-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathEBGAN.py
282 lines (237 loc) · 11.4 KB
/
EBGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import utils, torch, time, os, pickle
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
class generator(nn.Module):
# Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
# Architecture : FC1024_BR-FC7x7x128_BR-(64)4dc2s_BR-(1)4dc2s_S
def __init__(self, dataset = 'mnist'):
super(generator, self).__init__()
if dataset == 'mnist' or dataset == 'fashion-mnist':
self.input_height = 28
self.input_width = 28
self.input_dim = 62
self.output_dim = 1
self.fc = nn.Sequential(
nn.Linear(self.input_dim, 1024),
nn.BatchNorm1d(1024),
nn.ReLU(),
nn.Linear(1024, 128 * (self.input_height // 4) * (self.input_width // 4)),
nn.BatchNorm1d(128 * (self.input_height // 4) * (self.input_width // 4)),
nn.ReLU(),
)
self.deconv = nn.Sequential(
nn.ConvTranspose2d(128, 64, 4, 2, 1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.ConvTranspose2d(64, self.output_dim, 4, 2, 1),
nn.Sigmoid(),
)
utils.initialize_weights(self)
def forward(self, input):
x = self.fc(input)
x = x.view(-1, 128, (self.input_height // 4), (self.input_width // 4))
x = self.deconv(x)
return x
class discriminator(nn.Module):
# It must be Auto-Encoder style architecture
# Architecture : (64)4c2s-FC32-FC64*14*14_BR-(1)4dc2s_S
def __init__(self, dataset = 'mnist'):
super(discriminator, self).__init__()
if dataset == 'mnist' or dataset == 'fashion-mnist':
self.input_height = 28
self.input_width = 28
self.input_dim = 1
self.output_dim = 1
self.conv = nn.Sequential(
nn.Conv2d(self.input_dim, 64, 4, 2, 1),
nn.ReLU(),
)
self.code = nn.Sequential(
nn.Linear(64 * (self.input_height // 2) * (self.input_width // 2), 32), # bn and relu are excluded since code is used in pullaway_loss
)
self.fc = nn.Sequential(
nn.Linear(32, 64 * (self.input_height // 2) * (self.input_width // 2)),
nn.BatchNorm1d(64 * (self.input_height // 2) * (self.input_width // 2)),
nn.ReLU(),
)
self.deconv = nn.Sequential(
nn.ConvTranspose2d(64, self.output_dim, 4, 2, 1),
#nn.Sigmoid(), # EBGAN does not work well when using Sigmoid().
)
utils.initialize_weights(self)
def forward(self, input):
x = self.conv(input)
x = x.view(x.size()[0], -1)
code = self.code(x)
x = self.fc(code)
x = x.view(-1, 64, (self.input_height // 2), (self.input_width // 2))
x = self.deconv(x)
return x, code
class EBGAN(object):
def __init__(self, args):
# parameters
self.epoch = args.epoch
self.sample_num = 64
self.batch_size = args.batch_size
self.save_dir = args.save_dir
self.result_dir = args.result_dir
self.dataset = args.dataset
self.log_dir = args.log_dir
self.gpu_mode = args.gpu_mode
self.model_name = args.gan_type
# EBGAN parameters
self.pt_loss_weight = 0.1
self.margin = max(1, self.batch_size / 64.) # margin for loss function
# usually margin of 1 is enough, but for large batch size it must be larger than 1
# networks init
self.G = generator(self.dataset)
self.D = discriminator(self.dataset)
self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))
if self.gpu_mode:
self.G.cuda()
self.D.cuda()
self.MSE_loss = nn.MSELoss().cuda()
else:
self.MSE_loss = nn.MSELoss()
print('---------- Networks architecture -------------')
utils.print_network(self.G)
utils.print_network(self.D)
print('-----------------------------------------------')
# load dataset
if self.dataset == 'mnist':
self.data_loader = DataLoader(datasets.MNIST('data/mnist', train=True, download=True,
transform=transforms.Compose(
[transforms.ToTensor()])),
batch_size=self.batch_size, shuffle=True)
elif self.dataset == 'fashion-mnist':
self.data_loader = DataLoader(
datasets.FashionMNIST('data/fashion-mnist', train=True, download=True, transform=transforms.Compose(
[transforms.ToTensor()])),
batch_size=self.batch_size, shuffle=True)
self.z_dim = 62
# fixed noise
if self.gpu_mode:
self.sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)).cuda(), volatile=True)
else:
self.sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)), volatile=True)
def train(self):
self.train_hist = {}
self.train_hist['D_loss'] = []
self.train_hist['G_loss'] = []
self.train_hist['per_epoch_time'] = []
self.train_hist['total_time'] = []
if self.gpu_mode:
self.y_real_, self.y_fake_ = Variable(torch.ones(self.batch_size, 1).cuda()), \
Variable(torch.zeros(self.batch_size, 1).cuda())
else:
self.y_real_, self.y_fake_ = Variable(torch.ones(self.batch_size, 1)), \
Variable(torch.zeros(self.batch_size, 1))
self.D.train()
print('training start!!')
