-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_det_thumos.py
152 lines (127 loc) · 5.3 KB
/
eval_det_thumos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
import json
import pickle
from argparse import ArgumentParser
thumos_class = {
7: 'BaseballPitch',
9: 'BasketballDunk',
12: 'Billiards',
21: 'CleanAndJerk',
22: 'CliffDiving',
23: 'CricketBowling',
24: 'CricketShot',
26: 'Diving',
31: 'FrisbeeCatch',
33: 'GolfSwing',
36: 'HammerThrow',
40: 'HighJump',
45: 'JavelinThrow',
51: 'LongJump',
68: 'PoleVault',
79: 'Shotput',
85: 'SoccerPenalty',
92: 'TennisSwing',
93: 'ThrowDiscus',
97: 'VolleyballSpiking',
}
def load_pkl(filename):
with open(filename, 'rb') as f:
data = pickle.load(f)
return data
def add_topk_detection(proposals, class_scores, class_names, k=2, max_proposals=3000):
topk_indices = class_scores.argsort()[-k:][::-1]
topk_scores = class_scores[topk_indices]
detections = []
for i in range(k):
for proposal in proposals:
detection = {'segment': proposal[:2].tolist()}
detection['score'] = proposal[2] * topk_scores[i]
detection['label'] = class_names[topk_indices[i]]
detections.append(detection)
detections = sorted(detections, key=lambda x: x['score'], reverse=True)[:max_proposals]
return detections
def gen_detection(prop_file, cls_file, out_file):
proposals = load_pkl(prop_file)
class_names = [thumos_class[k] for k in thumos_class.keys()]
class_ids = np.array([k - 1 for k in thumos_class.keys()])
classifications = np.load(cls_file)
classifications = classifications[:, class_ids]
detections = {
'version': 'THUMOS14',
'external_data': 'used anet evaluation code',
'results': {}
}
for video_name, results in proposals.items():
video_id = int(video_name.split('_')[-1]) - 1
class_scores = classifications[video_id]
detections['results'][video_name] = add_topk_detection(results, class_scores, class_names)
with open(out_file, 'w') as out:
json.dump(detections, out)
'''
detections = {}
for video_name, results in proposals.items():
video_id = int(video_name.split('_')[-1]) - 1
class_scores = classifications[video_id]
detections[video_name] = add_topk_detection(results, class_scores, class_names)
with open(out_file, 'w') as out:
lines = []
for video_name, dets in detections.items():
for det in dets:
line = [video_name] + det['segment'] + [det['label'], det['score']]
lines.append(' '.join([str(x) for x in line]))
out.write('\n'.join(lines))
'''
def evaluate_detections(cfg, out_file='results/thumos_det.json', verbose=True, check_status=False):
prop_file = cfg.DATA.RESULT_PATH
cls_file = cfg.DATA.CLASSIFICATION_PATH
gt_file = cfg.DATA.ANNOTATION_FILE if cfg.DATA.DETECTION_GT_FILE is None else cfg.DATA.DETECTION_GT_FILE
split = cfg.VAL.SPLIT
if out_file is None:
out_file = prop_file
print("Detection processing start")
gen_detection(prop_file, cls_file, out_file)
print("Detection processing finished")
from evaluation_anet.eval_detection import ANETdetection
tious = [0.3, 0.4, 0.5, 0.6, 0.7]
anet_detection = ANETdetection(
ground_truth_filename=gt_file,
prediction_filename=out_file,
subset=split, tiou_thresholds=tious,
verbose=verbose, check_status=check_status)
anet_detection.evaluate()
mAP_at_tIoU = [f'mAP@{t:.2f}: {mAP*100:.3f}' for t, mAP in zip(anet_detection.tiou_thresholds, anet_detection.mAP)]
results = 'Detection: average-mAP {:.3f}.\n'.format(anet_detection.average_mAP * 100) + '\n'.join(mAP_at_tIoU)
print(results)
return anet_detection.average_mAP
def get_det_scores(prop_file, cls_file, gt_file, out_file=None, verbose=False, check_status=False):
if out_file is None:
out_file = prop_file
print("Detection processing start")
gen_detection(prop_file, cls_file, out_file)
print("Detection processing finished")
from evaluation_anet.eval_detection import ANETdetection
tious = [0.3, 0.4, 0.5, 0.6, 0.7]
anet_detection = ANETdetection(
ground_truth_filename=gt_file,
prediction_filename=out_file,
subset='testing', tiou_thresholds=tious,
verbose=verbose, check_status=check_status)
anet_detection.evaluate()
mAP_at_tIoU = [f'mAP@{t:.2f}: {mAP*100:.3f}' for t, mAP in zip(anet_detection.tiou_thresholds, anet_detection.mAP)]
results = 'Detection: average-mAP {:.3f}.\n'.format(anet_detection.average_mAP * 100) + '\n'.join(mAP_at_tIoU)
print(results)
return anet_detection.average_mAP
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('-p', '--proposal-file', type=str, default='results/results.pkl')
parser.add_argument('-c', '--classification-file', type=str, default='results/uNet_test.npy')
parser.add_argument('-o', '--output-file', type=str, default='evaluation_thumos/detection_eval/detection_results.txt')
parser.add_argument('-g', '--groundtruth-file', type=str, default='../datasets/thumos14/thumos_annotations/thumos_det_gt.json')
args = parser.parse_args()
get_det_scores(
args.proposal_file,
args.classification_file,
args.groundtruth_file,
args.output_file,
verbose=True,
check_status=True)