-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmetric6a.py
354 lines (294 loc) · 11.5 KB
/
metric6a.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import os
import sys
import json
import math
import itertools
# import editdistance
import numpy as np
import scipy.optimize
import scipy.spatial.distance
def check_groups(ds):
try:
_i = ds[0][0]
return 1
except Exception:
return 0
def pprint(obj):
print(json.dumps(obj, indent=4, sort_keys=True))
def get_dataseries(json_obj):
if 'task6_output' in json_obj:
return json_obj['task6_output']['visual elements']
elif 'task6' in json_obj:
return json_obj['task6']['output']['visual elements']
return None
def euclid(p1, p2):
x1 = float(p1['x'])
y1 = float(p1['y'])
x2 = float(p2['x'])
y2 = float(p2['y'])
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
# def box_to_discrete(ds):
# out = []
# for it_name in ['first_quartile', 'max', 'min', 'median', 'third_quartile']:
# out.append( {'name': it_name, 'x': ds[it_name]['x'], 'y': ds[it_name]['y']} )
# return out
def box_arr_to_np(ds):
n = np.zeros( (1, 8))
cnt_q = 0
for _i,p in enumerate(ds):
n[0,cnt_q] = float(ds[p]['y'])
n[0,cnt_q+1] = float(ds[p]['x'])
cnt_q = cnt_q+1
return n
def compare_box(pred_ds, gt_ds, min_dim):
pred_ds = box_arr_to_np(pred_ds)
gt_ds = box_arr_to_np(gt_ds)
cost_mat = np.minimum(1, scipy.spatial.distance.cdist(pred_ds, gt_ds, metric='cityblock') /(min_dim*0.05))
return cost_mat
def scatt_arr_to_np(ds):
n = np.zeros((len(ds), 2))
for i, p in enumerate(ds):
n[i,0] = float(p['x'])
n[i,1] = float(p['y'])
return n
def bar_arr_to_np(ds):
n = np.zeros([1,4])
n[0,0] = float(ds['y0'])
n[0,1] = float(ds['x0'])
n[0,2] = float(ds['height']) + float(ds['y0'])
n[0,3] = float(ds['width']) + float(ds['x0'])
return n
def compare_bar(pred_ds, gt_ds, min_dim):
pred_ds = bar_arr_to_np(pred_ds)
gt_ds = bar_arr_to_np(gt_ds)
cost_mat = np.minimum(1, scipy.spatial.distance.cdist(pred_ds, gt_ds, metric='cityblock') /(min_dim*0.05))
return cost_mat
def compare_scatter(pred_ds, gt_ds, min_dim, gamma, beta):
is_grouped = check_groups(gt_ds)
if is_grouped:
len_seq = len(gt_ds)
else:
len_seq = 1
pred_ds = [pred_ds]
gt_ds = [gt_ds]
score = np.zeros((len(gt_ds), len(pred_ds)))
for iter_seq1 in range(len(gt_ds)):
gt_seq = scatt_arr_to_np(gt_ds[iter_seq1])
for iter_seq2 in range(len(pred_ds)):
pred_seq = scatt_arr_to_np(pred_ds[iter_seq2])
# V = np.cov(gt_ds.T)
# VI = np.linalg.inv(V).T
#cost_mat = np.minimum(1, scipy.spatial.distance.cdist(pred_ds, gt_ds, metric='mahalanobis', VI=VI) / gamma)
cost_mat = np.minimum(1, scipy.spatial.distance.cdist(pred_seq, gt_seq, metric='euclidean') / (min_dim*gamma))
score[iter_seq1, iter_seq2] = get_score(cost_mat)
row_ind, col_ind = scipy.optimize.linear_sum_assignment(-score)
score = score[row_ind, col_ind].sum()/(float(len(gt_ds))*beta)
return score
def get_score(cost_mat):
cost_mat = pad_mat(cost_mat)
k = cost_mat.shape[0]
row_ind, col_ind = scipy.optimize.linear_sum_assignment(cost_mat)
cost = cost_mat[row_ind, col_ind].sum()
score = 1 - (cost / k)
return score
def get_cont_recall(p_xs, p_ys, g_xs, g_ys, epsilon):
total_score = 0
total_interval = 0
for i in range(g_xs.shape[0]):
x = g_xs[i]
if g_xs.shape[0] == 1:
interval = 1
elif i == 0:
interval = (g_xs[i+1] - x) / 2
elif i == (g_xs.shape[0] - 1):
interval = (x - g_xs[i-1]) / 2
else:
