CPSC 340:
Machine Learning and Data Mining

Neural networks: training
and
Convolutions

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1

Admin

* Assignment 6:
— Due next Thursday (April 5)

.= v h(Wy;)

\ﬂ

Learn ‘W' and v hﬂi‘"
— A ol V‘l':ﬂ! [
learn Leatws for SE%. W}Z

,—./\/o,\-hmqr '\ makey it a
upiversal n”rox'mq‘for -Fgr l"Jf 'k‘

De(r hewal nelwor ks:
Zs vi= v AW R(Wx))

/‘ "'Unfrccdmfd p"f'F"Mc on d1fcull ’”'LIMI
@ ”EGCL layv COW‘L;'W; "f”’,'sl‘ #‘0’“ ‘””W’M I-ycl:

Two things | forgot to say last time

e Check out the 3BluelBrown video on the course website
* Biological motivation: L29 bonus slides

Artificial Neural Networks

* With squared loss, our objective function for one hidden layer is:
n
T (W)= 3’5(\/1}»(%7)’

* Usual training procedure: stochastic gradient.
— Compute gradient of random example ‘i’, update both ‘v’ and ‘W’.
— Highly non-convex and can be difficult to tune.

 Computing the gradient is known as “backpropagation”.

— Video giving motivation on course webpage.

Backpropagation

Overview of how we compute neural network gradient:
— Forward propagation:

 Compute z% from x.

« Compute z? from z,%).

 Compute yhat, from z™, and use this to compute error.
— Backpropagation:

 Compute gradient with respect to regression weights ‘v'.

« Compute gradient with respect to z(™ and weights WM.

Compute gradient with respect to z{™ and weights W(m-1),

« Compute gradient with respect to z!) and weights W),

“Backpropagation” is the chain rule plus some bookkeeping for speed.

Backpropagation

* |'ve put the backprop math in the bonus slides.

— Usually handled for you with neural network / automatic differentiation
software

* Do you need to know how to do this?

— Exact details are probably not vital (there are many implementations),
but understanding basic idea helps you know what can go wrong.

— See discussion here by a neural network expert (and UBC grad) Andrej Karpathy.
— But right now CPSC 340 is serving a very broad audience, and time is limited

 What | want you to know:

— The intuition of why, if you naively computed all derivatives, it would be wasteful
— Cost dominated by matrix multiplications by W), W2, WG) and ‘v’.

* If have ‘m’ layers and all z, have ‘k’ units, cost would be O(dk + mk?).

Neural networks for classification

 We've been thinking of NNs as “crazy features + linear regression”

— For classification, we can do the same but with logistic regression

* For multi-class with 'k’ classes, our last layer has size ‘k’
— So we replace ‘v’ by a matrix
— Softmax activation at last layer, to produce probabilities
— Softmax loss is often called “cross entropy” in neural network papers.
— Typically prepare the labels with a one-hot encoding into a matrix ‘Y’.
— Similar approaches work for multi-label classification

ImageNet Challenge

ImageNet challenge:
— Use millions of images to recognize 1000 objects.

ImageNet organizer visited UBC summer 2015.

“Besides huge dataset/model/cluster, what is the most
important?”

1. Image transformations (translation, rotation, scaling, lighting, etc.).
2. Optimization.

Why would optimization be so important?
— Neural network objectives are highly non-convex (and worse with depth).
— Optimization has huge influence on quality of model.

Stochastic Gradient Training

* Challenging to make SG work:
— Often doesn’t work as a “black box” learning algorithm.
— But people have developed a lot of tricks/modifications to make it work.

* Highly non-convex, so are local mimina hurting us?

— Some empirical/theoretical evidence that local minima are not the
problem.

— If the network is “deep” and “wide” enough, we think all local minima are
good.

— But it can be hard to get SG to even find a local minimum.

10

Parameter Initialization

* Parameter initialization is crucial:
— Can’t initialize weights in same layer to zero, or they will stay same.
— Can’tinitialize weights too large, it will take too long to learn.

* A traditional random initialization:

— Initialize bias variables to O.
— Sample from Gaussian with small std dev (e.g., 0.00001).
— Performing multiple initializations does not seem to be important.

