-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy path1iyp.txt
606 lines (540 loc) · 34.3 KB
/
1iyp.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
Distributor ID: Ubuntu
Description: Ubuntu 16.04.4 LTS
Release: 16.04
Codename: xenial
Architecture: armhf
Uptime: 19:34:42 up 1:00, 1 user, load average: 0.35, 1.41, 2.97
Linux 4.4.49-s5p6818 (FriendlyELEC) 07/27/18 _armv7l_ (8 CPU)
avg-cpu: %user %nice %system %iowait %steal %idle
16.23 0.13 0.56 0.22 0.00 82.86
Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
mmcblk0 6.53 183.83 2869.04 668994 10440936
mmcblk0boot1 0.01 0.06 0.00 216 0
mmcblk0boot0 0.01 0.06 0.00 216 0
total used free shared buff/cache available
Mem: 1.9G 369M 1.1G 44M 473M 1.4G
Swap: 0B 0B 0B
##########################################################################
Executing tinymembench on a little core:
tinymembench v0.4.9 (simple benchmark for memory throughput and latency)
==========================================================================
== Memory bandwidth tests ==
== ==
== Note 1: 1MB = 1000000 bytes ==
== Note 2: Results for 'copy' tests show how many bytes can be ==
== copied per second (adding together read and writen ==
== bytes would have provided twice higher numbers) ==
== Note 3: 2-pass copy means that we are using a small temporary buffer ==
== to first fetch data into it, and only then write it to the ==
== destination (source -> L1 cache, L1 cache -> destination) ==
== Note 4: If sample standard deviation exceeds 0.1%, it is shown in ==
== brackets ==
==========================================================================
C copy backwards : 1640.0 MB/s (1.3%)
C copy backwards (32 byte blocks) : 1650.6 MB/s (0.3%)
C copy backwards (64 byte blocks) : 1664.8 MB/s (0.4%)
C copy : 1536.6 MB/s (0.3%)
C copy prefetched (32 bytes step) : 1628.6 MB/s
C copy prefetched (64 bytes step) : 1635.5 MB/s
C 2-pass copy : 1326.6 MB/s (0.7%)
C 2-pass copy prefetched (32 bytes step) : 1423.5 MB/s
C 2-pass copy prefetched (64 bytes step) : 1414.1 MB/s
C fill : 4542.5 MB/s
C fill (shuffle within 16 byte blocks) : 4542.1 MB/s
C fill (shuffle within 32 byte blocks) : 4542.4 MB/s (0.2%)
C fill (shuffle within 64 byte blocks) : 4540.7 MB/s
---
standard memcpy : 1667.6 MB/s (0.8%)
standard memset : 3709.6 MB/s
---
NEON read : 2154.4 MB/s (0.2%)
NEON read prefetched (32 bytes step) : 3428.6 MB/s
NEON read prefetched (64 bytes step) : 3435.2 MB/s
NEON read 2 data streams : 1969.1 MB/s
NEON read 2 data streams prefetched (32 bytes step) : 3329.3 MB/s
NEON read 2 data streams prefetched (64 bytes step) : 3336.5 MB/s
NEON copy : 1553.0 MB/s (0.3%)
NEON copy prefetched (32 bytes step) : 1668.6 MB/s
NEON copy prefetched (64 bytes step) : 1672.3 MB/s
NEON unrolled copy : 1531.9 MB/s (0.5%)
NEON unrolled copy prefetched (32 bytes step) : 1736.7 MB/s
NEON unrolled copy prefetched (64 bytes step) : 1739.2 MB/s (0.2%)
NEON copy backwards : 1648.6 MB/s (0.6%)
NEON copy backwards prefetched (32 bytes step) : 1741.6 MB/s
NEON copy backwards prefetched (64 bytes step) : 1739.6 MB/s
NEON 2-pass copy : 1371.0 MB/s
NEON 2-pass copy prefetched (32 bytes step) : 1453.9 MB/s
NEON 2-pass copy prefetched (64 bytes step) : 1455.7 MB/s
