-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
991 lines (963 loc) · 49.8 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
<!DOCTYPE html>
<html>
<head>
<meta name="description" content="Project timeline">
<meta name="keywords" content="coding projects">
<meta name="author" content="TomMakesThings">
<meta name="viewport" content="width=device-width, initial-scale=1">
<!-- Website icon -->
<link rel="shortcut icon" type="image/x-icon" href="Assets/Icon/favicon.ico">
<!-- Tab name -->
<title>Tom's Project Timeline</title>
<!-- Links to the CSS stylesheets -->
<link rel="stylesheet" href="Stylesheets\main.css">
</head>
<body>
<div>
<h1 class="title">Project Timeline</h1>
<div class="timeline">
<div class="container left gillespie-mrna">
<h2 class="header gillespie-mrna-header">Gillespie mRNA Simulator (2022)</h2>
<div class="content">
<p>For this systems biology project, the dynamics of a dual reporter method were
modelled over time using the Gillespie algorithm.
In the reaction scheme, a modified gene produces two mRNAs which stochastically
transcribe different reporter proteins independently of one another.
Two different situations are modeled, where mRNA transcription is transcribed at a constant rate (function A),
or mRNA transcription is self-repressive (function B).
<div class="centered">
<p><img src="Assets/Images/mRNA-Over-Time.png" style="width: 100%; max-width: 600px;"></p>
</div>
<p class="centered"><span class="gillespie-mrna-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Gillespie-mRNA-Simulator" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Gillespie-mRNA-Simulator (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p class="centered"><span class="gillespie-mrna-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/R-Logo.png">
<p>R</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Rmarkdown-Logo.png">
<p>R Markdown</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/RStudio-Logo.png">
<p>RStudio</p>
</div>
</div>
</div>
</div>
<div class="container right wright-fisher">
<h2 class="header wright-fisher-header">Haploid and Diploid Wright-Fisher Simulator (2022)</h2>
<div class="content">
<p>To test the effects of selection, recombination and linkage disequilibrium (LD)
on haploid and diploid versions of the Wright-Fisher model of genetic drift,
I designed a simulator in Python.</p>
<p>For the haploid model, a panmictic population of size N over t generations
is created for a single loci with two alleles.
The simulator demonstrates that positive selection can increase speed and rate of fixation
of an allele in a population.
For the diploid model, a population is initialised with two alleles in LD.
The simulator can shown how LD can break down faster with higher recombination / negative selection.</p>
<video autoplay muted loop>
<source src="Assets/Videos/Wright-Fisher.mp4" type="video/mp4">
</video>
<p class="centered"><span class="wright-fisher-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Wright-Fisher-Simulator" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Wright-Fisher-Simulator (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p class="centered"><span class="wright-fisher-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Python-Logo.png">
<p>Python</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Jupyter-Logo.png">
<p>Jupyter Notebook</p>
</div>
</div>
</div>
</div>
<div class="container left phylogenetic-tree">
<h2 class="header phylogenetic-tree-header">Phylogenetic Tree Inference (2022)</h2>
<div class="content">
<p>The goal of this project was to find the optimal mutation rate (μ) or single nucleotide polymorphism (SNP)
assignments of an evolutionary tree.
In this model, the evolutionary tree is assumed to follow the Jukes-Cantor model of DNA sequence evolution.
Felsenstein’s pruning algorithm is applied to compute the likelihood of the tree from the terminal taxa's nucleotides.
Maximising the log likelihood by testing different parameters allows the most likely μ or SNPs to be determined.</p>
<video autoplay muted loop>
<source src="Assets/Videos/Evolutionary-Tree.mp4" type="video/mp4">
</video>
<p class="centered"><span class="phylogenetic-tree-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Phylogenetic-Tree-Inference/tree/main" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Phylogenetic-Tree-Inference (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p class="centered"><span class="phylogenetic-tree-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Python-Logo.png">
<p>Python</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Jupyter-Logo.png">
<p>Jupyter Notebook</p>
</div>
</div>
</div>
</div>
<div class="container right metastatic-patterns">
<h2 class="header metastatic-patterns-header">Genomic Characterization of Metastatic Patterns (2022)</h2>
<div class="content">
<p>In an MPhil group project, we used the MSK-MET dataset containing genomic alterations for different types of cancer
to investigate associations between genomic mechanisms and metastasis for 50 tumour types.