* Popular approach from 10 years ago:

— Initialize with deep unsupervised model (like “autoencoders” — see bonus).

Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep
models.

e Common approach: manual “babysitting” of the step-size.
— Run SG for a while with a fixed step-size.

— Occasionally meaglire erronandeplatprogress:
—9 detrense ¢

| pm—

Crro,

fwe'

— If error is not decreasing, decrease step-size.

12

Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep
models.

* Bias step-size multiplier: use bigger step-size for the bias variables.
* Momentum:

— Add terr\r\Nmt_gﬂvsyeg L{mwipxsﬁﬁeﬁi'towm_ Wt..:)

\/G(:pr 49" in the

o) direction

— Usually Bt =0.9.

13

Setting the Step-Size (bonus)

Automatic method to set step size is Bottou trick:
1. Grab a small set of training examples (maybe 5% of total).
2. Do abinary search for a step size that works well on them.
3. Use this step size for a long time (or slowly decrease it from there).

Several recent methods using a step size for each variable:
— AdaGrad, RMSprop, Adam (often work better “out of the box”).

— Seem to be losing popularity to stochastic gradient (often with momentum).
* Often yields lower test error but this requires more tuning of step-size.

Batch size (hnumber of random examples) also influences results.
— Bigger batch sizes often give faster convergence but to worse solutions.

Another recent trick is batch normalization:
— Try to “standardize” the hidden units within the random samples as we go.

Vanishing Gradient Problem

Consider the sigmoid functi}/ _

E——
pae—

O
Away from the origin, the gradient is nearly zero.
The problem gets worse when you take the sigmoid of a sigmoid:

]

B O
In deep networks, many gradients can be nearly zero everywhere.

15

Rectified Linear Units (ReLU)

.
* Replace sigmoid with hinge-like loss (ReLU): "V'“"w? W
1

'I

———

’ f"'f (" ng,)

L Gens e —— —_—

* Just sets negative values z,_to zero.

— Fixes vanishing gradient problem.
— Works well in practice.

16

Deep Learning and the Fundamental Trade-Off

* Neural networks are subject to the fundamental trade-off:
— As we increase the depth, training error decreases.
— As we increase the depth, training error no longer approximates test error.

* We want deep networks to model highly non-linear data.
— But increasing the depth leads to overfitting.

 How could GoogleNet (L29 bonus slides) use 22 layers?

— Many forms of regularization and keeping model complexity under
control.

Standard Regularization

* We typically add our usual L2-regularizers:
W, -1 2/ 4 "
t (V)W W W ')z 5 5 (v hW W hw D))" + ?‘_q”vlF+Zzl|w“’ﬂ;‘+%Hw"’ﬂf’*?llw"’l}
)=t 2 2

* L2-regularization is called “weight decay” in neural network
papers.
— Could also use L1-regularization.

* Hyperparameter optimization:
— Try to optimize validation error in terms of A, A, A5, A4, ...

* Unlike linear models, typically use multiple types of regularization.

8

Early Stopping

 Another common type of regularization is “early stopping”:
— Monitor the validation error as we run stochastic gradient.
— Stop the algorithm if validation error starts increasing.

* Training accuracy should continue going up.

V'\-ra(‘l\/\mlely |-|' mi,h}‘

lookk more like

—+
/ /t, l\ofomly you dond

S"ov hero. 1o

Dropout

 Dropout is a more recent form of regularization:

— On each iteration, randomly set some x, and z, to zero (often use 50%).
* Prevents “co-adaptation”

— After a lot of success, dropout may already be going out of fashion.
— See bonus slides for more info

One-hot encoding
Dropout

Weight decay
Momentum

Batch normalization
Vanishing gradient

Vocabulary

(pause)

Convolutions

* Next class we’ll talk about convolutional neural networks

— These dominate computer vision

* For the rest of today we’ll talk about convolutions

1D Convolution (notation is specific to this lecture)

e 1D convolution input:

— Signal ‘X’ which is a vector length ‘n’. x=[01 | 2 3 § ¢ I}]
* Indexed by i=1,2,...,n.
— Filter ‘W’ which is a vector of length 2m+1’: W= C O -l 2 - O]

* Indexed by i=-m,-m+1,...-2,0,1,2,...,m-1,m w. w W, w
22 ~(|

* Qutput is a vector of length ‘n” with elements:
m

Zl - J:é:mv‘\/) XH'J

— You can think of this as centering w at z. and taking a dot product.

