], "amfDbWriteTime": [], "amfDbTotalTime": [], "valied_1000_runs": [], "amfQueueLength": 0, "amfMinTime": [], "amfMaxTime": [], "dbMinTime": [], "dbMaxTime": []}, + "Fully-Transactional-Stateless": {"amfTimeTaken": [], "plotname": "Transactional Stateless", "amfDbReadTime": [], "amfDbWriteTime": [], "amfDbTotalTime": [], "valied_1000_runs": [1, 3, 4, 6, 8], "amfQueueLength": 0, "amfMinTime": [], "amfMaxTime": [], "dbMinTime": [], "dbMaxTime": []}, + "Nonblocking-Api-Enabled": {"amfTimeTaken": [], "plotname": "Non-Blocking", "amfDbReadTime": [], "amfDbWriteTime": [], "amfDbTotalTime": [], "valied_1000_runs": [1, 2, 3, 4, 7, 8, 9, 10], "amfQueueLength": 0, "amfMinTime": [], "amfMaxTime": [], "dbMinTime": [], "dbMaxTime": []}, + "N1n2-Amf-Update-Api-Disabled": {"amfTimeTaken": [], "plotname": "Delete-Create API", "amfDbReadTime": [], "amfDbWriteTime": [], "amfDbTotalTime": [], "valied_1000_runs": [], "amfQueueLength": 0, "amfMinTime": [], "amfMaxTime": [], "dbMinTime": [], "dbMaxTime": []}, + "Amf-Smf-Share-Udsf": {"amfTimeTaken": [], "plotname": "AMF-SMF Share Database", "amfDbReadTime": [], "amfDbWriteTime": [], "amfDbTotalTime": [], "valied_1000_runs": [1, 2, 4, 5, 7, 8, 9], "amfQueueLength": 0, "amfMinTime": [], "amfMaxTime": [], "dbMinTime": [], "dbMaxTime": []}, + "All-NFs-Share-Udsf": {"amfTimeTaken": [], "plotname": "All NFs Share Database", "amfDbReadTime": [], "amfDbWriteTime": [], "amfDbTotalTime": [], "valied_1000_runs": [], "amfQueueLength": 0, "amfMinTime": [], "amfMaxTime": [], "dbMinTime": [], "dbMaxTime": []} } dict_map_keys = list(dict_map.keys()).copy() session_list = [i*100 for i in range(1,11)] +def calc_min_max (i,j,param="amfTime"): + if param == "amfTime": + p1 = "amfMaxTime" + p2 = "amfMinTime" + elif param == "dbTime": + p1 = "dbMaxTime" + p2 = "dbMinTime" + a = dict_map[dict_map_keys[j]][p1] + b = dict_map[dict_map_keys[i]][p2] + max_diff = np.mean([(a_i - b_i)*(100/b_i) for a_i, b_i in zip(a, b)]) + print("Max time difference between {} and {} is {}".format(dict_map_keys[j], dict_map_keys[i], max_diff)) + def plot_q_cpu_instance(ax,df_t,df_q,NF,label=False): df_t = df_t[['Time (ms)','CPU-Usage']] @@ -46,8 +60,8 @@ def plot_q_cpu_instance(ax,df_t,df_q,NF,label=False): df_t['CPU-Usage'] = df_t['CPU-Usage'].astype(int) from matplotlib.ticker import MaxNLocator - ax1 = df_t['CPU-Usage'].plot(ax=ax,label='CPU',marker='x',style='#34495e') - ax1.set_ylabel('CPU (%)') + ax1 = df_t['CPU-Usage'].plot(ax=ax,label='CPU',marker='x',style='#34495e',ms=4) + ax1.set_ylabel('CPU (%)', fontsize=13) ax1.yaxis.set_major_locator(MaxNLocator(integer=True,nbins=4)) # ax1.yaxis.set_major_formatter(PercentFormatter(100)) # percentage using 1 for 100% @@ -56,19 +70,21 @@ def plot_q_cpu_instance(ax,df_t,df_q,NF,label=False): #print(df_q.head()) df_q['Q Length'].plot(secondary_y=True,style="#2ecc71",ax=ax) - ax1.right_ax.set_ylabel('Q Length') + ax1.right_ax.set_ylabel('Q Length', fontsize=13) #sb.set_ylim(5,16) if NF == "UPF": #ax1.right_ax.set_ylim(-0.1,1) ck = [0,1] - ax1.right_ax.set_yticks(ck) + ax1.right_ax.set_yticks(ck, fontsize=13) #ax1.right_ax.set_yticks(np.arange(min(ck), max(ck)+10, 10)) if label == True: lines = ax.get_lines() + ax.right_ax.get_lines() - ax.legend(lines, [l.get_label() for l in lines], loc='lower center',frameon=True,ncol=2) + ax.legend(lines, [l.get_label() for l in lines], loc='upper left',frameon=True,ncol=1, fontsize=11, bbox_to_anchor=(0,1.035)) - ax.set_title(NF, y=1.0, pad=-14, x=.051) + #ax.set_title(NF, y=1.0, pad=-14, x=.051) + ax.set_title(NF, y=1.02, pad=-14, x=.5835, fontsize=13) + #ax.set_title(NF, y=1.02, pad=-14, x=.5, fontsize=13) def q_cpu_time_series(): @@ -143,6 +159,8 @@ def main(): df[col].values[this_mean_index] = col_mean if col == "amfTimeTaken": dict_map[folder_name]["amfTimeTaken"].append(col_mean) + dict_map[folder_name]["amfMinTime"].append(min(col_values)) + dict_map[folder_name]["amfMaxTime"].append(max(col_values)) df_new = pd.DataFrame() df_new["amfTimeTaken"] = col_values df_new["Config"] = dict_map[folder_name]["plotname"] @@ -159,6 +177,8 @@ def main(): df_new["amfDbWriteTime"] = col_values elif col == "amfDbTotalTime": dict_map[folder_name]["amfDbTotalTime"].append(col_mean) + dict_map[folder_name]["dbMinTime"].append(min(col_values)) + dict_map[folder_name]["dbMaxTime"].append(max(col_values)) df_new["amfDbTotalTime"] = col_values df_all = df_all.append(df_new, ignore_index=True) prev_mean_index = this_mean_index+1 @@ -185,52 +205,66 @@ def main(): df_queue_cpu["Config"] = valid_cpuq_folders df_queue_cpu["Value"] = cpu_q_values + if MIN_MAX_COMPARISON: + calc_min_max(0,1) + calc_min_max(0,2) + calc_min_max(3,2) + calc_min_max(4,2) + calc_min_max(5,2) + calc_min_max(6,2) + calc_min_max(4,2,"dbTime") + if CREATE_COMPARISON_CSVS: df = pd.DataFrame({"Number-of-Sessions": session_list, "Time-{}".format(dict_map_keys[0]): dict_map[dict_map_keys[0]]["amfTimeTaken"], "Time-{}".format(dict_map_keys[2]): dict_map[dict_map_keys[2]]["amfTimeTaken"], "Change %": [0]*10}) df['Change %'] = (df["Time-{}".format(dict_map_keys[2])] - df["Time-{}".format(dict_map_keys[0])])*(100/(df["Time-{}".format(dict_map_keys[0])])) df1 = df.append({"Number-of-Sessions": "Average", "Time-{}".format(dict_map_keys[0]): "-", "Time-{}".format(dict_map_keys[2]): "-", 'Change %': np.mean(df["Change %"].values)}, ignore_index=True) - df1.to_csv("Stateful-Vs-Stateless-TimeTaken.csv", index=False) + df1.to_csv("Stateful-Vs-Stateless-Avg-Time-Taken.csv", index=False) + + df = pd.DataFrame({"Number-of-Sessions": session_list, "Time-{}".format(dict_map_keys[0]): dict_map[dict_map_keys[0]]["amfTimeTaken"], "Time-{}".format(dict_map_keys[1]): dict_map[dict_map_keys[1]]["amfTimeTaken"], "Change %": [0]*10}) + df['Change %'] = (df["Time-{}".format(dict_map_keys[1])] - df["Time-{}".format(dict_map_keys[0])])*(100/(df["Time-{}".format(dict_map_keys[0])])) + df1 = df.append({"Number-of-Sessions": "Average", "Time-{}".format(dict_map_keys[0]): "-", "Time-{}".format(dict_map_keys[1]): "-", 