-
Notifications
You must be signed in to change notification settings - Fork 1
/
processing.js
106 lines (76 loc) · 3.03 KB
/
processing.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
var model;
async function loadModel() {
model = await tf.loadGraphModel('TFJS/model.json')
}
function predictImage() {
// console.log('processing ...');
let image = cv.imread(canvas);
cv.cvtColor(image, image, cv.COLOR_RGBA2GRAY, 0);
cv.threshold(image, image, 175, 255, cv.THRESH_BINARY);
let contours = new cv.MatVector();
let hierarchy = new cv.Mat();
// You can try more different parameters
cv.findContours(image, contours, hierarchy, cv.RETR_CCOMP, cv.CHAIN_APPROX_SIMPLE);
let cnt = contours.get(0);
let rect = cv.boundingRect(cnt);
image = image.roi(rect);
var height = image.rows;
var width = image.cols;
if (height > width) {
height = 20;
const scaleFactor = image.rows / height;
width = Math.round(image.cols/scaleFactor);
} else {
width = 20;
const scaleFactor = image.cols / width;
height = Math.round(image.rows/scaleFactor);
}
let newSize = new cv.Size(width, height);
cv.resize(image, image, newSize, 0, 0, cv.INTER_AREA)
const LEFT = Math.ceil(4 + (20 - width)/2);
const RIGHT = Math.floor(4 + (20 - width)/2);
const TOP = Math.ceil(4 + (20 - height)/2);
const BOTTOM = Math.floor(4 + (20 - height)/2);
// console.log(`top: ${TOP}, bottom: ${BOTTOM}, left: ${LEFT}, right${RIGHT}`);
const BLACK = new cv.Scalar(0, 0, 0, 0);
cv.copyMakeBorder(image, image, TOP, BOTTOM, LEFT, RIGHT, cv.BORDER_CONSTANT, BLACK);
// Centre of Mass
cv.findContours(image, contours, hierarchy, cv.RETR_CCOMP, cv.CHAIN_APPROX_SIMPLE);
cnt = contours.get(0);
const Moments = cv.moments(cnt, false);
const cx = Moments.m10 / Moments.m00;
const cy = Moments.m01 / Moments.m00;
// console.log(`M00: ${Moments.m00}, cx: ${cx}, cy: ${cy}`);
const X_SHIFT = Math.round(image.cols/2.0 - cx);
const Y_SHIFT = Math.round(image.rows/2.0 - cy);
newSize = new cv.Size(image.cols, image.rows);
const M = cv.matFromArray(2, 3, cv.CV_64FC1, [1, 0, X_SHIFT, 0, 1, Y_SHIFT]);
cv.warpAffine(image, image, M, newSize, cv.INTER_LINEAR, cv.BORDER_CONSTANT, BLACK);
let pixelValues = image.data;
// console.log(`pixel values: ${pixelValues}`);
pixelValues = Float32Array.from(pixelValues);
pixelValues = pixelValues.map(function(item){
return item / 255.0;
});
// console.log(`scaled array: ${pixelValues}`);
const X = tf.tensor([pixelValues]);
// console.log(`Shape of Tensor: ${X.shape}`);
// console.log(`dtype of Tensor: ${X.dtype}`);
const result = model.predict(X);
result.print();
// console.log(tf.memory());
const output = result.dataSync()[0];
// // Testing Only (delete later)
// const outputCanvas = document.createElement('CANVAS');
// cv.imshow(outputCanvas, image);
// document.body.appendChild(outputCanvas);
// Cleanup
image.delete();
contours.delete();
cnt.delete();
hierarchy.delete();
M.delete();
X.dispose();
result.dispose();
return output;
}