NEON unrolled 2-pass copy : 1350.8 MB/s
NEON unrolled 2-pass copy prefetched (32 bytes step) : 1558.4 MB/s
NEON unrolled 2-pass copy prefetched (64 bytes step) : 1585.6 MB/s
NEON fill : 4543.7 MB/s
NEON fill backwards : 4543.1 MB/s
VFP copy : 1541.3 MB/s (0.5%)
VFP 2-pass copy : 1340.4 MB/s
ARM fill (STRD) : 3709.8 MB/s (0.2%)
ARM fill (STM with 8 registers) : 4537.8 MB/s
ARM fill (STM with 4 registers) : 4526.0 MB/s
ARM copy prefetched (incr pld) : 1654.0 MB/s
ARM copy prefetched (wrap pld) : 1622.0 MB/s (0.3%)
ARM 2-pass copy prefetched (incr pld) : 1397.8 MB/s
ARM 2-pass copy prefetched (wrap pld) : 1392.4 MB/s
==========================================================================
== Framebuffer read tests. ==
== ==
== Many ARM devices use a part of the system memory as the framebuffer, ==
== typically mapped as uncached but with write-combining enabled. ==
== Writes to such framebuffers are quite fast, but reads are much ==
== slower and very sensitive to the alignment and the selection of ==
== CPU instructions which are used for accessing memory. ==
== ==
== Many x86 systems allocate the framebuffer in the GPU memory, ==
== accessible for the CPU via a relatively slow PCI-E bus. Moreover, ==
== PCI-E is asymmetric and handles reads a lot worse than writes. ==
== ==
== If uncached framebuffer reads are reasonably fast (at least 100 MB/s ==
== or preferably >300 MB/s), then using the shadow framebuffer layer ==
== is not necessary in Xorg DDX drivers, resulting in a nice overall ==
== performance improvement. For example, the xf86-video-fbturbo DDX ==
== uses this trick. ==
==========================================================================
NEON read (from framebuffer) : 64.3 MB/s
NEON copy (from framebuffer) : 63.5 MB/s
NEON 2-pass copy (from framebuffer) : 63.1 MB/s
NEON unrolled copy (from framebuffer) : 63.6 MB/s
NEON 2-pass unrolled copy (from framebuffer) : 62.7 MB/s
VFP copy (from framebuffer) : 425.8 MB/s
VFP 2-pass copy (from framebuffer) : 394.8 MB/s
ARM copy (from framebuffer) : 229.9 MB/s
ARM 2-pass copy (from framebuffer) : 220.6 MB/s (0.3%)
==========================================================================
== Memory latency test ==
== ==
== Average time is measured for random memory accesses in the buffers ==
== of different sizes. The larger is the buffer, the more significant ==
== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==
== accesses. For extremely large buffer sizes we are expecting to see ==
== page table walk with several requests to SDRAM for almost every ==
== memory access (though 64MiB is not nearly large enough to experience ==
== this effect to its fullest). ==
== ==
== Note 1: All the numbers are representing extra time, which needs to ==
== be added to L1 cache latency. The cycle timings for L1 cache ==
== latency can be usually found in the processor documentation. ==
== Note 2: Dual random read means that we are simultaneously performing ==
== two independent memory accesses at a time. In the case if ==
== the memory subsystem can't handle multiple outstanding ==
== requests, dual random read has the same timings as two ==