The goal was to recreate and extend the results from the paper:
"Genomic Characterization of Metastatic Patterns from Prospective Clinical Sequencing of 25,000 Patients".</p>
<p>Some of my contributions include:
<ul>
<li>Calculation of fraction genome altered (FGA) and whole genome duplication (WGD)</li>
<li>Annotating actionability of somatic alterations with OncoKB</li>
<li>Quantifying arm-level copy number abberation (CNA) with ASCETS</li>
</ul>
</p>
<video autoplay muted loop controls>
<source src="Assets/Videos/Metastatic-Patterns.mp4" type="video/mp4">
</video>
<p class="centered"><span class="metastatic-patterns-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Genomic-Metastatic-Patterns" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Genomic-Metastatic-Patterns (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p class="centered"><span class="metastatic-patterns-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/R-Logo.png">
<p>R</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Rmarkdown-Logo.png">
<p>R Markdown</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/RStudio-Logo.png">
<p>RStudio</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/OncoKB-Logo.png">
<p>OncoKB</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/cBioPortal-Logo.png">
<p>cBioPortal</p>
</div>
</div>
</div>
</div>
<div class="container left cancer-evolution">
<h2 class="header cancer-evolution-header">SNV Cancer Evolution Estimation (2022)</h2>
<div class="content">
<p>In this project, the clonal structure of a neoplastic tumour sample was estimated on the basis that closely related cells share sets of SNVs.
The predicted structure allowed a clonal evolutionary tree to be derived and
was used to calculate statistics for quantifying tumor heterogeneity and evolution.</p>
<video autoplay muted loop>
<source src="Assets/Videos/Cancer-Evolution.mp4" type="video/mp4">
</video>
<p class="centered"><span class="cancer-evolution-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Cancer-Evolution" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Cancer-Evolution (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p class="centered"><span class="cancer-evolution-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Python-Logo.png">
<p>Python</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Jupyter-Logo.png">
<p>Jupyter Notebook</p>
</div>
</div>
</div>
</div>
<div class="container right gsa-hmm">
<h2 class="header gsa-hmm-header">Genome Sequence Analysis with a Hidden Markov Model (2022)</h2>
<div class="content">
<p>To annotate coding regions of DNA in <em>S. cerevisiae</em> chromosome III, a Hidden Markov model (HMM)
was implemented from scratch to model %GC across regions of the genome.
Model parameters were estimated via the Baum-Welch algorithm.
This allowed non-coding regions (state 0) and coding regions (state 1) to be inferred through estimating the most probable
sequence of hidden states via the Viterbi algorithm.</p>
<p>The HMM annotations are fairly accurate, with the model able to identify the high %GC telomeric
region TEL03L, and the rough location of some pseudogenes and genes such as <em>YCL068C</em>.</p>
<video autoplay muted loop>
<source src="Assets/Videos/HMM.mp4" type="video/mp4">
</video>
<p class="centered"><span class="gsa-hmm-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Genome-Sequence-Analysis-HMM" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Genome-Sequence-Analysis-HMM (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p class="centered"><span class="gsa-hmm-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Python-Logo.png">
<p>Python</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Jupyter-Logo.png">
<p>Jupyter Notebook</p>
</div>
</div>
</div>
</div>
<div class="container left hopfield">
<h2 class="header hopfield-header">Hopfield Network (2021)</h2>
<div class="content">
<p>In this work, a Hopfield network was created for simple pattern recognition.