'Change %': np.mean(df["Change %"].values)}, ignore_index=True) + df1.to_csv("Stateful-Vs-Procedural-Avg-Time-Taken.csv", index=False) df = pd.DataFrame({"Number-of-Sessions": session_list, "Time-{}".format(dict_map_keys[1]): dict_map[dict_map_keys[1]]["amfTimeTaken"], "Time-{}".format(dict_map_keys[2]): dict_map[dict_map_keys[2]]["amfTimeTaken"], "Change %": [0]*10}) df['Change %'] = (df["Time-{}".format(dict_map_keys[2])] - df["Time-{}".format(dict_map_keys[1])])*(100/(df["Time-{}".format(dict_map_keys[1])])) df2 = df.append({"Number-of-Sessions": "Average", "Time-{}".format(dict_map_keys[1]): "-", "Time-{}".format(dict_map_keys[2]): "-", 'Change %': np.mean(df["Change %"].values)}, ignore_index=True) - df2.to_csv("Procedural-Vs-Transactional-Time-Taken.csv", index=False) + df2.to_csv("Procedural-Vs-Transactional-Avg-Time-Taken.csv", index=False) df = pd.DataFrame({"Number-of-Sessions": session_list, "Time-{}".format(dict_map_keys[3]): dict_map[dict_map_keys[3]]["amfTimeTaken"], "Time-Blocking-Api-Enabled": dict_map[dict_map_keys[2]]["amfTimeTaken"], "Change %": [0]*10}) df['Change %'] = (df["Time-Blocking-Api-Enabled"] - df["Time-{}".format(dict_map_keys[3])])*(100/(df["Time-{}".format(dict_map_keys[3])])) df3 = df.append({"Number-of-Sessions": "Average", "Time-{}".format(dict_map_keys[3]): "-", "Time-Blocking-Api-Enabled": "-", 'Change %': np.mean(df["Change %"].values)}, ignore_index=True) - df3.to_csv("Blocking-Vs-Nonblocking-Time-Taken.csv", index=False) + df3.to_csv("Blocking-Vs-Nonblocking-Avg-Time-Taken.csv", index=False) df = pd.DataFrame({"Number-of-Sessions": session_list, "Time-Delete-Create-Api-Enabled": dict_map[dict_map_keys[4]]["amfTimeTaken"], "Time-Update-Api-Enabled": dict_map[dict_map_keys[2]]["amfTimeTaken"], "Change %": [0]*10}) df['Change %'] = (df["Time-Update-Api-Enabled"] - df["Time-Delete-Create-Api-Enabled"])*(100/(df["Time-Delete-Create-Api-Enabled"])) df4 = df.append({"Number-of-Sessions": "Average", "Time-Delete-Create-Api-Enabled": "-", "Time-Update-Api-Enabled": "-", 'Change %': np.mean(df["Change %"].values)}, ignore_index=True) - df4.to_csv("Update-Vs-Delete-Create-Time-Taken.csv", index=False) + df4.to_csv("Update-Vs-Delete-Create-Avg-Time-Taken.csv", index=False) df = pd.DataFrame({"Number-of-Sessions": session_list, "Time-{}".format(dict_map_keys[5]): dict_map[dict_map_keys[5]]["amfTimeTaken"], "Time-{}".format(dict_map_keys[6]): dict_map[dict_map_keys[6]]["amfTimeTaken"], "Time-Not-Sharing-Udsf": dict_map[dict_map_keys[2]]["amfTimeTaken"], "Change - AmfSmf Vs Unshared": [0]*10, "Change - AllShared Vs Unshared": [0]*10}) df['Change - AmfSmf Vs Unshared'] = (df["Time-Not-Sharing-Udsf"] - df["Time-{}".format(dict_map_keys[5])])*(100/(df["Time-{}".format(dict_map_keys[5])])) df['Change - AllShared Vs Unshared'] = (df["Time-Not-Sharing-Udsf"] - df["Time-{}".format(dict_map_keys[6])])*(100/(df["Time-{}".format(dict_map_keys[6])])) df5 = df.append({"Number-of-Sessions": "Average", "Time-{}".format(dict_map_keys[5]): "-", "Time-{}".format(dict_map_keys[6]): "-", "Time-Not-Sharing-Udsf": "-", 'Change - AmfSmf Vs Unshared': np.mean(df["Change - AmfSmf Vs Unshared"].values), 'Change - AllShared Vs Unshared': np.mean(df["Change - AllShared Vs Unshared"].values)}, ignore_index=True) - df5.to_csv("Shared-Vs-Unshared-Udsf-Time-Taken.csv", index=False) + df5.to_csv("Shared-Vs-Unshared-Udsf-Avg-Time-Taken.csv", index=False) df = pd.DataFrame({"Number-of-Sessions": session_list, "Time-Delete-Create-Api-Enabled": dict_map[dict_map_keys[4]]["amfDbReadTime"], "Time-Update-Api-Enabled": dict_map[dict_map_keys[2]]["amfDbReadTime"], "Change %": [0]*len(dict_map[dict_map_keys[2]]["amfDbReadTime"])}) df['Change %'] = (df["Time-Update-Api-Enabled"] - df["Time-Delete-Create-Api-Enabled"])*(100/(df["Time-Delete-Create-Api-Enabled"])) df6 = df.append({"Number-of-Sessions": "Average", "Time-Delete-Create-Api-Enabled": "-", "Time-Update-Api-Enabled": "-", 'Change %': np.mean(df["Change %"].values)}, ignore_index=True) - df6.to_csv("Update-Vs-Delete-Create-Db-Read-Time-Taken.csv", index=False) + df6.to_csv("Update-Vs-Delete-Create-Db-Read-Avg-Time-Taken.csv", index=False) df = pd.DataFrame({"Number-of-Sessions": session_list, "Time-Delete-Create-Api-Enabled": dict_map[dict_map_keys[4]]["amfDbWriteTime"], "Time-Update-Api-Enabled": dict_map[dict_map_keys[2]]["amfDbWriteTime"], "Change %": [0]*10}) df['Change %'] = (df["Time-Update-Api-Enabled"] - df["Time-Delete-Create-Api-Enabled"])*(100/(df["Time-Delete-Create-Api-Enabled"])) df6 = df.append({"Number-of-Sessions": "Average", "Time-Delete-Create-Api-Enabled": "-", "Time-Update-Api-Enabled": "-", 'Change %': np.mean(df["Change %"].values)}, ignore_index=True) - df6.to_csv("Update-Vs-Delete-Create-Db-Write-Time-Taken.csv", index=False) + df6.to_csv("Update-Vs-Delete-Create-Db-Write-Avg-Time-Taken.csv", index=False) df = pd.DataFrame({"Number-of-Sessions": session_list, "Time-Delete-Create-Api-Enabled": dict_map[dict_map_keys[4]]["amfDbTotalTime"], "Time-Update-Api-Enabled": dict_map[dict_map_keys[2]]["amfDbTotalTime"], "Change %": [0]*10}) df['Change %'] = (df["Time-Update-Api-Enabled"] - df["Time-Delete-Create-Api-Enabled"])*(100/(df["Time-Delete-Create-Api-Enabled"])) df6 = df.append({"Number-of-Sessions": "Average", "Time-Delete-Create-Api-Enabled": "-", "Time-Update-Api-Enabled": "-", 'Change %': np.mean(df["Change %"].values)}, ignore_index=True) - df6.to_csv("Update-Vs-Delete-Create-Db-Total-Time-Taken.csv", index=False) + df6.to_csv("Update-Vs-Delete-Create-Db-Total-Avg-Time-Taken.csv", index=False) - df_plot = df_all[df_all['Rate'] > 500] + df_plot = df_all[df_all['Rate'] > 500].copy() if FIGURE3: config_filter = ['Fully-Stateful','Fully-Procedural-Stateless', 'Fully-Transactional-Stateless'] @@ -244,7 +278,7 @@ def main(): sb.legend_.set_title(None) plt.tight_layout() plt.legend(loc="best") - plt.savefig('figure3.pdf', bbox_inches='tight', pad_inches=0) + plt.savefig('figure3.pdf', bbox_inches='tight') plt.show() plt.close() @@ -260,7 +294,7 @@ def main(): sb.legend_.set_title(None) plt.tight_layout() plt.legend(loc="best") - plt.savefig('figure4.pdf', bbox_inches='tight', pad_inches=0) + plt.savefig('figure4.pdf', bbox_inches='tight') plt.show() plt.close() @@ -270,7 +304,7 @@ def main(): flatui = ["#3498db", "#2ecc71"] sns.set_palette(flatui) sb = sns.barplot(data=df_plot, x='Rate', y='amfDbTotalTime', hue='Config', palette=flatui, hue_order=order_list) - sb.set_ylim(550,1000) + sb.set_ylim(550,1010) l1 = mpatches.Patch(color=flatui[0], label='Delete-Create API') l2 = mpatches.Patch(color=flatui[1], label='Update API') plt.ylabel('Time (ms)') @@ -282,6 +316,27 @@ def main(): plt.show() plt.close() + if FIGURE8: + config_filter = [dict_map_keys[4], dict_map_keys[2]] + order_list = [dict_map[x]["plotname"] for x in config_filter] + order_list[1] = "Update API" + config_list = [order_list[0]]*5 + config_list.extend([order_list[1]]*5) + df_mongo = pd.DataFrame() + df_mongo["Config"] = config_list + amfRdTime = dict_map[config_filter[0]]["amfDbReadTime"][5:].copy() + amfRdTime.extend(dict_map[config_filter[1]]["amfDbReadTime"][5:].copy()) + amfWrTime = dict_map[config_filter[0]]["amfDbWriteTime"][5:].copy() + amfWrTime.extend(dict_map[config_filter[1]]["amfDbWriteTime"][5:].copy()) + df_mongo["amfDbReadTime"] = amfRdTime + df_mongo["amfDbWriteTime"] = amfWrTime + df_mongo["Rate"] = session_list[5:]*2 + #ax = df_mongo.plot(x="Rate", y="amfDbWriteTime", kind="bar") + #df_mongo.plot(x="Rate", y="amfDbReadTime", kind="bar", ax=ax, color="C2") + #df_mongo[["Rate", "amfDbWriteTime", "amfDbReadTime"]].plot(x="Rate", kind="bar") + df_mongo.set_index('Rate').plot(kind='bar', stacked=True, y = ["amfDbReadTime","amfDbWriteTime"], color=['steelblue', 'red']) + plt.show() + if FIGURE6: def get_plt_name(x): @@ -298,25 +353,23 @@ def get_plt_name(x): fig, ax1 = plt.subplots() flatui = ["#34495e","#2ecc71"] - sns.set_context(context="paper",font_scale=1) sb = sns.barplot(data=df_queue_cpu, x='Config', y='Value', hue='Type',palette=sns.color_palette(flatui), ax=ax1,hue_order=['CPU','Q Length'], order = ['Stateful','Transactional\nStateless','AMF-SMF\nShare DB','Non-Blocking']) - ax1.set_ylabel('CPU', fontsize=12) + ax1.set_ylabel('CPU', fontsize=14) ax2 = ax1.twinx() ax2.set_ylim(ax1.get_ylim()) ax1.yaxis.set_major_formatter(PercentFormatter(100)) # percentage using 1 for 100% - ax1.tick_params(labelsize=12) - ax2.tick_params(labelsize=12) - ax2.set_ylabel('Queue Length', fontsize=12) + ax1.tick_params(labelsize=13) + ax2.tick_params(labelsize=13) + ax2.set_ylabel('Queue Length', fontsize=14) ax1.set_xlabel('') sb.legend_.set_title(None) plt.tight_layout() - plt.legend(loc="best") + plt.legend(loc="best", fontsize=1) plt.savefig('figure6.pdf', bbox_inches='tight', pad_inches=0) plt.show() plt.close() - sns.set_context(context="paper",font_scale=1.6) if FIGURE7: q_cpu_time_series()