== single reads performed one after another. ==
==========================================================================
block size : single random read / dual random read, [MADV_NOHUGEPAGE]
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 4.9 ns / 8.3 ns
131072 : 7.5 ns / 11.6 ns
262144 : 8.9 ns / 12.9 ns
524288 : 11.2 ns / 15.9 ns
1048576 : 81.2 ns / 123.7 ns
2097152 : 118.5 ns / 158.1 ns
4194304 : 142.9 ns / 177.7 ns
8388608 : 155.3 ns / 187.6 ns
16777216 : 162.6 ns / 194.6 ns
33554432 : 167.1 ns / 199.4 ns
67108864 : 169.9 ns / 202.5 ns
block size : single random read / dual random read, [MADV_HUGEPAGE]
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 4.9 ns / 8.3 ns
131072 : 7.5 ns / 11.5 ns
262144 : 8.8 ns / 12.9 ns
524288 : 10.9 ns / 15.5 ns
1048576 : 80.9 ns / 123.7 ns
2097152 : 117.9 ns / 158.2 ns
4194304 : 135.2 ns / 167.1 ns
8388608 : 144.4 ns / 171.1 ns
16777216 : 148.9 ns / 172.8 ns
33554432 : 151.1 ns / 173.6 ns
67108864 : 152.3 ns / 173.9 ns
Executing tinymembench on a big core:
tinymembench v0.4.9 (simple benchmark for memory throughput and latency)
==========================================================================
== Memory bandwidth tests ==
== ==
== Note 1: 1MB = 1000000 bytes ==
== Note 2: Results for 'copy' tests show how many bytes can be ==
== copied per second (adding together read and writen ==
== bytes would have provided twice higher numbers) ==
== Note 3: 2-pass copy means that we are using a small temporary buffer ==
== to first fetch data into it, and only then write it to the ==
== destination (source -> L1 cache, L1 cache -> destination) ==
== Note 4: If sample standard deviation exceeds 0.1%, it is shown in ==
== brackets ==
==========================================================================
C copy backwards : 1647.6 MB/s (0.4%)
C copy backwards (32 byte blocks) : 1652.2 MB/s (0.2%)
C copy backwards (64 byte blocks) : 1664.0 MB/s (0.9%)
C copy : 1518.8 MB/s (0.1%)
C copy prefetched (32 bytes step) : 1609.2 MB/s (0.1%)
C copy prefetched (64 bytes step) : 1615.8 MB/s
C 2-pass copy : 1313.6 MB/s
C 2-pass copy prefetched (32 bytes step) : 1409.5 MB/s
C 2-pass copy prefetched (64 bytes step) : 1400.0 MB/s
C fill : 4483.7 MB/s
C fill (shuffle within 16 byte blocks) : 4483.2 MB/s
C fill (shuffle within 32 byte blocks) : 4483.8 MB/s (0.2%)
C fill (shuffle within 64 byte blocks) : 4488.0 MB/s (0.4%)
---
standard memcpy : 1640.9 MB/s (0.5%)
standard memset : 3706.6 MB/s
---
NEON read : 2135.5 MB/s (0.2%)
NEON read prefetched (32 bytes step) : 3394.2 MB/s (0.2%)
NEON read prefetched (64 bytes step) : 3401.8 MB/s (0.6%)
NEON read 2 data streams : 1954.4 MB/s
NEON read 2 data streams prefetched (32 bytes step) : 3284.8 MB/s
NEON read 2 data streams prefetched (64 bytes step) : 3292.3 MB/s
NEON copy : 1536.2 MB/s (0.8%)
NEON copy prefetched (32 bytes step) : 1656.0 MB/s (0.2%)
NEON copy prefetched (64 bytes step) : 1652.2 MB/s (0.1%)
NEON unrolled copy : 1512.1 MB/s
NEON unrolled copy prefetched (32 bytes step) : 1720.8 MB/s
NEON unrolled copy prefetched (64 bytes step) : 1722.7 MB/s
NEON copy backwards : 1642.4 MB/s (0.5%)
NEON copy backwards prefetched (32 bytes step) : 1723.1 MB/s