It was then evaluated by its capacity to recall patterns using either the Hebbian or Storkey learning rules,
demonstrating that Storkey learning allows the network to retain a higher capacity.</p>
<div class="centered">
<p><img src="Assets/Images/Hopfield-Network.png" style="width: 100%; max-width: 600px;"></p>
</div>
<p class="centered"><span class="hopfield-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Hopfield-Network" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Hopfield-Network (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p class="centered"><span class="hopfield-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Python-Logo.png">
<p>Python</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Jupyter-Logo.png">
<p>Jupyter Notebook</p>
</div>
</div>
</div>
</div>
<div class="container right magic-19">
<h2 class="header magic-19-header">Solving the Magic 19 Puzzle through Simulated Annealing (2021)</h2>
<div class="content">
<p>Given 19 dots arranged in a hexagon, the aim of the magic 19 puzzle is to label the dots with the numbers
1 to 19 so that each set of three dots that lie along a straight-line segment add up to 22.</p>
<p>Simulated annealing is a heuristic method for solving optimisation problems.
Applying simulated annealing to the puzzle, I made an R script that finds all four solutions.
<div class="centered">
<p><img src="Assets/Images/Magic-19.png" style="width: 100%; max-width: 480px;"></p>
</div>
<p class="centered"><span class="magic-19-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Magic-19" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Magic-19 (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p class="centered"><span class="magic-19-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/R-Logo.png">
<p>R</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/RStudio-Logo.png">
<p>RStudio</p>
</div>
</div>
</div>
</div>
<div class="container left pyramid">
<h2 class="header pyramid-header">Joe's Pyramid Solver (2021)</h2>
<div class="content">
<p>Joe’s pyramid is a puzzle in which every stone is marked with a different one or two digit positive number.
Where a stone rests on two others, its number is the sum of the numbers marked on the two stones on which it rests.
The challenge is to find the value of the top stone X.</p>
<p>The puzzle is impossible to solve through brute force with 806 billion possible permutations for the lowest level alone.
However, marking each stone on this level with a, b, c, d, e, f, and using the constraint that
X = a + 5b + 10c + 10d + 5e + f, I made a script to solve the puzzle.</p>
<video autoplay muted loop>
<source src="Assets/Videos/Joes-Pyramid.mp4" type="video/mp4">
</video>
<p class="centered"><span class="pyramid-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Joes-Pyramid" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Joes-Pyramid (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p class="centered"><span class="pyramid-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/R-Logo.png">
<p>R</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/RStudio-Logo.png">
<p>RStudio</p>
</div>
</div>
</div>
</div>
<div class="container right stan-mm">
<h2 class="header stan-mm-header">Stan Differential Expression Mixture Model (2021)</h2>
<div class="content">
<p>During a research internship, I made a prototype for a new mixture model to
detect differential expression in scRNA-seq data.
For this I used Stan's automatic variational inference algorithm to model
the posterior distribution of inter-individual differences from the grand means of genes.</p>
<video autoplay muted loop>
<source src="Assets/Videos/Stan-Mixture-Model.mp4" type="video/mp4">
</video>
<p class="centered"><span class="stan-mm-span">GitHub Repository (Private):</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/tt104/Stan-Bayesian-Mixed-Model" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Stan-Bayesian-Mixed-Model (tt104)</p>
</a>
</div>
</div>
<div class="centered">
<p class="centered"><span class="stan-mm-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/R-Logo.png">
<p>R</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Stan-Logo.png">
<p>Stan</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/RStudio-Logo.png">
<p>RStudio</p>
</div>
</div>
</div>
</div>
<div class="container left plasmid">
<h2 class="header plasmid-header">PseudobuLk and Single cell Mixture models for Investigating Differential expression (PLASMID) (2021)</h2>
<div class="content">
<p>During an internship, I worked in collaboration with UK DIR Imperial College London
on an ongoing project to robustly detect irregularities in microglia gene expression in Alzheimer’s patients.
It is hoped this work can provide guidance for other researchers to reduce FDR in scRNA-seq differential
expression analysis.</p>
<p>My contribution was creating PLASMID - a parallelizable Snakemake pipeline to benchmark
pseudobulk, pseudoreplicate and mixture model differential expression methods.
Supported methods include: DESeq2, edgeR, limma, Welch and Wilcoxon t-tests, MAST and NEBULA.
By testing different parameter combinations, this gives 41 total variants.</p>
<p>After running each method, log fold-change and adjusted p-values are outputted and the results visualised
through custom built interactive graphs.
