-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathCGAN.py
353 lines (289 loc) · 17.3 KB
/
CGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#-*- coding: utf-8 -*-
from __future__ import division
import os
import time
import tensorflow as tf
import numpy as np
from ops import *
from utils import *
class CGAN(object):
def __init__(self, sess, epoch, batch_size, z_dim, dataset_name, checkpoint_dir, result_dir, log_dir):
self.sess = sess
self.dataset_name = dataset_name
self.checkpoint_dir = checkpoint_dir
self.result_dir = result_dir
self.log_dir = log_dir
self.epoch = epoch
self.batch_size = batch_size
self.model_name = "CGAN" # name for checkpoint
if dataset_name == 'mnist' or dataset_name == 'fashion-mnist':
# parameters
self.input_height = 28
self.input_width = 28
self.output_height = 28
self.output_width = 28
self.z_dim = z_dim # dimension of noise-vector
self.y_dim = 10 # dimension of condition-vector (label)
self.c_dim = 1
# train
self.learning_rate = 0.0002
self.beta1 = 0.5
# test
self.sample_num = 64 # number of generated images to be saved
# load mnist
self.data_X, self.data_y = load_mnist(self.dataset_name)
# get number of batches for a single epoch
self.num_batches = len(self.data_X) // self.batch_size
else:
raise NotImplementedError
# 送入鉴别器的输入为(64,28,28,1),标签为y,(64,10)
def discriminator(self, x, y, is_training=True, reuse=False):
# Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
# Architecture : (64)4c2s-(128)4c2s_BL-FC1024_BL-FC1_S
with tf.variable_scope("discriminator", reuse=reuse):
# merge image and label,将标签形状换为(64,1,1,10)
y = tf.reshape(y, [self.batch_size, 1, 1, self.y_dim])
#首先将y由(64,1,1,10)-->(64,28,28,10)再接在x的第四维度上后面x-->(64,28,28,11)
x = conv_cond_concat(x, y)
#经过一次卷积网络(64,28,28,11)-->(64,14,14,64) 具体的计算为(28-2)/2+1
net = lrelu(conv2d(x, 64, 4, 4, 2, 2, name='d_conv1'))
# 经过这一步卷积后,(64,14,14,64)-->(64,7,7,128) 具体的计算为(14-2)/2+1
net = lrelu(bn(conv2d(net, 128, 4, 4, 2, 2, name='d_conv2'), is_training=is_training, scope='d_bn2'))
# 经过数组重构后,(64,7,7,128)-->(64,6272)
net = tf.reshape(net, [self.batch_size, -1])
# 经过线性处理后将矩阵,(64,6272)-->(64,1024)
net = lrelu(bn(linear(net, 1024, scope='d_fc3'), is_training=is_training, scope='d_bn3'))
# 经过线性处理后将矩阵,(64,1024)-->(64,1)
out_logit = linear(net, 1, scope='d_fc4')
out = tf.nn.sigmoid(out_logit)
return out, out_logit, net
# 送入生成器的输入噪声z为(64,62), 标签为y,(64,10)
def generator(self, z, y, is_training=True, reuse=False):
# Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
# Architecture : FC1024_BR-FC7x7x128_BR-(64)4dc2s_BR-(1)4dc2s_S
with tf.variable_scope("generator", reuse=reuse):
# merge noise and label,拼接z与y-->(64,72)
z = concat([z, y], 1)
# 经过线性处理后将矩阵,(64,72)-->(64,1024)
net = tf.nn.relu(bn(linear(z, 1024, scope='g_fc1'), is_training=is_training, scope='g_bn1'))
# 经过线性处理后将矩阵,(64,1024)-->(64,6272), 6272=128*7*7
net = tf.nn.relu(bn(linear(net, 128 * 7 * 7, scope='g_fc2'), is_training=is_training, scope='g_bn2'))
# 经过重构后,形状变为(64,7,7,128)
net = tf.reshape(net, [self.batch_size, 7, 7, 128])
# 经过deconv2d,(64,7,7,128)-->(64,14,14,128)
net = tf.nn.relu(
bn(deconv2d(net, [self.batch_size, 14, 14, 64], 4, 4, 2, 2, name='g_dc3'), is_training=is_training,
scope='g_bn3'))
# 经过deconv2d,(64,14,14,128)-->(64,28,28,1),将值处理用sigmoid处理至(0,1)之间,`y = 1 / (1 + exp(-x))`
out = tf.nn.sigmoid(deconv2d(net, [self.batch_size, 28, 28, 1], 4, 4, 2, 2, name='g_dc4'))
return out
# 建立CGAN模型,此函数非常重要
def build_model(self):
# some parameters
# 对于mnist数据集,图片大小为(28,28,1),此处用list列表存储
image_dims = [self.input_height, self.input_width, self.c_dim]