NEON copy backwards prefetched (64 bytes step) : 1721.7 MB/s
NEON 2-pass copy : 1357.2 MB/s
NEON 2-pass copy prefetched (32 bytes step) : 1439.8 MB/s
NEON 2-pass copy prefetched (64 bytes step) : 1442.1 MB/s (0.6%)
NEON unrolled 2-pass copy : 1338.6 MB/s
NEON unrolled 2-pass copy prefetched (32 bytes step) : 1554.0 MB/s
NEON unrolled 2-pass copy prefetched (64 bytes step) : 1577.1 MB/s
NEON fill : 4531.5 MB/s (0.3%)
NEON fill backwards : 4530.7 MB/s (0.4%)
VFP copy : 1530.8 MB/s (0.4%)
VFP 2-pass copy : 1329.3 MB/s
ARM fill (STRD) : 3701.6 MB/s
ARM fill (STM with 8 registers) : 4481.6 MB/s
ARM fill (STM with 4 registers) : 4479.0 MB/s
ARM copy prefetched (incr pld) : 1649.7 MB/s (0.5%)
ARM copy prefetched (wrap pld) : 1616.7 MB/s
ARM 2-pass copy prefetched (incr pld) : 1393.8 MB/s
ARM 2-pass copy prefetched (wrap pld) : 1387.7 MB/s
==========================================================================
== Framebuffer read tests. ==
== ==
== Many ARM devices use a part of the system memory as the framebuffer, ==
== typically mapped as uncached but with write-combining enabled. ==
== Writes to such framebuffers are quite fast, but reads are much ==
== slower and very sensitive to the alignment and the selection of ==
== CPU instructions which are used for accessing memory. ==
== ==
== Many x86 systems allocate the framebuffer in the GPU memory, ==
== accessible for the CPU via a relatively slow PCI-E bus. Moreover, ==
== PCI-E is asymmetric and handles reads a lot worse than writes. ==
== ==
== If uncached framebuffer reads are reasonably fast (at least 100 MB/s ==
== or preferably >300 MB/s), then using the shadow framebuffer layer ==
== is not necessary in Xorg DDX drivers, resulting in a nice overall ==
== performance improvement. For example, the xf86-video-fbturbo DDX ==
== uses this trick. ==
==========================================================================
NEON read (from framebuffer) : 64.3 MB/s
NEON copy (from framebuffer) : 63.7 MB/s (0.1%)
NEON 2-pass copy (from framebuffer) : 63.1 MB/s
NEON unrolled copy (from framebuffer) : 63.6 MB/s
NEON 2-pass unrolled copy (from framebuffer) : 62.7 MB/s
VFP copy (from framebuffer) : 423.6 MB/s
VFP 2-pass copy (from framebuffer) : 395.4 MB/s
ARM copy (from framebuffer) : 229.4 MB/s
ARM 2-pass copy (from framebuffer) : 220.9 MB/s
==========================================================================
== Memory latency test ==
== ==
== Average time is measured for random memory accesses in the buffers ==
== of different sizes. The larger is the buffer, the more significant ==
== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==
== accesses. For extremely large buffer sizes we are expecting to see ==
== page table walk with several requests to SDRAM for almost every ==
== memory access (though 64MiB is not nearly large enough to experience ==
== this effect to its fullest). ==
== ==
== Note 1: All the numbers are representing extra time, which needs to ==
== be added to L1 cache latency. The cycle timings for L1 cache ==
== latency can be usually found in the processor documentation. ==
== Note 2: Dual random read means that we are simultaneously performing ==