These allow a user to visually identify up and down regulated genes and compare the methods against an
expected ground truth.</p>
<video autoplay muted loop>
<source src="Assets/Videos/PLASMID.mp4" type="video/mp4">
</video>
<p class="centered"><span class="plasmid-span">Publication:</span></p>
<p class="centered"><i>Not yet avaliable</i></p>
<p class="centered"><span class="plasmid-span">GitHub Repository (Private):</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/PLASMID" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">PLASMID (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p class="centered"><span class="plasmid-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/R-Logo.png">
<p>R</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Python-Logo.png">
<p>Python</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/YAML-Logo.png" style="height: 30px;">
<p>YAML</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Plotly-Logo.png">
<p>Plotly</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/RStudio-Logo.png">
<p>RStudio</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Snakemake-Logo.png">
<p>Snakemake</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Anaconda-Logo.png">
<p>Anaconda</p>
</div>
</div>
</div>
</div>
<div class="container right bayesian-mm">
<h2 class="header bayesian-mm-header">Bayesian Mixture Model For scRNA-seq Clustering (2021)</h2>
<div class="content">
<p>During a research internship, I helped test a novel Bayesian mixture model for clustering scRNA-seq data
from mouse cortex and hippocampus, with the aim of identifying cell type markers in an interpretable way.
This involved:</p>
<ul>
<li>Creating interactive graphs to detect patterns of mean gene expression in clusters</li>
<li>Assisting development of the Snakemake pipeline</li>
<li>Code documentation</li>
</ul>
<video autoplay muted loop>
<source src="Assets/Videos/Bayesian-Mixture-Model.mp4" type="video/mp4">
</video>
<p class="centered"><span class="bayesian-mm-span">Publication:</span></p>
<p class="centered"><a href="https://www.biorxiv.org/content/10.1101/2021.05.19.444841v2" target="_blank" rel="noopener noreferrer">Identifying sub-populations of cells in single cell transcriptomic data – a Bayesian mixture model approach to zero-inflation of counts</a></p>
<p class="centered"><span class="bayesian-mm-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/tt104/scmixture" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">scmixture (tt104)</p>
</a>
</div>
</div>
<div class="centered">
<p class="centered"><span class="bayesian-mm-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/R-Logo.png">
<p>R</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Python-Logo.png">
<p>Python</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Plotly-Logo.png">
<p>Plotly</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/RStudio-Logo.png">
<p>RStudio</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Snakemake-Logo.png">
<p>Snakemake</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Anaconda-Logo.png">
<p>Anaconda</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Singularity-Logo.png">
<p>Singularity</p>
</div>
</div>
</div>
</div>
<div class="container left clustering-tda">
<h2 class="header clustering-tda-header">Clustering and Topological Data Analysis of Single-Cell RNA Sequencing Data (2020 - 2021)</h2>
<div class="content">
<p>For my Computer Science undergraduate final year project, I identified sub-populations
of cells in scRNA-seq data dervied from lung adenocarcinoma, mouse cortex/hippocampus and simulated data.
To do this, I experimented with various dimensionality reduction techniques including autoencoders and
clustering methods.
As a further exploration tool, I performed topological data analysis using the Mapper algorithm which revealed
a detectable difference between real and simulated data.