interval = (g_xs[i+1] - g_xs[i-1]) / 2
y = g_ys[i]
y_interp = np.interp(x, p_xs, p_ys)
error = min(1, abs( (y - y_interp) / (abs(y) + epsilon)))
total_score += (1 - error) * interval
total_interval += interval
if g_xs.shape[0] != 1:
assert np.isclose(total_interval, g_xs[-1] - g_xs[0])
return total_score / total_interval
def compare_continuous(pred_ds, gt_ds):
pred_ds = sorted(pred_ds, key=lambda p: float(p['x']))
gt_ds = sorted(gt_ds, key=lambda p: float(p['x']))
if not pred_ds and not gt_ds:
# empty matches empty
return 1.0
elif not pred_ds and gt_ds:
# empty does not match non-empty
return 0.0
elif pred_ds and not gt_ds:
# empty does not match non-empty
return 0.0
p_xs = np.array([float(ds['x']) for ds in pred_ds])
p_ys = np.array([float(ds['y']) for ds in pred_ds])
g_xs = np.array([float(ds['x']) for ds in gt_ds])
g_ys = np.array([float(ds['y']) for ds in gt_ds])
epsilon = (g_ys.max() - g_ys.min()) / 100.
recall = get_cont_recall(p_xs, p_ys, g_xs, g_ys, epsilon)
precision = get_cont_recall(g_xs, g_ys, p_xs, p_ys, epsilon)
return (2 * precision * recall) / (precision + recall) if (precision + recall) else 0.
# def norm_edit_dist(s1, s2):
# return editdistance.eval(s1, s2) / float(max(len(s1), len(s2), 1))
def create_dist_mat(pred_seq, gt_seq, compare, beta):
is_grouped = check_groups(gt_seq)
if not is_grouped:
len_seq = 1
gt_seq = [gt_seq]
pred_seq = [pred_seq]
score = 0
for iter_seq1 in range(len(gt_seq)):
l1 = len(gt_seq[iter_seq1])
tmp_score = 0
for iter_seq2 in range(len(pred_seq)):
l2 = len(pred_seq[iter_seq2])
mat = np.full( (l1, l2), -1.)
for i in range(l1):
for j in range(l2):
mat[i,j] = compare(gt_seq[iter_seq1][i], pred_seq[iter_seq2][j])
tmp_score = max(tmp_score, get_score(1 - (mat/beta)))
score += tmp_score
score = score/float(len(gt_seq))
return score
def pad_mat(mat):
h,w = mat.shape
if h == w:
return mat
elif h > w:
new_mat = np.zeros( (h, h) )
new_mat[:,:w] = mat
return new_mat
else:
new_mat = np.zeros( (w, w) )
new_mat[:h,:] = mat
return new_mat
def compare_line_6b(pred_ds, gt_ds):
is_grouped = check_groups(gt_ds)
if is_grouped:
score = np.zeros((len(gt_ds), len(pred_ds)))
score = pad_mat(score)
for iter_seq1 in range(len(gt_ds)):
for iter_seq2 in range(len(pred_ds)):
score[iter_seq1, iter_seq2] = compare_continuous(gt_ds[iter_seq1], pred_ds[iter_seq2])
row_ind, col_ind = scipy.optimize.linear_sum_assignment(-score)
score = score[row_ind, col_ind].sum()/score.shape[0]
else:
# print(gt_ds)
score = compare_continuous(pred_ds, gt_ds)
return score
def compare_line_6a(pred_ds, gt_ds):
is_grouped = check_groups(gt_ds)
if is_grouped:
score = np.zeros((len(gt_ds), len(pred_ds)))
for iter_seq1 in range(len(gt_ds)):
for iter_seq2 in range(len(pred_ds)):
score[iter_seq1, iter_seq2] = compare_continuous(gt_ds[iter_seq1], pred_ds[iter_seq2])
row_ind, col_ind = scipy.optimize.linear_sum_assignment(-score)
score = score[row_ind, col_ind].sum()/len(gt_ds)
else:
# print(gt_ds)
score = compare_continuous(pred_ds, gt_ds)
return score
def metric_6a(pred_data_series, gt_data_series, gt_type, alpha=1, beta=2, gamma=1, img_dim = [1280.0, 960.0], debug=False):
if 'box' in gt_type.lower():
compare = lambda ds1, ds2: compare_box(ds1, ds2, min(img_dim))
pred_no_names = pred_data_series['boxplots']
gt_no_names = gt_data_series['boxplots']