bs = self.batch_size
""" Graph Input """
# images (64,28,28,1)
self.inputs = tf.placeholder(tf.float32, [bs] + image_dims, name='real_images')
# labels (64,10)
self.y = tf.placeholder(tf.float32, [bs, self.y_dim], name='y')
# noises (64,62)
self.z = tf.placeholder(tf.float32, [bs, self.z_dim], name='z')
""" Loss Function """
# output of D for real images D_real((64,1),介于(0,1)),D_real_logits未经历过sigmoid,_临时存储net(64,1024)
D_real, D_real_logits, _ = self.discriminator(self.inputs, self.y, is_training=True, reuse=False)
# output of D for fake images G为由噪声z(64,62)生成的图片数据(64,28,28,1)
G = self.generator(self.z, self.y, is_training=True, reuse=False)
# D_fake((64,1),介于(0,1)),D_fake_logits未经历过sigmoid,_临时存储net(64,1024),送入鉴别器的是G生成的假的数据
D_fake, D_fake_logits, _ = self.discriminator(G, self.y, is_training=True, reuse=True)
# get loss for discriminator
# 它对于输入的logits先通过sigmoid函数计算,再计算它们的交叉熵,但是它对交叉熵的计算方式进行了优化,使得结果不至于溢出
# tf.ones_like的使用默认交叉商前面的系数为1数组
# d_loss_real=-log(sigmoid(D_real_logits))等价于d_loss_real=-log(D(x))
d_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=D_real_logits, labels=tf.ones_like(D_real)))
# d_loss_fake=-log(sigmoid(D_fake_logits))等价于d_loss_fake=-log(D(G(z))
d_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake_logits, labels=tf.zeros_like(D_fake)))
# d_loss为生成器和鉴别器传出的loss之和
self.d_loss = d_loss_real + d_loss_fake
# get loss for generator
# g_loss=-log(sigmoid(D_fake_logits))等价于g_loss=-log(D(G(z))
self.g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake_logits, labels=tf.ones_like(D_fake)))
""" Training """
# divide trainable variables into a group for D and a group for G
t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if 'd_' in var.name]
g_vars = [var for var in t_vars if 'g_' in var.name]
# optimizers 优化器用于减小损失函数loss,采用Adam优化器
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
self.d_optim = tf.train.AdamOptimizer(self.learning_rate, beta1=self.beta1) \
.minimize(self.d_loss, var_list=d_vars)
self.g_optim = tf.train.AdamOptimizer(self.learning_rate*5, beta1=self.beta1) \
.minimize(self.g_loss, var_list=g_vars)
"""" Testing """
# for test 由噪声生成一张图片
self.fake_images = self.generator(self.z, self.y, is_training=False, reuse=True)
""" Summary """
d_loss_real_sum = tf.summary.scalar("d_loss_real", d_loss_real)
d_loss_fake_sum = tf.summary.scalar("d_loss_fake", d_loss_fake)
d_loss_sum = tf.summary.scalar("d_loss", self.d_loss)
g_loss_sum = tf.summary.scalar("g_loss", self.g_loss)
# final summary operations
self.g_sum = tf.summary.merge([d_loss_fake_sum, g_loss_sum])
self.d_sum = tf.summary.merge([d_loss_real_sum, d_loss_sum])
# 最为重要的一个函数,控制着GAN模型的训练
def train(self):
# initialize all variables
tf.global_variables_initializer().run()
# graph inputs for visualize training results
# 创造噪声z,GAN中应用的为均值分布,创造(64,62)大小的-1到1之间的
self.sample_z = np.random.uniform(-1, 1, size=(self.batch_size , self.z_dim))
# 测试标签取标签的前64个作为测试集
self.test_labels = self.data_y[0:self.batch_size]
# saver to save model
self.saver = tf.train.Saver()
# summary writer
self.writer = tf.summary.FileWriter(self.log_dir + '/' + self.model_name, self.sess.graph)
# restore check-point if it exits
could_load, checkpoint_counter = self.load(self.checkpoint_dir)
if could_load:
start_epoch = (int)(checkpoint_counter / self.num_batches)
start_batch_id = checkpoint_counter - start_epoch * self.num_batches
counter = checkpoint_counter
print(" [*] Load SUCCESS")
else:
start_epoch = 0
start_batch_id = 0
counter = 1
print(" [!] Load failed...")