== two independent memory accesses at a time. In the case if ==
== the memory subsystem can't handle multiple outstanding ==
== requests, dual random read has the same timings as two ==
== single reads performed one after another. ==
==========================================================================
block size : single random read / dual random read, [MADV_NOHUGEPAGE]
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 4.9 ns / 8.3 ns
131072 : 7.5 ns / 11.5 ns
262144 : 8.8 ns / 12.9 ns
524288 : 10.8 ns / 15.4 ns
1048576 : 80.3 ns / 122.7 ns
2097152 : 117.2 ns / 156.8 ns
4194304 : 141.6 ns / 176.3 ns
8388608 : 154.3 ns / 186.4 ns
16777216 : 162.1 ns / 194.3 ns
33554432 : 166.6 ns / 198.8 ns
67108864 : 169.4 ns / 201.9 ns
block size : single random read / dual random read, [MADV_HUGEPAGE]
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 4.9 ns / 8.3 ns
131072 : 7.5 ns / 11.5 ns
262144 : 8.8 ns / 12.9 ns
524288 : 10.9 ns / 15.3 ns
1048576 : 80.6 ns / 123.3 ns
2097152 : 118.2 ns / 158.2 ns
4194304 : 135.2 ns / 167.2 ns
8388608 : 144.4 ns / 171.1 ns
16777216 : 149.0 ns / 172.9 ns
33554432 : 151.4 ns / 173.7 ns
67108864 : 152.4 ns / 174.0 ns
##########################################################################
7-Zip (A) 9.20 Copyright (c) 1999-2010 Igor Pavlov 2010-11-18
p7zip Version 9.20 (locale=C,Utf16=off,HugeFiles=on,8 CPUs)
RAM size: 1959 MB, # CPU hardware threads: 8
RAM usage: 1701 MB, # Benchmark threads: 8
Dict Compressing | Decompressing
Speed Usage R/U Rating | Speed Usage R/U Rating
KB/s % MIPS MIPS | KB/s % MIPS MIPS
22: 669 100 650 650 | 13014 100 1173 1173
23: 664 100 677 677 | 12850 100 1175 1175
24: 658 100 708 708 | 12695 100 1177 1177
25: 636 100 727 727 | 12607 100 1185 1185
----------------------------------------------------------------
Avr: 100 690 690 100 1178 1178
Tot: 100 934 934
7-Zip (A) 9.20 Copyright (c) 1999-2010 Igor Pavlov 2010-11-18
p7zip Version 9.20 (locale=C,Utf16=off,HugeFiles=on,8 CPUs)
RAM size: 1959 MB, # CPU hardware threads: 8
RAM usage: 1701 MB, # Benchmark threads: 8
Dict Compressing | Decompressing
Speed Usage R/U Rating | Speed Usage R/U Rating
KB/s % MIPS MIPS | KB/s % MIPS MIPS
22: 686 100 667 667 | 13078 100 1179 1179
23: 677 100 689 689 | 12928 100 1182 1182
24: 669 100 720 720 | 12759 100 1183 1183
25: 649 100 741 741 | 12570 100 1182 1182
----------------------------------------------------------------
Avr: 100 704 704 100 1181 1181
Tot: 100 943 943
##########################################################################
7-Zip (A) 9.20 Copyright (c) 1999-2010 Igor Pavlov 2010-11-18
p7zip Version 9.20 (locale=C,Utf16=off,HugeFiles=on,8 CPUs)
RAM size: 1959 MB, # CPU hardware threads: 8
RAM usage: 1701 MB, # Benchmark threads: 8
Dict Compressing | Decompressing
Speed Usage R/U Rating | Speed Usage R/U Rating
KB/s % MIPS MIPS | KB/s % MIPS MIPS
22: 3890 617 613 3784 | 102407 779 1185 9235
23: 3859 624 630 3932 | 101158 783 1181 9254
24: 3806 627 652 4093 | 100341 787 1182 9307
25: 3763 634 677 4297 | 95747 765 1176 9003
----------------------------------------------------------------
Avr: 626 643 4026 779 1181 9200
Tot: 702 912 6613
7-Zip (A) 9.20 Copyright (c) 1999-2010 Igor Pavlov 2010-11-18