</p>
<video autoplay muted loop controls>
<source src="Assets/Videos/Clustering-TDA.mp4" type="video/mp4">
</video>
<p class="centered"><span class="clustering-tda-span">Project Report:</span></p>
<p class="centered"><a href="https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/Paper/Clustering-and-TDA-of-scRNA-seq-Data.pdf" target="_blank" rel="noopener noreferrer">Clustering and Topological Data Analysis of Single-Cell RNA Sequencing Data</a></p>
<p class="centered"><span class="clustering-tda-span">Website:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/Clustering-and-TDA-Icon.png" style="height: 35px; left: -5px;">
<p class="icon-text">https://tommakesthings.github.io/Clustering-and-TDA-of-scRNA-seq-Data/</p>
</a>
</div>
</div>
<p class="centered"><span class="clustering-tda-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Clustering-and-TDA-of-scRNA-seq-Data" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Clustering-and-TDA-of-scRNA-seq-Data (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p><span class="clustering-tda-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Python-Logo.png">
<p>Python</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/PyTorch-Logo.png">
<p>PyTorch</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/PyTorch-Lightning-Logo.png">
<p>PyTorch Lightning</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/scikit-learn-Logo.png">
<p>scikit-learn</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/R-Logo.png">
<p>R</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Plotly-Logo.png">
<p>Plotly</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Jupyter-Logo.png">
<p>Jupyter Notebook</p>
</div>
<div class="tool-container">
<img class="tool-logo" style="height: 50px;" src="Assets/Images/Colab-Logo.png">
<p>Google Colab</p>
</div>
</div>
</div>
</div>
<div class="container right genre-predictor">
<h2 class="header genre-predictor-header">IMDb Movie Genre Predictor (2021)</h2>
<div class="content">
<p>In a natural language processing (NLP) group project, I tested different NLP techniques and model
architectures to create a CI/CD pipeline to train and deploy a multi-label classifier.
The classifier was trained on a dataset of movie descriptions to predict the top fitting genre(s) from 12 options.
The state of the best model was saved to file and deployed on a custom built web server.</p>
<video autoplay muted loop>
<source src="Assets/Videos/Movie-Genre-Predictor.mp4" type="video/mp4">
</video>
<p class="centered"><span class="genre-predictor-span">Website:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://tommakesthings.github.io/Movie-Genre-Predictor/" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/Clapper-Icon.png">
<p class="icon-text">https://tommakesthings.github.io/Movie-Genre-Predictor/</p>
</a>
</div>
</div>
<p class="centered"><span class="genre-predictor-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Movie-Genre-Predictor" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Movie-Genre-Predictor (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p><span class="genre-predictor-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Python-Logo.png">
<p>Python</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/PyTorch-Logo.png">
<p>PyTorch</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/scikit-learn-Logo.png">
<p>scikit-learn</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Plotly-Logo.png">
<p>Plotly</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Jupyter-Logo.png">
<p>Jupyter Notebook</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Anaconda-Logo.png">
<p>Anaconda</p>
</div>
</div>
</div>
</div>
<div class="container left ecg-classifier">
<h2 class="header ecg-classifier-header">Semi-Supervised Learning with TCNs for ECG Classification (2021)</h2>
<div class="content">
<p>A degree project I managed in which we experimented using a new semi-supervised learning approach to identify arrhythmia (a type of heart
condition) from ECG time-series data.</p>
<p>We applied k-means clustering to create new labels for each ECG and used them to train a temporal convolutional network (TCN).
Then we employed transfer learning to create a new network for classifying the original arrhythmia labels.</p>
<p>While transferring network weights did not make a significant difference compared to training the network without,
our final model achieved 97% accuracy demonstrating a simple TCN architecture is just as, if not more suitable for time series ECGs than many
highly optimized CNN or LSTM architectures published in literature at the time.
</p>
<video autoplay muted loop>
<source src="Assets/Videos/ECG-Classifier.mp4" type="video/mp4">
</video>
<p class="centered"><span class="ecg-classifier-span">Website:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://tommakesthings.github.io/Semi-Supervised-ECG-Classifier/" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/Heart-Icon.png">
<p class="icon-text">https://tommakesthings.github.io/Semi-Supervised-ECG-Classifier/</p>
</a>
</div>
</div>
<p class="centered"><span class="ecg-classifier-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Semi-Supervised-ECG-Classifier" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Semi-Supervised Learning with TCNs for ECG Classification (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p><span class="ecg-classifier-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Python-Logo.png">
<p>Python</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/TensorFlow-Logo.png">
<p>TensorFlow</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/scikit-learn-Logo.png">
<p>scikit-learn</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Jupyter-Logo.png">
<p>Jupyter Notebook</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Colab-Logo.png">
<p>Google Colab</p>
</div>
</div>
</div>
</div>
<div class="container right ga-nn">
<h2 class="header ga-nn-header">Genetic Algorithm for Neural Network Weight Optimisation (2020)</h2>
<div class="content">
<p>The aim is to train a feed-forward, multi-layer perceptron to approximate the function
y = sin(2x₁ + 2) + cos(0.5x₂) + 0.5, given that x₁, x₂ ∈ [0, π].
