forked from HumanSignal/label-studio-ml-backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_api.py
57 lines (48 loc) · 1.71 KB
/
test_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
"""
This file contains tests for the API of your model. You can run these tests by installing test requirements:
```bash
pip install -r requirements-test.txt
```
Then execute `pytest` in the directory of this file.
- Change `NewModel` to the name of the class in your model.py file.
- Change the `request` and `expected_response` variables to match the input and output of your model.
"""
import pytest
import json
from model import HuggingFaceLLM
@pytest.fixture
def client():
from _wsgi import init_app
app = init_app(model_class=HuggingFaceLLM)
app.config['TESTING'] = True
with app.test_client() as client:
yield client
def test_predict(client):
request = {
'tasks': [{
'data': {
'text': 'If I say "I feel like I am walking on air" it means '
}
}],
# Your labeling configuration here
'label_config': '''<View>
<Text name="input_text" value="$text"/>
<TextArea name="generated_text" toName="input_text"/>
</View>'''
}
expected_response = {
'results': [{
'model_version': 'HuggingFaceLLM-v0.0.1',
'score': 0.0,
'result': [{
'from_name': 'generated_text',
'to_name': 'input_text',
'type': 'textarea',
'value': {'text': ['"I am not walking on air"\nI\'m not sure if you\'re being sarcastic or not, but I think you\'re right.']}
}]
}]
}
response = client.post('/predict', data=json.dumps(request), content_type='application/json')
assert response.status_code == 200
response = json.loads(response.data)
assert response == expected_response