p7zip Version 9.20 (locale=C,Utf16=off,HugeFiles=on,8 CPUs)
RAM size: 1959 MB, # CPU hardware threads: 8
RAM usage: 1701 MB, # Benchmark threads: 8
Dict Compressing | Decompressing
Speed Usage R/U Rating | Speed Usage R/U Rating
KB/s % MIPS MIPS | KB/s % MIPS MIPS
22: 3838 612 610 3734 | 91906 704 1176 8288
23: 3804 617 628 3876 | 92756 721 1177 8486
24: 3785 622 654 4069 | 92717 732 1174 8600
25: 3740 629 679 4270 | 95058 761 1175 8939
----------------------------------------------------------------
Avr: 620 643 3987 730 1175 8578
Tot: 675 909 6283
7-Zip (A) 9.20 Copyright (c) 1999-2010 Igor Pavlov 2010-11-18
p7zip Version 9.20 (locale=C,Utf16=off,HugeFiles=on,8 CPUs)
RAM size: 1959 MB, # CPU hardware threads: 8
RAM usage: 1701 MB, # Benchmark threads: 8
Dict Compressing | Decompressing
Speed Usage R/U Rating | Speed Usage R/U Rating
KB/s % MIPS MIPS | KB/s % MIPS MIPS
22: 3867 618 609 3761 | 94768 728 1174 8547
23: 3820 623 624 3892 | 94927 737 1178 8684
24: 3770 618 655 4054 | 94882 747 1177 8801
25: 3743 631 677 4274 | 99291 791 1181 9337
----------------------------------------------------------------
Avr: 622 641 3995 751 1177 8842
Tot: 687 909 6419
Compression: 4026,3987,3995
Decompression: 9200,8578,8842
Total: 6613,6283,6419
##########################################################################
OpenSSL 1.0.2g 1 Mar 2016
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
aes-128-cbc 144039.81k 408517.80k 747687.25k 959278.10k 1050957.14k
aes-128-cbc 143569.39k 410488.36k 747940.10k 960143.22k 1051369.47k
aes-192-cbc 135727.87k 359225.54k 601403.79k 738692.10k 790719.15k
aes-192-cbc 136252.92k 360075.03k 601700.53k 739367.94k 788454.14k
aes-256-cbc 132938.87k 330114.70k 520920.06k 617044.31k 650194.41k
aes-256-cbc 131460.35k 327970.68k 519592.70k 614981.40k 652621.14k
##########################################################################
System health while running tinymembench:
Time big.LITTLE load %cpu %sys %usr %nice %io %irq Temp
19:34:43: 1400/1400MHz 0.35 17% 0% 16% 0% 0% 0% 42.0°C
19:35:43: 1400/1400MHz 0.73 11% 0% 11% 0% 0% 0% 46.0°C
19:36:43: 1400/1400MHz 0.90 12% 0% 12% 0% 0% 0% 46.0°C
19:37:43: 1400/1400MHz 0.97 12% 0% 12% 0% 0% 0% 46.0°C
19:38:43: 1400/1400MHz 1.14 13% 0% 13% 0% 0% 0% 42.0°C
19:39:43: 1400/1400MHz 1.17 14% 0% 13% 0% 0% 0% 42.0°C
19:40:43: 1400/1400MHz 1.20 14% 0% 13% 0% 0% 0% 42.0°C
19:41:43: 1400/1400MHz 1.14 13% 0% 13% 0% 0% 0% 42.0°C
19:42:43: 1400/1400MHz 1.11 12% 0% 12% 0% 0% 0% 42.0°C
19:43:43: 1400/1400MHz 1.04 12% 0% 12% 0% 0% 0% 42.0°C
19:44:43: 1400/1400MHz 1.01 12% 0% 12% 0% 0% 0% 42.0°C
19:45:43: 1400/1400MHz 1.00 12% 0% 12% 0% 0% 0% 42.0°C
19:46:44: 1400/1400MHz 1.11 13% 0% 13% 0% 0% 0% 46.0°C
19:47:44: 1400/1400MHz 1.33 15% 0% 14% 0% 0% 0% 46.0°C
19:48:44: 1400/1400MHz 1.28 15% 0% 14% 0% 0% 0% 46.0°C
19:49:44: 1400/1400MHz 1.19 13% 0% 13% 0% 0% 0% 42.0°C
19:50:44: 1400/1400MHz 1.07 12% 0% 12% 0% 0% 0% 42.0°C
19:51:44: 1400/1400MHz 1.02 12% 0% 12% 0% 0% 0% 42.0°C
19:52:44: 1400/1400MHz 1.01 12% 0% 12% 0% 0% 0% 42.0°C
19:53:44: 1400/1400MHz 1.00 12% 0% 12% 0% 0% 0% 42.0°C
19:54:44: 1400/1400MHz 1.00 13% 0% 13% 0% 0% 0% 42.0°C