To optimize the network's weights, a genetic algorithm was implemented as the optimization algorithm.
To aid convergence, local learning via Rprop was applied using approaches inspired by Lamarckian and
Baldwinian models of evolution.</p>
<p><img src="Assets/Images/Computational-Intelligence-NN.png" width="100%"></p>
<p class="centered"><span class="ga-nn-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Computational-Intelligence-Neural-Network" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Computational-Intelligence-Neural-Network (TomMakesThings)</p>
</a>
</div>
</div>
<p class="centered"><span class="ga-nn-span">Languages and Tools:</span></p>
<div class="centered">
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Python-Logo.png">
<p>Python</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/PyTorch-Logo.png">
<p>PyTorch</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Jupyter-Logo.png">
<p>Jupyter Notebook</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Colab-Logo.png">
<p>Google Colab</p>
</div>
</div>
</div>
</div>
<div class="container left nsga-ii">
<h2 class="header nsga-ii-header">Non-Dominated Sorting Genetic Algorithm (NSGA-II) (2020)</h2>
<div class="content">
<p>Given two functions f₁ and f₂, and the task is to find min{f₁, f₂},
an elitist NSGA-II was implemented to find the optimal candidates for x₁ x₂ x₃
which satisfy this multi-objective optimisation problem.</p>
<video autoplay muted loop style="max-width: 400px;">
<source src="Assets/Videos/NSGA-II.mp4" type="video/mp4">
</video>
<p class="centered"><span class="nsga-ii-span">GitHub Repository: </span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Computational-Intelligence-Genetic-Algorithm" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Computational-Intelligence-Genetic-Algorithm (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p><span class="nsga-ii-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Python-Logo.png">
<p>Python</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Jupyter-Logo.png">
<p>Jupyter Notebook</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Colab-Logo.png">
<p>Google Colab</p>
</div>
</div>
</div>
</div>
<div class="container right vigenere-cracker">
<h2 class="header vigenere-cracker-header">Vigenère Cipher Cracker (2020)</h2>
<div class="content">
<p>The Vigenère cipher is a type of substitution cipher used to encrypt plaintext.
Normally it is hard to crack. However, given two ciphertexts encrypted under the same key and a list of potential plaintext solutions, it is possible to obtain the key through brute force.
In this project, I created a Java class VigenereCracker that can break the cipher.</p>
<video autoplay muted loop>
<source src="Assets/Videos/Vigenere.mp4" type="video/mp4">
</video>
<p class="centered"><span class="vigenere-cracker-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Vigenere-Cracker" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Vigenere-Cracker (TomMakesThings)</p>
</a>
</div>
</div>
<p class="centered"><span class="vigenere-cracker-span">Languages and Tools:</span></p>
<div class="centered">
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Java-Logo.png">
<p>Java</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Eclipse-Logo.png">
<p>Eclipse</p>
</div>
</div>
</div>
</div>
<div class="container left sinhala-ocr">
<h2 class="header sinhala-ocr-header">Sinhala Script Optical Character Recognition (2020)</h2>
<div class="content">
<p>In this project, I experimented creating a basic optical character recognition (OCR) system that can take images of printed
Sinhalese characters and to convert them to machine readable text using a KNN classifier.</p>
<div class="centered">
<p><img src="Assets/Images/Sinhala.png" style="width: 100%; max-width: 480px;"></p>
</div>
<p class="centered"><span class="sinhala-ocr-span">GitHub Repository: </span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Sinhala-Optical-Character-Recognition" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Sinhala-Optical-Character-Recognition (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p class="centered"><span class="sinhala-ocr-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Python-Logo.png">
<p>Python</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/scikit-learn-Logo.png">
<p>scikit-learn</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Jupyter-Logo.png">
<p>Jupyter Notebook</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Colab-Logo.png">
<p>Google Colab</p>
</div>
</div>
</div>
</div>
<div class="container right subs">
<h2 class="header subs-header">SUBS web application (2020)</h2>
<div class="content">
<p>Surrey University Buy & Sell (SUBS) is a web application to allow Surrey University students to sell their unwanted goods.