24

1D Convolution

1D convolution example:

Lc“/ 'S (owrw?lé’ Zq:

— Signal: |
= 3
lol 13 519)
— Filter: w = [: O f“l 2 —I O] &Hi"l'l?L)) 2 ; S]
Wo Wy Yo Y% % N~
\ -/
— Convolution: X \J

: L0 -1 Y -3 0
Y
'zch-l~”/—3-f();O

C—

e 1D convolution example:

1D Convolution

Le“s (omrwle zs:

— Signal: x__.[g |1@__§j

— Filter: - _ 7 -
Wﬁgwflwow’v?] (r 23 58]

— Convolution: ~— \' N J
> :(: ? _;E :l MMHI,« Y

Ce = -2 t (¢ -5 :26”1

1D Convolution Examples

* Examples: let x=LO 1 I 2 3 5 & 3]
— “Identity”
Coyw=C0 | 0) 2=LO0 | | 2% & § 13

) 2 3 6 % I3 7]

— “Translation”

\ZW:EO O ,j Z:LAI

0'704 o‘x|+].’2

1D Convolution Examples

 Examples: et x=LO 1 1 235 g ,
— “ldentity”

o w=C0 | 0) LL"E—J p_},__g
van,l

— “Local Average
—w=L"% 4 '5) 2=(7 % 1% 2 3% 5% 2% ¢

Boundary Issue

* What can we about the “?” at the edges?
T6 L0 1123 6 913) and Wil % %) thon 27 % 1% 2355585 7 |

* Can assign values past the boundaries:

« “Zero”: x=00 0O :O | 2 3 G 3 ’3_1 O 0O
o “Replicate”: X=0 9 O :O | 2 3 G 3 ,3‘7 B 133

* “Mirror”: x= A | IEO \ | 2 3 -g- 8 ,31 % g 3

e Orjustignore the “?” values and return a shorter vector:

2=[% 14 2 3% 6% %)

29

1D Convolution Examples

* Translation convolution shift signal:

w=Ll 0000 0 0 00]

1D Convolution Examples

* Averaging convolution computes local mean:

W:[l/b ’/£ ’/3]

431 5

1D Convolution Examples

* Averaging over bigger window gives coarser view of signal:

(/|
(% g an e A

w';

1D Convolution Examples

* Gaussian convolution blurs signal:

w= L 6.000! 0.0641 00

-3.7

4444444444444

-3.8

4

-4.7

X

)

— Compared to averaging it's more smooth and maintains peaks better.
b4 00420 (3459 02420 G590 Oowd 000/]
(o ° l’ m> Y

391

4.1

42}

43

44+

45

46

-5

1D Convolution Examples

* Sharpen convolution enhances peaks.

— An “average” that places negative weights on the surrounding pixels.

w= [~

-3.7

3

"‘l:)

-3.7

434 s

1D Convolution Examples

* Laplacian convolution approximates second derivative:

— “Sum to zero” filters “respond” if input vector looks like the filter

w=l-1 2)

-3.7 T T T T T T T T T 0.6

041

021

0.2

041

-0.6

Digression: Derivatives and Integrals

 Numerical derivative approximations can be viewed as filters:

— Centered difference: [-1, 0, 1] . :
— Gradient checkers often use forward difference: [-1, 1] - /

 Numerical integration approximations can be viewed as filters:

— “Simpson’s” rule: [1/6, 4/6, 1/6] (a bit like Gaussian filter). . /\

* Derivative filters add to O, integration filters add to 1,

— For constant function, derivative should be 0 and average = constant.