19:55:44: 1400/1400MHz 1.21 14% 0% 14% 0% 0% 0% 42.0°C
19:56:44: 1400/1400MHz 1.22 14% 0% 14% 0% 0% 0% 42.0°C
System health while running 7-zip single core benchmark:
Time big.LITTLE load %cpu %sys %usr %nice %io %irq Temp
19:56:56: 1400/1400MHz 1.19 16% 0% 15% 0% 0% 0% 42.0°C
19:57:11: 1400/1400MHz 2.08 14% 0% 13% 0% 0% 0% 42.0°C
19:57:26: 1400/1400MHz 2.96 13% 0% 12% 0% 0% 0% 42.0°C
19:57:41: 1400/1400MHz 4.08 12% 0% 12% 0% 0% 0% 42.0°C
19:57:56: 1400/1400MHz 4.95 12% 0% 12% 0% 0% 0% 42.0°C
19:58:11: 1400/1400MHz 5.30 12% 0% 12% 0% 0% 0% 42.0°C
19:58:26: 1400/1400MHz 5.17 12% 0% 12% 0% 0% 0% 42.0°C
19:58:41: 1400/1400MHz 5.05 12% 0% 12% 0% 0% 0% 42.0°C
19:58:56: 1400/1400MHz 4.81 12% 0% 12% 0% 0% 0% 42.0°C
19:59:11: 1400/1400MHz 5.52 12% 0% 12% 0% 0% 0% 42.0°C
19:59:26: 1400/1400MHz 6.07 12% 0% 12% 0% 0% 0% 42.0°C
19:59:42: 1400/1400MHz 6.50 12% 0% 12% 0% 0% 0% 42.0°C
19:59:57: 1400/1400MHz 5.82 12% 0% 12% 0% 0% 0% 42.0°C
20:00:12: 1400/1400MHz 5.49 12% 0% 12% 0% 0% 0% 42.0°C
20:00:27: 1400/1400MHz 5.32 12% 0% 12% 0% 0% 0% 42.0°C
20:00:42: 1400/1400MHz 5.16 12% 0% 12% 0% 0% 0% 42.0°C
20:00:57: 1400/1400MHz 5.28 12% 0% 12% 0% 0% 0% 42.0°C
20:01:12: 1400/1400MHz 5.22 12% 0% 12% 0% 0% 0% 42.0°C
20:01:27: 1400/1400MHz 5.09 12% 0% 12% 0% 0% 0% 42.0°C
20:01:42: 1400/1400MHz 5.74 12% 0% 12% 0% 0% 0% 42.0°C
20:01:57: 1400/1400MHz 6.31 12% 0% 12% 0% 0% 0% 42.0°C
20:02:12: 1400/1400MHz 6.69 12% 0% 12% 0% 0% 0% 42.0°C
20:02:27: 1400/1400MHz 6.21 14% 0% 13% 0% 0% 0% 42.0°C
20:02:42: 1400/1400MHz 5.58 14% 0% 13% 0% 0% 0% 42.0°C
20:02:57: 1400/1400MHz 5.37 14% 0% 13% 0% 0% 0% 42.0°C
20:03:12: 1400/1400MHz 5.07 14% 0% 14% 0% 0% 0% 42.0°C
20:03:28: 1400/1400MHz 5.04 14% 0% 13% 0% 0% 0% 42.0°C
20:03:43: 1400/1400MHz 4.96 14% 0% 13% 0% 0% 0% 42.0°C
20:03:58: 1400/1400MHz 5.03 14% 0% 13% 0% 0% 0% 42.0°C
20:04:13: 1400/1400MHz 5.08 14% 0% 13% 0% 0% 0% 42.0°C
20:04:28: 1400/1400MHz 4.99 14% 0% 13% 0% 0% 0% 42.0°C
20:04:43: 1400/1400MHz 5.00 14% 0% 13% 0% 0% 0% 42.0°C
20:04:58: 1400/1400MHz 5.18 20% 1% 19% 0% 0% 0% 42.0°C
20:05:13: 1400/1400MHz 5.06 14% 0% 13% 0% 0% 0% 42.0°C
20:05:28: 1400/1400MHz 4.90 12% 0% 12% 0% 0% 0% 42.0°C
20:05:43: 1400/1400MHz 4.94 12% 0% 12% 0% 0% 0% 42.0°C
20:05:58: 1400/1400MHz 5.62 12% 0% 12% 0% 0% 0% 42.0°C
20:06:13: 1400/1400MHz 6.15 12% 0% 12% 0% 0% 0% 42.0°C
20:06:28: 1400/1400MHz 6.56 12% 0% 12% 0% 0% 0% 42.0°C
20:06:43: 1400/1400MHz 6.88 12% 0% 12% 0% 0% 0% 42.0°C
20:06:59: 1400/1400MHz 6.04 12% 0% 12% 0% 0% 0% 42.0°C
20:07:14: 1400/1400MHz 6.05 12% 0% 12% 0% 0% 0% 42.0°C
20:07:29: 1400/1400MHz 6.48 12% 0% 12% 0% 0% 0% 42.0°C
20:07:44: 1400/1400MHz 6.82 12% 0% 12% 0% 0% 0% 42.0°C
20:07:59: 1400/1400MHz 6.76 12% 0% 12% 0% 0% 0% 42.0°C
20:08:14: 1400/1400MHz 6.15 12% 0% 12% 0% 0% 0% 42.0°C
20:08:29: 1400/1400MHz 5.67 12% 0% 12% 0% 0% 0% 42.0°C
20:08:44: 1400/1400MHz 5.53 12% 0% 12% 0% 0% 0% 42.0°C
20:08:59: 1400/1400MHz 6.08 12% 0% 12% 0% 0% 0% 42.0°C
20:09:14: 1400/1400MHz 6.50 12% 0% 12% 0% 0% 0% 42.0°C
20:09:29: 1400/1400MHz 6.83 12% 0% 12% 0% 0% 0% 42.0°C
20:09:44: 1400/1400MHz 6.28 12% 0% 12% 0% 0% 0% 42.0°C
20:09:59: 1400/1400MHz 6.07 12% 0% 12% 0% 0% 0% 42.0°C
20:10:14: 1400/1400MHz 5.69 13% 0% 12% 0% 0% 0% 42.0°C