start_time = time.time()
for epoch in range(self.epoch):
self.G.train()
epoch_start_time = time.time()
for iter, (x_, _) in enumerate(self.data_loader):
if iter == self.data_loader.dataset.__len__() // self.batch_size:
break
z_ = torch.rand((self.batch_size, self.z_dim))
if self.gpu_mode:
x_, z_ = Variable(x_.cuda()), Variable(z_.cuda())
else:
x_, z_ = Variable(x_), Variable(z_)
# update D network
self.D_optimizer.zero_grad()
D_real, D_real_code = self.D(x_)
D_real_err = self.MSE_loss(D_real, x_)
G_ = self.G(z_)
D_fake, D_fake_code = self.D(G_)
D_fake_err = self.MSE_loss(D_fake, G_.detach())
if list(self.margin-D_fake_err.data)[0] > 0:
D_loss = D_real_err + (self.margin - D_fake_err)
else:
D_loss = D_real_err
self.train_hist['D_loss'].append(D_loss.data[0])
D_loss.backward()
self.D_optimizer.step()
# update G network
self.G_optimizer.zero_grad()
G_ = self.G(z_)
D_fake, D_fake_code = self.D(G_)
D_fake_err = self.MSE_loss(D_fake, G_.detach())
G_loss = D_fake_err + self.pt_loss_weight * self.pullaway_loss(D_fake_code)
self.train_hist['G_loss'].append(G_loss.data[0])
G_loss.backward()
self.G_optimizer.step()
if ((iter + 1) % 100) == 0:
print("Epoch: [%2d] [%4d/%4d] time: %4.4f, D_loss: %.8f, G_loss: %.8f" %
((epoch + 1), (iter + 1), self.data_loader.dataset.__len__() // self.batch_size,
time.time() - start_time, D_loss.data[0], G_loss.data[0]))
self.train_hist['per_epoch_time'].append(time.time() - epoch_start_time)
self.visualize_results((epoch+1))
self.train_hist['total_time'].append(time.time() - start_time)
print("Avg one epoch time: %.2f, total %d epochs time: %.2f" % (np.mean(self.train_hist['per_epoch_time']),
self.epoch, self.train_hist['total_time'][0]))
print("Training finish!... save training results")
self.save()
utils.generate_animation(self.result_dir + '/' + self.model_dir + '/' + self.model_name, self.epoch)
utils.loss_plot(self.train_hist, os.path.join(self.save_dir, self.model_dir), self.model_name)
def pullaway_loss(self, embeddings):
""" pullaway_loss tensorflow version code
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
similarity = tf.matmul(
normalized_embeddings, normalized_embeddings, transpose_b=True)
batch_size = tf.cast(tf.shape(embeddings)[0], tf.float32)
pt_loss = (tf.reduce_sum(similarity) - batch_size) / (batch_size * (batch_size - 1))
return pt_loss
"""
norm = torch.sqrt(torch.sum(embeddings ** 2, 1, keepdim=True))
normalized_embeddings = embeddings / norm
similarity = torch.matmul(normalized_embeddings, normalized_embeddings.transpose(1, 0))
batch_size = embeddings.size()[0]
pt_loss = (torch.sum(similarity) - batch_size) / (batch_size * (batch_size - 1))
return pt_loss
def visualize_results(self, epoch, fix=True):
self.G.eval()
tot_num_samples = min(self.sample_num, self.batch_size)
image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
if fix:
""" fixed noise """
samples = self.G(self.sample_z_)
else:
""" random noise """
if self.gpu_mode:
sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)).cuda(), volatile=True)
else:
sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)), volatile=True)
samples = self.G(sample_z_)
if self.gpu_mode:
samples = samples.cpu().data.numpy().transpose(0, 2, 3, 1)
else:
samples = samples.data.numpy().transpose(0, 2, 3, 1)
utils.save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
utils.check_folder(self.result_dir + '/' + self.model_dir) + '/' +
self.model_name + '_epoch%03d' % epoch + '_test_all_classes.png')
@property
def model_dir(self):
return "{}_{}_{}_{}".format(
self.model_name, self.dataset,
self.batch_size, self.z_dim)
def save(self):
save_dir = os.path.join(self.save_dir, self.model_dir)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
torch.save(self.G.state_dict(), os.path.join(save_dir, self.model_name + '_G.pkl'))
torch.save(self.D.state_dict(), os.path.join(save_dir, self.model_name + '_D.pkl'))
with open(os.path.join(save_dir, self.model_name + '_history.pkl'), 'wb') as f:
pickle.dump(self.train_hist, f)
def load(self):
save_dir = os.path.join(self.save_dir, self.dataset, self.model_name)
self.G.load_state_dict(torch.load(os.path.join(save_dir, self.model_name + '_G.pkl')))
self.D.load_state_dict(torch.load(os.path.join(save_dir, self.model_name + '_D.pkl')))