36

1D Convolution Examples

 Laplacian of Gaussian is a smoothed 2"9-derivative approximation:

2
l

= (! ";-,139 cip '?c.?) W= L0MIE QU781 ~(a74(GILAD 0407 Q440 02T - -
(then saltact wean) (671, m= 9

0.25

-3.7

0.2

015

0.05

7777777777777

021

-0.25

Summary

Backpropagation computes neural network gradient via chain rule.
Parameter initialization is crucial to neural net performance.
Optimization and step size are crucial to neural net performance.

Regularization is crucial to neural net performance:
— L2-regularizaiton, early stopping, dropout.

Convolutions are linear operators that capture local information

Backpropagation

e Let’sillustrate backpropagation in a simple setting:
— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

£(wh Wm Wm v)= ‘L (;/\. TV)% wheee 7’/\5=VL\(W")L(W"7A(W"’X;)))
A = AW h W h (W) = ch(=")

——
£ =rvh (WhWw” L\(W"’r)))k(w"’k(w"’x D=0 vh () h(z)

zw(3)

Backpropagation

e Let’sillustrate backpropagation in a simple setting:
— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

£(wY Wm Wm v)= ‘L (;/\; T Y)% wheve 7'/\i=Vk(WmL(W“7A(WmXi)))
C 2
2{ = hW* h(w*h(w""x;))) = ¢ h=")

"/j/
26 =pvh (W MW"’MW"’r)))A(W"’h(w"’ D=0 vh (27 h()

zw(3)

A n \Q,—/\' \p (2
A = e (WP h(w R (W)) h (W R -))A(w“, P CANTINAL™
A —

\
Q'F . l“‘(wu;MWlev' X.”)th (ww(w())w(ﬂ)‘ (W'&) - (2) WIJ);\ (m)}('

2w LL? ”éa [krw/,\

40

Backpropagation

e Let’sillustrate backpropagation in a simple setting:
— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

£ _ (3)

= rh(z?) = rhiz)

2 =0 Vh (2D h(z/?) = LR () bz

£ — ! o ’ r

A = WK ke ;’C/m—- 2 W W) A
2f

2) 4 /))
2\4/"' rW;\)X, ZW"’ [f U) (I)Jth-r

— Only the first ‘r’ changes if you use a different loss
— With multiple hidden units, you get extra sums.

* Efficient if you store the sums rather than computing from scratch.

Autoencoders

Autoencoders are an unsupervised deep learning model:
— Use the inputs as the output of the neural network.

encoder decoder

w1l w2 w2’ w1’
— Middle layer could be latent features in non-linear latent-factor model.
e Can do outlier detection, data compression, visualization, etc.
— A non-linear generalization of PCA.

42

https://www.cs.toronto.edu/~hinton/science.pdf

Autoencoders

AU\'IDQV\ Co J(/

European Community
Interbank markets monetary/economic

Disasters and
accidents

Leading economic® .* R ‘; NS -} Legal/judicial
indicators & ,? ‘3 Py 49 ’K h

i 7 Government
¢ A' Y
Accounts/ . “Tye borrowings

eamings u’

43

Denoising Autoencoder

Denoising autoencoders add noise to the input:

encoder decoder

W1 W2 w2’ w1

— Learns a model that can remove the noise.

44

Parameter Initialization

 Parameter initialization is crucial:
— Can’tinitialize weights in same layer to same value, or they will stay same.
— Can’tinitialize weights too large, it will take too long to learn.

* Also common to standardize data:
— Subtract mean, divide by standard deviation, “whiten”, standardize y..
* More recent initializations try to standardize initial z;:
— Use different initialization in each layer.
— Try to make variance of z, the same across layers.
— Use samples from standard normal distribution, divide by sqrt(2*ninputs).
— Use samples from uniform distribution on [-b,b], where 1)‘__\@:-

Dropout

* Dropout is a more recent form of regularization:
— On each iteration, randomly set some x, and z, to zero (often use 50%).

a) Standard Neural Net (b) After applying dropout.

— Encourages distributed representation rather than using specific z..
— Like ensembling a lot of models but without the high computational cost.
— After a lot of success, dropout may already be going out of fashion.

46