20:10:29: 1400/1400MHz 5.32 14% 0% 13% 0% 0% 0% 42.0°C
20:10:45: 1400/1400MHz 5.17 14% 0% 13% 0% 0% 0% 42.0°C
20:11:00: 1400/1400MHz 5.15 14% 0% 14% 0% 0% 0% 42.0°C
20:11:15: 1400/1400MHz 5.42 14% 0% 14% 0% 0% 0% 42.0°C
20:11:30: 1400/1400MHz 5.99 14% 0% 14% 0% 0% 0% 42.0°C
20:11:45: 1400/1400MHz 6.51 14% 0% 14% 0% 0% 0% 42.0°C
20:12:00: 1400/1400MHz 6.84 14% 0% 13% 0% 0% 0% 42.0°C
20:12:15: 1400/1400MHz 6.24 14% 0% 13% 0% 0% 0% 42.0°C
20:12:30: 1400/1400MHz 5.81 14% 0% 14% 0% 0% 0% 42.0°C
20:12:45: 1400/1400MHz 5.71 14% 0% 13% 0% 0% 0% 42.0°C
20:13:00: 1400/1400MHz 5.33 14% 0% 13% 0% 0% 0% 42.0°C
20:13:15: 1400/1400MHz 5.11 14% 0% 13% 0% 0% 0% 42.0°C
20:13:30: 1400/1400MHz 4.86 12% 0% 12% 0% 0% 0% 42.0°C
20:13:45: 1400/1400MHz 4.74 12% 0% 12% 0% 0% 0% 42.0°C
20:14:00: 1400/1400MHz 4.88 13% 0% 12% 0% 0% 0% 42.0°C
20:14:16: 1400/1400MHz 4.69 12% 0% 12% 0% 0% 0% 42.0°C
20:14:31: 1400/1400MHz 4.76 12% 0% 12% 0% 0% 0% 42.0°C
20:14:46: 1400/1400MHz 4.73 12% 0% 12% 0% 0% 0% 42.0°C
20:15:01: 1400/1400MHz 4.57 12% 0% 12% 0% 0% 0% 42.0°C
20:15:16: 1400/1400MHz 4.59 12% 0% 12% 0% 0% 0% 42.0°C
20:15:31: 1400/1400MHz 4.38 12% 0% 12% 0% 0% 0% 42.0°C
20:15:46: 1400/1400MHz 5.18 12% 0% 12% 0% 0% 0% 42.0°C
20:16:01: 1400/1400MHz 5.80 12% 0% 12% 0% 0% 0% 42.0°C
20:16:16: 1400/1400MHz 6.29 12% 0% 12% 0% 0% 0% 42.0°C
System health while running 7-zip multi core benchmark:
Time big.LITTLE load %cpu %sys %usr %nice %io %irq Temp
20:16:31: 1400/1400MHz 6.67 15% 0% 14% 0% 0% 0% 42.0°C
20:17:03: 1400/1400MHz 6.20 55% 0% 55% 0% 0% 0% 51.0°C
20:17:33: 1400/1400MHz 5.93 78% 0% 77% 0% 0% 0% 48.0°C
20:18:03: 1400/1400MHz 6.44 73% 1% 72% 0% 0% 0% 52.0°C
20:18:34: 1400/1400MHz 7.00 83% 1% 82% 0% 0% 0% 52.0°C
20:19:04: 1400/1400MHz 6.91 79% 0% 78% 0% 0% 0% 53.0°C
20:19:34: 1400/1400MHz 6.39 73% 0% 72% 0% 0% 0% 52.0°C
20:20:04: 1400/1400MHz 7.30 86% 1% 84% 0% 0% 0% 54.0°C
20:20:34: 1400/1400MHz 7.55 78% 0% 77% 0% 0% 0% 53.0°C
20:21:05: 1400/1400MHz 7.31 74% 0% 73% 0% 0% 0% 52.0°C
20:21:37: 1400/1400MHz 7.82 85% 1% 84% 0% 0% 0% 55.0°C
System health while running OpenSSL benchmark:
Time big.LITTLE load %cpu %sys %usr %nice %io %irq Temp
20:21:38: 1400/1400MHz 7.82 18% 0% 17% 0% 0% 0% 53.0°C
20:21:48: 1400/1400MHz 6.69 0% 0% 0% 0% 0% 0% 47.0°C
20:21:58: 1400/1400MHz 5.89 12% 0% 12% 0% 0% 0% 47.0°C
20:22:08: 1400/1400MHz 4.88 12% 0% 12% 0% 0% 0% 47.0°C
20:22:18: 1400/1400MHz 4.28 12% 0% 12% 0% 0% 0% 46.0°C
20:22:28: 1400/1400MHz 3.78 12% 0% 12% 0% 0% 0% 46.0°C
20:22:38: 1400/1400MHz 3.35 12% 0% 12% 0% 0% 0% 46.0°C
20:22:48: 1400/1400MHz 2.99 12% 0% 12% 0% 0% 0% 46.0°C
20:22:59: 1400/1400MHz 2.68 12% 0% 12% 0% 0% 0% 46.0°C
20:23:09: 1400/1400MHz 2.50 12% 0% 12% 0% 0% 0% 46.0°C
##########################################################################
Linux 4.4.49-s5p6818 (FriendlyELEC) 07/27/18 _armv7l_ (8 CPU)
avg-cpu: %user %nice %system %iowait %steal %idle
17.74 0.08 0.44 0.12 0.00 81.61
Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
mmcblk0 4.01 105.96 1594.89 694614 10455452
mmcblk0boot1 0.01 0.03 0.00 216 0
mmcblk0boot0 0.01 0.03 0.00 216 0
total used free shared buff/cache available
Mem: 1.9G 189M 1.6G 9.8M 93M 1.6G
Swap: 0B 0B 0B
Filename Type Size Used Priority