It was developed as part of a seven person, undergraduate group project using Ruby on Rails (a web framework with an MVC architecture).
Although it was not officially launched, a prototype is hosted on Heroku.</p>
<p>My role for this project included:</p>
<ul>
<li>Project management (arranging team meetings, coordination with the project sponsor, contacting members
individually to solve issues and tracking the overall progress of the project to ensure deadlines were met)</li>
<li>Front end and back end development</li>
<li>Graphics design</li>
</ul>
<video autoplay muted loop>
<source src="Assets/Videos/SUBS.mp4" type="video/mp4">
</video>
<p class="centered"><span class="subs-span">Website:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="http://subs-heroku.herokuapp.com/" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/SUBS-Icon.png" style="height: 35px; left: -2px;">
<p class="icon-text">http://subs-heroku.herokuapp.com/</p>
</a>
</div>
</div>
<p class="centered"><span class="subs-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/vb00232/subs" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">subs (vb00232)</p>
</a>
</div>
</div>
<div class="centered">
<p><span class="subs-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Ruby-Logo.png">
<p>Ruby</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Rails-Logo.png">
<p>Rails</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/HTML-Logo.png">
<p>HTML</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/JavaScript-Logo.png">
<p>JavaScript</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/SCSS-Logo.png">
<p>SCSS</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Atom-Logo.png">
<p>Atom</p>
</div>
</div>
</div>
</div>
<div class="container left wrench-mask">
<h2 class="header wrench-mask-header">Bluetooth Controlled Wrench Mask (2018 - 2019)</h2>
<div class="content">
<p>As a fun project, I created a unique, real life version Wrench's light up mask (from Watch Dogs 2) using an Arduino UNO.
The LED matricies are controllable over bluetooth by a custom made Android application.</p>
<video autoplay muted loop>
<source src="Assets/Videos/App-Connection.mov" type="video/mp4">
</video>
<p class="centered"><span class="wrench-mask-span">Website: </span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://tommakesthings.github.io/Bluetooth-Wrench-Mask/" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/Wrench-Icon.png">
<p class="icon-text">https://tommakesthings.github.io/Bluetooth-Wrench-Mask/</p>
</a>
</div>
</div>
<p class="centered"><span class="wrench-mask-span">GitHub Repository: </span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Bluetooth-Wrench-Mask" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Bluetooth-Wrench-Mask (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p><span class="wrench-mask-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Arduino-Logo.png">
<p>Arduino</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Java-Logo.png">
<p>Java</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Android-Studio-Logo.png">
<p>Android Studio</p>
</div>
</div>
</div>
</div>
<div class="container right obstacle-course">
<h2 class="header obstacle-course-header">Genetic Algorithm Stick Figure Obstacle Course Solver (2017 - 2018)</h2>
<div class="content">
<p>For my A level Computer Science project, I designed a genetic algorithm (a heuristic search algorithm inspired by
natural selection) that over time allows a population of stick figures to learn to solve an obstical course.</p>
<video autoplay muted loop>
<source src="Assets/Videos/Stick-Figure.mp4" type="video/mp4">
</video>
<p class="centered"><span class="obstacle-course-span">GitHub Repository:</span></p>
<div class="centered-div">
<div class="icon-container">
<a href="https://github.com/TomMakesThings/Stick-Figure-Obstacle-Course" target="_blank" rel="noopener noreferrer">
<img class="icon" src="Assets/Images/GitHub-Logo.png">
<p class="icon-text">Stick-Figure-Obstacle-Course (TomMakesThings)</p>
</a>
</div>
</div>
<div class="centered">
<p><span class="obstacle-course-span">Languages and Tools:</span></p>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Python-Logo.png">
<p>Python</p>
</div>
<div class="tool-container">
<img class="tool-logo" src="Assets/Images/Wing-Logo.png">
<p>Wing IDE</p>
</div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>