# loop for epoch
start_time = time.time()
for epoch in range(start_epoch, self.epoch):
# get batch data
# 由于batchsize为64,遍历70000张图片需要1093次
for idx in range(start_batch_id, self.num_batches):
# 提取处理好的固定位置图片,data_X的按批次处理后的图片位置,一个批次64张图片
batch_images = self.data_X[idx*self.batch_size:(idx+1)*self.batch_size]
# 提取处理好的固定位置标签,data_y的按批次处理后的标签位置,一个批次64标签
batch_labels = self.data_y[idx * self.batch_size:(idx + 1) * self.batch_size]
# 构造均匀分布的噪声z
batch_z = np.random.uniform(-1, 1, [self.batch_size, self.z_dim]).astype(np.float32)
# update D network sess.run喂入数据优化更新D网络,并在tensorboard中更新
_, summary_str, d_loss = self.sess.run([self.d_optim, self.d_sum, self.d_loss],
feed_dict={self.inputs: batch_images, self.y: batch_labels,
self.z: batch_z})
self.writer.add_summary(summary_str, counter)
# update G network sess.run喂入数据优化更新G网络,并在tensorboard中更新
_, summary_str, g_loss = self.sess.run([self.g_optim, self.g_sum, self.g_loss],
feed_dict={self.y: batch_labels, self.z: batch_z})
self.writer.add_summary(summary_str, counter)
# display training status
counter += 1
if np.mod(counter, 50) == 0:
print("Epoch: [%2d] [%4d/%4d] time: %4.4f, d_loss: %.8f, g_loss: %.8f" \
% (epoch, idx, self.num_batches, time.time() - start_time, d_loss, g_loss))
# save training results for every 300 steps 训练300步保存一张图片
if np.mod(counter, 300) == 0:
# 生成一张该阶段下的由生成器生成的“假图片”
samples = self.sess.run(self.fake_images,
feed_dict={self.z: self.sample_z, self.y: self.test_labels})
# 此处计算生成图片的小框图片的排布,本处为8×8排布
tot_num_samples = min(self.sample_num, self.batch_size)
manifold_h = int(np.floor(np.sqrt(tot_num_samples)))
manifold_w = int(np.floor(np.sqrt(tot_num_samples)))
save_images(samples[:manifold_h * manifold_w, :, :, :], [manifold_h, manifold_w],
'./' + check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name +
'_train_{:02d}_{:04d}.png'.format(epoch, idx))
# After an epoch, start_batch_id is set to zero
# non-zero value is only for the first epoch after loading pre-trained model
start_batch_id = 0
# save model
self.save(self.checkpoint_dir, counter)
# show temporal results
self.visualize_results(epoch)
# save model for final step
self.save(self.checkpoint_dir, counter)
# 用于可视化epoch后输出图片
def visualize_results(self, epoch):
tot_num_samples = min(self.sample_num, self.batch_size)
image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
""" random condition, random noise """
# 输入任意的标签和噪声,生成一张图片
# 在[0,9]中选择64个出来,组成y
y = np.random.choice(self.y_dim, self.batch_size)
# 创建数组(64,10)为全零
y_one_hot = np.zeros((self.batch_size, self.y_dim))
# 将y_one_hot全零矩阵在标签位上打上1
y_one_hot[np.arange(self.batch_size), y] = 1
z_sample = np.random.uniform(-1, 1, size=(self.batch_size, self.z_dim))
samples = self.sess.run(self.fake_images, feed_dict={self.z: z_sample, self.y: y_one_hot})
save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch
+ '_test_all_classes.png')
""" specified condition, random noise """
# 输入特定的标签和任意的噪声,生成一张图片
n_styles = 10 # must be less than or equal to self.batch_size
# 在[0,64)中选择10个出来,组成si,也是随机的哦
np.random.seed()
si = np.random.choice(self.batch_size, n_styles)
for l in range(self.y_dim):
# 创建全0~9的(64,)矩阵
y = np.zeros(self.batch_size, dtype=np.int64) + l
# 创建(64,10)全零矩阵
y_one_hot = np.zeros((self.batch_size, self.y_dim))
y_one_hot[np.arange(self.batch_size), y] = 1
# 此处区别于上面的是生成的标签y_one_hot为64个是全部一样的,生成的类是全一样的,本处实现0~9的全输出
samples = self.sess.run(self.fake_images, feed_dict={self.z: z_sample, self.y: y_one_hot})
#print('samples_new:', samples.shape)
save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d'
% epoch + '_test_class_%d.png' % l)
#此处的处理是取出一个类的10张图片(10,28,28,1)
samples = samples[si, :, :, :]
#print('samples:', samples.shape)
#经理过循环操作后(100, 28, 28, 1)
if l == 0:
all_samples = samples
else:
all_samples = np.concatenate((all_samples, samples), axis=0)
#print('all_samples', all_samples.shape)
""" save merged images to check style-consistency """
# 创建图片布置(100,28,28,1)
canvas = np.zeros_like(all_samples)
# 创建图片布置,将数据排好,此时是一行中是0~9排布,一列是数字相同的,我抽空将画一张图片说明
for s in range(n_styles):
for c in range(self.y_dim):
canvas[s * self.y_dim + c, :, :, :] = all_samples[c * n_styles + s, :, :, :]
save_images(canvas, [n_styles, self.y_dim],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch
+ '_test_all_classes_style_by_style.png')
@property
# 加载创建固定模型下的路径,本处为CGAN下的训练
def model_dir(self):
return "{}_{}_{}_{}".format(
self.model_name, self.dataset_name,
self.batch_size, self.z_dim)
# 本函数的目的是在于保存训练模型后的checkpoint
def save(self, checkpoint_dir, step):
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir, self.model_name)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.saver.save(self.sess,os.path.join(checkpoint_dir, self.model_name+'.model'), global_step=step)
# 本函数的意义在于读取训练好的模型参数的checkpoint
def load(self, checkpoint_dir):
import re
print(" [*] Reading checkpoints...")
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir, self.model_name)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
counter = int(next(re.finditer("(\d+)(?!.*\d)",ckpt_name)).group(0))
print(" [*] Success to read {}".format(ckpt_name))
return True, counter
else:
print(" [*] Failed to find a checkpoint")
return False, 0