forked from IzzyBrand/ledvis
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsound_processing.py
154 lines (125 loc) · 4.58 KB
/
sound_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import time
###################################################################################################
# Normalizing
###################################################################################################
class Bounder:
'''
Used to estimate the upper and lower bounds on a stream of incoming
data. Can handle scalar and vector data. Also facilitate contracting
the bounds over time.
'''
def __init__(self, init_L=0.0, init_U=1.0, constrain_bounds=False):
self.init_U = init_U
self.init_L = init_L
self.U = self.init_U
self.L = self.init_L
self.U_contraction_rate = 0.999
self.L_contraction_rate = 0.995
self.constrain_bounds = constrain_bounds
self.dtype = type(self.init_U)
assert(type(self.init_U) == type(self.init_L))
def update(self, a):
# contract the array size
old_size = self.U - self.L
self.U -= (1.-self.U_contraction_rate) * old_size
self.L += (1.-self.L_contraction_rate) * old_size
# and update the bounds
if self.dtype == np.ndarray:
self.U = np.max([self.U, a], axis=0)
self.L = np.min([self.L, a], axis=0)
if self.constrain_bounds:
self.U = np.max([self.U, self.init_U], axis=0)
self.L = np.min([self.L, self.init_L], axis=0)
else:
self.U = max(self.U, np.max(a))
self.L = min(self.L, np.min(a))
if self.constrain_bounds:
self.U = max(self.U, self.init_U)
self.L = min(self.L, self.init_L)
def normalize(self, a):
return (a - self.L)/(self.U - self.L)
def update_and_normalize(self, a):
self.update(a)
return self.normalize(a)
def hertz_to_mel(freq):
"""Returns mel-frequency from linear frequency input.
Parameter
---------
freq : scalar or ndarray
Frequency value or array in Hz.
Returns
-------
mel : scalar or ndarray
Mel-frequency value or ndarray in Mel
"""
return 2595.0 * np.log10(1 + (freq / 700.0))
###################################################################################################
# Smoothing
###################################################################################################
class SmootherBase:
def __init__(self):
pass
def smooth(self, x):
return x
class ExponentialMovingAverage(SmootherBase):
def __init__(self, alpha):
self._s = 0
self.alpha = np.clip(alpha, 0.0, 1.0)
def smooth(self, x):
self._s = (self.alpha * x) + ((1. - self.alpha) * self._s)
return self._s
class SplitExponentialMovingAverage(SmootherBase):
def __init__(self, alpha_down=0.5, alpha_up=0.5, init = 0):
self.alpha_down = alpha_down
self.alpha_up = alpha_up
self._s = init
def smooth(self, x):
if isinstance(self._s, (list, np.ndarray, tuple)):
alpha = x - self._s
alpha[alpha > 0.0] = self.alpha_up
alpha[alpha <= 0.0] = self.alpha_down
else:
alpha = self.alpha_up if x > self._s else self.alpha_down
self._s = alpha * x + (1.0 - alpha) * self._s
return self._s
class ExponentialMovingAverageSpikePass(SmootherBase):
def __init__(self, alpha=0.1, pass_coeff=10):
self._s = 0
self._ss = 1
self.alpha = np.clip(alpha, 0.0, 1.0)
self.pass_coeff = pass_coeff
def smooth(self, x):
old_s = self._s
self._s = (self.alpha * x) + ((1. - self.alpha) * self._s)
self._ss = (self.alpha * x**2) + ((1. - self.alpha) * self._ss)
var = np.abs(self._ss - self._s**2)
if x > var*self.pass_coeff + old_s:
self._s = x
return self._s
class SpeedLimit(SmootherBase):
def __init__(self, up=None, down=-1):
self._s = 0
self.up = up
self.down = down
def smooth(self, x):
# calculate the delta
d = x - self._s
# bound the delta
d = max(d, self.down)
if self.up is not None: d = min(d, self.up)
# and update the smoothed value
self._s += d
return self._s
class EMASpeedLimit(SmootherBase):
def __init__(self, alpha=0.4, scale=.5):
self._s = 0
self._prev_x = 0
self.ema = ExponentialMovingAverage(alpha)
self.scale = scale
def smooth(self, x):
dx = x - self._prev_x
self._prev_x = x
sdx = abs(self.ema.smooth(dx) * self.scale)
self._s += np.clip(x - self._s, -sdx, sdx)
return self._s