ds_match_score = create_dist_mat(pred_no_names, gt_no_names, compare, beta)
elif 'bar' in gt_type.lower():
compare = lambda ds1, ds2: compare_bar(ds1, ds2, min(img_dim))
pred_no_names = pred_data_series['bars']
gt_no_names = gt_data_series['bars']
ds_match_score = create_dist_mat(pred_no_names, gt_no_names, compare, beta)
elif 'scatter' in gt_type.lower():
pred_no_names = pred_data_series['scatter points']
gt_no_names = gt_data_series['scatter points']
ds_match_score = compare_scatter(pred_no_names, gt_no_names, min(img_dim), gamma, beta)
elif 'line' in gt_type.lower():
pred_no_names = pred_data_series['lines']
gt_no_names = gt_data_series['lines']
ds_match_score = compare_line(pred_no_names, gt_no_names)
else:
raise Exception("Odd Case")
return ds_match_score
def metric_6a_indv(pred_data_series, gt_data_series, gt_type, alpha=1, beta=2, gamma=1, img_dim = [1280.0, 960.0], debug=False):
# expects both pred_data_series and gt_data_series to be the list of lists. Only for line charts
if 'line' in gt_type.lower():
ds_match_score = compare_line_6a(pred_data_series, gt_data_series)
else:
raise Exception("Odd Case")
return ds_match_score
def metric_6b_indv(pred_data_series, gt_data_series, gt_type, alpha=1, beta=2, gamma=1, img_dim = [1280.0, 960.0], debug=False):
# expects both pred_data_series and gt_data_series to be the list of lists. Only for line charts
if 'line' in gt_type.lower():
ds_match_score = compare_line_6b(pred_data_series, gt_data_series)
else:
raise Exception("Odd Case")
return ds_match_score
if __name__ == "__main__":
if len(sys.argv) < 3:
print("USAGE: python metric6a.py pred_file|pred_dir gt_file|gt_dir [alpha] [beta] [gamma] [img_dim] [debug]")
exit()
pred_infile = sys.argv[1]
gt_infile = sys.argv[2]
try:
alpha = float(sys.argv[3])
except:
alpha = 1
try:
beta = float(sys.argv[4])
except:
beta = 1
try:
gamma = float(sys.argv[5])
except:
gamma = 1
try:
img_dim = sys.argv[6]
except:
img_dim = [1280, 960.0]
try:
debug = sys.argv[7]
except:
debug = False
if os.path.isfile(pred_infile) and os.path.isfile(gt_infile):
pred_json = json.load(open(pred_infile))
gt_json = json.load(open(gt_infile))
pred_outputs = get_dataseries(pred_json)
gt_outputs = get_dataseries(gt_json)
gt_type = gt_json['task1']['output']['chart_type']
score = metric_6a(pred_outputs, gt_outputs, gt_type, alpha, beta, gamma, img_dim, debug)
print(score)
elif os.path.isdir(pred_infile) and os.path.isdir(gt_infile):
scores_type = {}
scores = []
for x in os.listdir(pred_infile):
print("Processing: %s" %x)
pred_file = os.path.join(pred_infile, x)
gt_file = os.path.join(gt_infile, x)
try:
pred_json = json.load(open(pred_file))
gt_json = json.load(open(gt_file))
except Exception:
continue
pred_outputs = get_dataseries(pred_json)
gt_outputs = get_dataseries(gt_json)
gt_type = gt_json['task1']['output']['chart_type']
score = metric_6a(pred_outputs, gt_outputs, gt_type, alpha, beta, gamma, img_dim, debug)
if (gt_type in scores_type):
scores_type[gt_type].append(score)
else:
scores_type[gt_type] = [score]
scores.append(score)
print("Score: %f" %score)
avg_score = sum(scores) / len(scores)
print("Average Score: %f" % avg_score)
for types in scores_type:
print("Average Score for %s: %f" %(types, sum(scores_type[types])/len(scores_type[types])))
else:
print("Error: pred_file and gt_file must both be files or both be directories")
exit()