-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathyolov10_l_syncbn_fast_8xb16-500e_coco.py
executable file
·358 lines (328 loc) · 11.5 KB
/
yolov10_l_syncbn_fast_8xb16-500e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
_base_ = ['../_base_/default_runtime.py', '../_base_/det_p5_tta.py']
# ========================Frequently modified parameters======================
# -----data related-----
work_dir = "/****/yolov10/exp/coco_align"
data_root = '/****/Detection/dataset/' # Root path of data
# Path of train annotation file
train_ann_file = 'annotations/instances_train2017.json'
train_data_prefix = 'train2017/' # Prefix of train image path
# Path of val annotation file
val_ann_file = 'annotations/instances_val2017.json'
val_data_prefix = 'val2017/' # Prefix of val image path
num_classes = 80 # Number of classes for classification
# Batch size of a single GPU during training
train_batch_size_per_gpu = 16
# Worker to pre-fetch data for each single GPU during training
train_num_workers = 12
# persistent_workers must be False if num_workers is 0
persistent_workers = True
log_interval = 5
# -----train val related-----
# Base learning rate for optim_wrapper. Corresponding to 8xb16=64 bs
base_lr = 0.01
max_epochs = 500 # Maximum training epochs
# Disable mosaic augmentation for final 10 epochs (stage 2)
close_mosaic_epochs = 10
model_test_cfg = dict(
# The config of multi-label for multi-class prediction.
multi_label=True,
# The number of boxes before NMS
nms_pre=30000,
one2one_withnms=False,
one2many_withnms=True,
score_thr=0.001, # Threshold to filter out boxes.
max_per_img=300) # Max number of detections of each image
# ========================Possible modified parameters========================
# -----data related-----
img_scale = (640, 640) # width, height
# Dataset type, this will be used to define the dataset
dataset_type = 'YOLOv5CocoDataset'
# Batch size of a single GPU during validation
val_batch_size_per_gpu = 16
# Worker to pre-fetch data for each single GPU during validation
val_num_workers = 8
# Config of batch shapes. Only on val.
# We tested YOLOv8-m will get 0.02 higher than not using it.
batch_shapes_cfg = None
# You can turn on `batch_shapes_cfg` by uncommenting the following lines.
# batch_shapes_cfg = dict(
# type='BatchShapePolicy',
# batch_size=val_batch_size_per_gpu,
# img_size=img_scale[0],
# # The image scale of padding should be divided by pad_size_divisor
# size_divisor=32,
# # Additional paddings for pixel scale
# extra_pad_ratio=0.5)
# -----model related-----
# The scaling factor that controls the depth of the network structure
deepen_factor = 1
# The scaling factor that controls the width of the network structure
widen_factor = 1
# Strides of multi-scale prior box
strides = [8, 16, 32]
# The output channel of the last stage
last_stage_out_channels = 512
num_det_layers = 3 # The number of model output scales
norm_cfg = dict(type='BN', momentum=0.03, eps=0.001) # Normalization config
# -----train val related-----
affine_scale = 0.5 # YOLOv5RandomAffine scaling ratio
# YOLOv5RandomAffine aspect ratio of width and height thres to filter bboxes
max_aspect_ratio = 100
one2many_tal_topk = 10 # Number of bbox selected in each level
one2many_tal_alpha = 0.5 # A Hyper-parameter related to alignment_metrics
one2many_tal_beta = 6.0 # A Hyper-parameter related to alignment_metrics
one2one_tal_topk = 1 # Number of bbox selected in each level
one2one_tal_alpha = 0.5 # A Hyper-parameter related to alignment_metrics
one2one_tal_beta = 6.0 # A Hyper-parameter related to alignment_metrics
infer_type = "one2one"
# TODO: Automatically scale loss_weight based on number of detection layers
loss_cls_weight = 0.5
loss_bbox_weight = 7.5
# Since the dfloss is implemented differently in the official
# and mmdet, we're going to divide loss_weight by 4.
loss_dfl_weight = 1.5 / 4
lr_factor = 0.01 # Learning rate scaling factor
weight_decay = 0.0005
# Save model checkpoint and validation intervals in stage 1
save_epoch_intervals = 10
# validation intervals in stage 2
val_interval_stage2 = 1
# The maximum checkpoints to keep.
max_keep_ckpts = 2
# Single-scale training is recommended to
# be turned on, which can speed up training.
env_cfg = dict(cudnn_benchmark=True)
# ===============================Unmodified in most cases====================
model = dict(
type='YOLODetector',
data_preprocessor=dict(
type='YOLOv5DetDataPreprocessor',
mean=[0., 0., 0.],
std=[255., 255., 255.],
bgr_to_rgb=True),
backbone=dict(
type='YOLOv10Backbone',
arch='P5',
last_stage_out_channels=last_stage_out_channels,
use_c2fcib=True, # Set to False only in YOLOv10 Nano
deepen_factor=deepen_factor,
widen_factor=widen_factor,
norm_cfg=norm_cfg,
act_cfg=dict(type='SiLU', inplace=True)),
neck=dict(
type='YOLOv10PAFPN',
deepen_factor=deepen_factor,
widen_factor=widen_factor,
in_channels=[256, 512, last_stage_out_channels],
out_channels=[256, 512, last_stage_out_channels],
num_csp_blocks=3,
norm_cfg=norm_cfg,
act_cfg=dict(type='SiLU', inplace=True)),
bbox_head=dict(
type='YOLOv10Head',
head_module=dict(
type='YOLOv10HeadModule',
num_classes=num_classes,
in_channels=[256, 512, last_stage_out_channels],
widen_factor=widen_factor,
reg_max=16,
norm_cfg=norm_cfg,
act_cfg=dict(type='SiLU', inplace=True),
featmap_strides=strides),
infer_type=infer_type,
prior_generator=dict(
type='mmdet.MlvlPointGenerator', offset=0.5, strides=strides),
bbox_coder=dict(type='DistancePointBBoxCoder'),
# scaled based on number of detection layers
loss_cls=dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=True,
reduction='none',
loss_weight=loss_cls_weight),
loss_bbox=dict(
type='IoULoss',
iou_mode='ciou',
bbox_format='xyxy',
reduction='sum',
loss_weight=loss_bbox_weight,
return_iou=False),
loss_dfl=dict(
type='mmdet.DistributionFocalLoss',
reduction='mean',
loss_weight=loss_dfl_weight)),
train_cfg=dict(
one2many_assigner=dict(
type='BatchTaskAlignedAssigner',
num_classes=num_classes,
use_ciou=True,
topk=one2many_tal_topk,
alpha=one2many_tal_alpha,
beta=one2many_tal_beta,
eps=1e-9),
one2one_assigner=dict(
type='BatchTaskAlignedAssigner',
num_classes=num_classes,
use_ciou=True,
topk=one2one_tal_topk,
alpha=one2one_tal_alpha,
beta=one2one_tal_beta,
eps=1e-9)
),
test_cfg=model_test_cfg)
albu_train_transforms = [
dict(type='Blur', p=0.01),
dict(type='MedianBlur', p=0.01),
dict(type='ToGray', p=0.01),
dict(type='CLAHE', p=0.01)
]
pre_transform = [
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
dict(type='LoadAnnotations', with_bbox=True)
]
last_transform = [
dict(
type='mmdet.Albu',
transforms=albu_train_transforms,
bbox_params=dict(
type='BboxParams',
format='pascal_voc',
label_fields=['gt_bboxes_labels', 'gt_ignore_flags']),
keymap={
'img': 'image',
'gt_bboxes': 'bboxes'
}),
dict(type='YOLOv5HSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction'))
]
train_pipeline = [
*pre_transform,
dict(
type='Mosaic',
img_scale=img_scale,
pad_val=114.0,
pre_transform=pre_transform),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
max_aspect_ratio=max_aspect_ratio,
# img_scale is (width, height)
border=(-img_scale[0] // 2, -img_scale[1] // 2),
border_val=(114, 114, 114)),
*last_transform
]
train_pipeline_stage2 = [
*pre_transform,
dict(type='YOLOv5KeepRatioResize', scale=img_scale),
dict(
type='LetterResize',
scale=img_scale,
allow_scale_up=True,
pad_val=dict(img=114.0)),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
max_aspect_ratio=max_aspect_ratio,
border_val=(114, 114, 114)), *last_transform
]
train_dataloader = dict(
batch_size=train_batch_size_per_gpu,
num_workers=train_num_workers,
persistent_workers=persistent_workers,
pin_memory=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='yolov5_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file=train_ann_file,
data_prefix=dict(img=train_data_prefix),
filter_cfg=dict(filter_empty_gt=False, min_size=32),
pipeline=train_pipeline))
test_pipeline = [
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
dict(type='YOLOv5KeepRatioResize', scale=img_scale),
dict(
type='LetterResize',
scale=img_scale,
allow_scale_up=False,
pad_val=dict(img=114)),
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'pad_param'))
]
val_dataloader = dict(
batch_size=val_batch_size_per_gpu,
num_workers=val_num_workers,
persistent_workers=persistent_workers,
pin_memory=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
test_mode=True,
data_prefix=dict(img=val_data_prefix),
ann_file=val_ann_file,
pipeline=test_pipeline,
batch_shapes_cfg=batch_shapes_cfg))
test_dataloader = val_dataloader
param_scheduler = None
optim_wrapper = dict(
type='OptimWrapper',
clip_grad=dict(max_norm=10.0),
optimizer=dict(
type='SGD',
lr=base_lr,
momentum=0.937,
weight_decay=weight_decay,
nesterov=True,
batch_size_per_gpu=train_batch_size_per_gpu),
constructor='YOLOv5OptimizerConstructor')
default_hooks = dict(
param_scheduler=dict(
type='YOLOv5ParamSchedulerHook',
scheduler_type='linear',
lr_factor=lr_factor,
max_epochs=max_epochs),
checkpoint=dict(
type='CheckpointHook',
interval=save_epoch_intervals,
save_best='auto',
max_keep_ckpts=max_keep_ckpts))
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0001,
update_buffers=True,
strict_load=False,
priority=49),
dict(
type='mmdet.PipelineSwitchHook',
switch_epoch=max_epochs - close_mosaic_epochs,
switch_pipeline=train_pipeline_stage2)
]
val_evaluator = dict(
type='mmdet.CocoMetric',
proposal_nums=(100, 1, 10),
ann_file=data_root + val_ann_file,
metric='bbox')
test_evaluator = val_evaluator
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=max_epochs,
val_interval=save_epoch_intervals,
dynamic_intervals=[((max_epochs - close_mosaic_epochs),
val_interval_stage2)])
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')